第八章位移法

合集下载

第八章位移法new

第八章位移法new

1)在B结点增加附加转动约束(附加刚臂)( )。
附加转动约束只能阻止刚结点的转动,不能阻止结
点之间的相对线位移。此时产生固端弯矩
M
F。
BC
q
锁A 住
B 0
B
C
q
M
F BA

0,
M
F BC


ql2 。 8
B
M
F BC
C
2)令B结点产生转角

(
B
)。此时AB、BC杆类似
于B端为固端且产生转角 B 的单跨超静定梁。 4
20
三. 固端弯矩
单跨超静定梁在荷载作用下产生的杆端弯矩称为 固端弯矩。固端弯矩以顺时针方向为正,逆时针方向 为负。
1. 两端固定的梁:
q
ql 2 12
A
ql 2 24
l
ql 2 12 FP l 8
B
A
FP
FP l 8
B
FP l
l/2
8
l/2
M
F AB


ql 2 12
,
M
F BA

ql 2 。 12
增加附加链杆:
B EA C
Z1 BH CH
B EA = 有限值 C
Z1 BH
Z2 CH
A
DA
Z3 D
D
Z1 B
Z2 C
C
Z1 B
Z4 BH B
A
C
Z5 CH
Z2


B
BH
E A
D
当BD杆: EI无限大
D

12
§8-2 等截面直杆的刚度(转角位移)方程

结构力学第8章位移法

结构力学第8章位移法

结构力学第8章位移法位移法是结构力学中一种常用的分析方法。

它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。

位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。

位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。

位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。

2.应用边界条件。

根据边界条件,确定结构的支座的位移和转角值。

支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。

3.构建位移方程组。

将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。

位移方程组是未知反力系数的线性方程组。

4.解位移方程组。

通过解位移方程组,求解未知反力系数。

可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。

5.求解反力和应力分布。

通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。

这些反力和应力分布可以进一步用于结构的设计和评估。

位移法的优点是适用范围广泛,适合复杂结构的分析。

它可以处理线性和非线性的结构,包括静力学和动力学的分析。

同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。

然而,位移法也存在一些限制。

首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。

其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。

此外,位移法在处理大变形和非线性结构时可能会遭遇困难。

综上所述,位移法是结构力学中一种重要的分析方法。

它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。

然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。

结构力学上第8章 位移法

结构力学上第8章 位移法

(非独立角位移) l FQBA
M AB M BA
F 3i A 3i M AB l 0
3、一端固 FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
q B EI C L
Z1
q B
EI C
Z2 4i
Z1=1
EI A 原结构
L
=
Z2=1
EI A qL2 8 基本体系
=
3i
M1图×Z1 2i
+
6EI L2 6EI M2图×Z2 L2
+
qL2 8 MP图
在M1、M2、MP三个 图中的附加刚臂和链杆 中一定有约束反力产生, 而三个图中的反力加起 来应等于零。
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
F 1)两端固定梁 M AB 4i A 2i B 6i M AB
M BA
l F 2i A 4i B 6i M BA l
2)一端固定另一端铰支梁
F M AB 3i A 3i M AB l M BA 0 3)一端固定另一端定向支承梁 F M AB i A i B M AB
3
2
1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
A
B
C
C
D
刚架结构,有两个刚结点D、E, 故有两个角位移,结点线位移由铰 结体系来判断,W=3×4-2×6=0, 铰结体系几何不变,无结点线位移。
A
B

结构力学课件:第八章《位移法》解析

结构力学课件:第八章《位移法》解析
1
第八章 位 移 法
§8—1 概述 §8—2 等截面直杆的转角位移方程 §8—3 位移法的基本未知量和基本结构 §8—4 位移法的典型方程及计算步骤 §8—5 直接由平衡条件建立位移法基本方程 §8—6 对称性的利用
2
§8—1 概 述
力法和位移法是分析超静定结构的两种 基本方法。力法于十九世纪末开始应用,位 移法建立于上世纪初。
(2)确定以结构上的哪些位移作为基本未 知量。 (3)如何求出这些位移。
下面依次讨论这些问题。
返5回
§8—2 等截面直杆的转角位移方程
本节解决第一个问题。
用位移法计算超静定刚架时,每根杆件均视为单跨超静定梁。
计算时,要用到各种单跨超静定梁在杆端产生位移(线位移、角位
移)时,以及在荷载等因素作用下的杆端内力(弯矩、剪力)。为了应
1.位移法的基本未知量 在位移法中,基本未知量是各结点的角位移和线位移。计 算时,应首先确定独立的角位移和线位移数目。
(1) 独立角位移数目的确定 由于在同一结点处,各杆端的转角都是相等的,因此每一个 刚结点只有一个独立的角位移未知量。在固定支座处,其转角等 于零为已知量。至于铰结点或铰支座处各杆端的转角,由上节可 知,它们不是独立的,可不作为基本未知量。
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
2
3
地加上一个附加刚臂(仅阻止刚结
点转动),同时在有线位移的结点上
加上附加支座链杆(阻止结点移动)。
例如 (见图a) 基本未知量三个。4
5
6
3
4
(a)
1 2
又例如(见图b)
共有四个刚结点,结点线位移 数目为二,基本未知量为六个。 基本结构如图所示。

位移法

位移法

F B 端为铰支座固端弯矩 M AB 由上式得: F M BA F F 铰 支 M AB M AB (c) 2 B 端为滑动支座:q B FQBA 0
P M A 0 FQBAl M AB M BA M A 0
把式(a) 、(b)代入上式,得:
D F F P 6iq A 12i M AB M BA M A P M AB M BA M A l FQBA 0 l l F F P 6iq Al M ABl M BAl M A l 1 l F F P D q Al ( M AB M BA M A ) (d) 12i 2 12i
§8-3 无侧移刚架的计算
1、无侧移刚架基本未知量的判定:
其位移法基本未知量数目
结构上刚结点的独立角位移数 等于结构上的自由刚结点数 。
(a)
1 D E 2 C F
A
(b)
B
D
EA=
C
1 C
B
1 A
2 B
A
(c)
(d)
说明:
1)强调位移法基本未知量是结 构中自由结点上的独立结点位移。 结点上的独立角位移是自由刚结 点上的角位移。
(2) B 端为铰支座
式(8-5)中
M BA 0
,得:
D M AB 4iq A 2iq B 6i L D 0 2iq A 4iq B 6i L
整理上式得:
M AB
D 3iABq A 3i L
(8-9)
(3) B 端为滑动支座
代入(8-5)式,得:
D 1 qA 式(8-6)中 q B FQAB FQBA 0 ,得: L 2
(8-10)

第8章 位移法

第8章 位移法

第8章 位移法§8-1 概述§8-2 等截面直杆的转角位移方程§8-3 位移法的基本未知量和基本结构§8-4 位移法的典型方程及计算步骤§8-5 直接由平衡条件建立位移法基本方程§8-6 对称性的应用2021-5-1212021-5-12 1§8-1 位移法的基本概念内力对于线弹性结构位移位移内力两种方法的基本区别之一,在于基本未知量的选取不同:力法是以多余未知力(支反力或内力)为基本未知量,而位移法则是以结点的独立位移(角位移或线位移)为基本未知量。

用位移法分析结构时,先将结构拆分成单个的杆件,进行杆件受力分析(建立杆件的转角位移方程);再将杆件组装成原结构,利用结点和截面平衡条件建立位移法方程,解出结点位移,再由转角位移方程求出内力。

2021-5-121一、引例1. 确定基本位移未知量图a所示两跨常刚度连续梁,抗弯刚度为EI。

忽略二杆的轴向变形,B结点不会发生线位移,而仅会产生角位移,设此角位移为Z1。

因B结点刚结两梁段于B端,从而保证两梁段在B端有相同的角位移,均为Z1。

2021-5-1212. 分列各组成杆的转角位移方程AB和BC二杆在B端具有相同的角位移和零线位移后,因此可将二杆在B端处分开,单独分析。

2021-5-1211)AB杆2)BC杆2021-5-1213. 通过B结点的平衡条件求出Z1由B结点的平衡可得2021-5-1214. 将Z1代回转角位移方程,求出各杆端弯矩2021-5-1212021-5-121二、其他示例(a) 若略去受弯直杆的轴向变形,并不计由于弯曲而引起杆段两端的接近,则可认为三杆长度不变,因而结点A没有线位移,而只有角位移。

对整个结构来说,求解的关键就是如何确定基本未知量q A的值。

2021-5-1212021-5-121三、位移法计算原理思路小结1. 把结构在非支座结点处拆开,将各杆视为相应的单跨超静定梁。

第8章 位移法

第8章 位移法
第八章 位移法
§8-1 概述
基本方法——力法、位移法
结构:外因→内力~位移——恒具有一定关系 力 法: 内力 → 位移 位移法:位移 → 内力
基本未知量 力法——多余未知力 位移法——结点位移(线位移,转角位移)
基本概念:(以刚架为例)
n=2 (超静定次数) 忽略轴向变形,
结点位移
Z1(角位移,无线位移) 变形协调条件
§8-2 等截面直杆的转角位移方程
单跨超静定梁——由杆端位移及荷载求杆端力 两端固定等截面梁(两端约束杆) 杆AB有杆端位移φA、φB、ΔAB, 只考虑相对线位移ΔAB
弦转角βAB = ΔAB∕l 顺时针为(+)
求杆端力 ——力法求支座移动引起的内力
11x1 12 x2 1 A 21x1 22 x2 2 B
1、基本未知量的确定 刚架 —— 除结点角位移外还有结点线位移 假定 ①理想刚结点,铰结点 ②忽略轴力产生的轴向变形 ③小变形(直杆弯曲两端距离不变) 角位移数=刚结点数
固定端角位移=0 铰结点、铰支座处杆端转角不独立
线位移数=独立的结点线位移数
a.观察——φ、Δ
b.独立线位移数——几何构造分析方法确定: (1)将所有刚结点(包括固定支座)变铰结点 (2)铰结体系的自由度数=独立的线位移数
图8-7 M1:r11=3i + 3i=6i MP: R1P=96-120=-24kN∙m Z1=-R1P/r11=4kN∙m/i M=MP+Z1M1
无侧移刚架: 【题9-9】2个转角位移 (对称性利用——1个转角位移)
例:(图8-9) (a)有侧移结构
计算步骤 (1)基本未知量 z1(φ1)、z2(Δ2) 刚结点——附加刚臂(只约束转动,不约束移动) 结点——附加支座链杆(独立线位移方向)

第8章位移法

第8章位移法
将系数和自由项代入典型方程并求解,可得
9 Fl 22 Fl 2 Z1 , Z2 552 i 552 i
结构的最后弯矩图可由叠加法绘制: M
M1Z1 M 2 Z 2 M P
内力图校核同力法,略。
§8-4 位移法的典型方程及计算步骤
位移法计算步骤
(1)确定基本未知量:独立的结点角位移和线位移,加入附加
§8-6 对称性的利用
绘弯矩图d、e、g。
6 EI r11 10m r12 r21
112EI r22 1000m 3 6EI 100m 2
R1P 100kN m R2P 60kN
232.7kN m 2 Z1 EI 解得 660.4kN m 3 Z2 EI
图a所示刚架,结点角位移数目=4(注意结点2)
结点线位移数目=2
加上4个刚臂,两根支座链杆,可得基本结构如图b。
§8-3 位移法的基本未知量和基本结构
图a所示刚架,结点线位移数目=2
图b所示刚架,结点角位移数目=2 结点线位移数目=2
§8-4 位移法的典型方程及计算步骤
图a所示连续梁(EI为常数),只有一个独立结点角位移Z1。在结点B 加一附加刚臂得到基本结构。令基本结构发生与原结构相同的角位移Z1,二 者的位移完全一致了。
典型方程
主系数:主斜线上的系数rii,或称为主反力,恒为正值。 副系数:其他系数rij,或称为副反力,可为正、负或零。 rij= rji。 每个系数都是单位位移引起的反力或反力矩→结构的刚度系数; 位移法典型方程→结构的刚度方程;位移法→刚度法。
§8-4 位移法的典型方程及计算步骤
例8-1 试用位移法求图a所示阶梯形变截面梁的弯矩图。E=常数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
r22
Z2 1
2
M1 图
2 令EI=4
解: n 2
iAB 1.6
iBC 2
iBD iCE 1
50
60 50
60
R1 p
120
R2 P
R1=0 R2=0
r11Z1 r12 Z 2 R1 p 0 r21Z1 r22 Z 2 R2 p 0
M P图
r11 6i
R1 p 24
代入(8-4)式可得
4 Z1 i
4.计算基本未知量
4 Z1 i
(实际为转角 A )
M M1Z1 M P
5.采用叠加法绘最后内力图 3i r11
A B
120
96
A
Z1 1
R1P
C
C
96
M p图
B
160
3i
M1 图
108
4 M BA 3i 96 108kN m i 4 M BC 3i 120 108kN m i
两端固定的情况
M AB 4i A 2i B M BA
一端固定一端铰支情况
6i F AB M AB l 6i F 2i A 4i B AB M BA l
F F M AB M BA ------固端弯矩
A
B
6i Fl M BA 2i A 4i B AB 0 l 8 1 3i 1 F B ( A AB M BA ) 2 l 2i
基本结构
EI
n4
EI
n3
B A
C
D
G
F
n6 E
n2
E EI1 H EI EI EA D n5 G B
EI
n 1
EI A
C
2EI
F
2EI
需要考虑轴向变形的链杆或弯曲杆时,其两端距离不能看作不变
EA
n2
8.4位移法的典型方程和计算步骤
3i F M AB 3i A AB M AB l M BA 0
(B 不是独立的角位移)
利用转角位移方程可得表8-1
两端固定的情况
A 1, B AB F 0
M AB 4i M AB 2i M BA 2i
6i Fl M AB 4i A 2i B AB l 8 6i Fl M BA 2i A 4i B AB l 8
2i
B 1, A AB F 0
M BA 4i
6i l
4i
4i
2i
AB 1, A B F 0
M AB 6i l M BA
6i 6i l l
6i6i l l
Fl 8
A
F F , A B AB 0
M AB Fl 8 M BA Fl 8
注意:
AB 为正
这里的弯矩正负的规定只是针对杆件杆端弯矩而言, 至于杆件其他截面的弯矩没有这样的规定。作弯矩 图时还是将弯矩画在杆件的受拉一侧,不注明正负
2.等截面直杆的转角位移方程
(1)一端固定一端铰支情况
A
A EI
F B
A
AB
F
B

A
AB
(1)

A
EI
l 2
B
l 2
l 2
l 2
3.画单位弯矩图和荷载弯矩图 R11 Z1
A C B
r11Z1 R1 p 0
A
R1P
80kN
C

12kN/m
B
3i
A B
r11
Z1 1
C
120
96
A B
R1P
C
3i
M1 图
r11
3i B 3i
M p图
96 B
R1P
120
M
B
0
r11 3i 3i 0
R1 p 96 120 0
F 2
FSBA
F 2
Fl 8 F 2
Fl 8 F 2
(1)杆端弯矩以绕杆顺时针转动为正,反之为负
(2)杆端剪力以绕杆内一点顺时针转动为正,反之为负
A
A B
(3)位移规定 转角:顺时针为正,反之为负
B AB
A 为正
Байду номын сангаас 为正
线位移(侧移):两端在垂直于杆轴方向上 的相对线位移 使杆顺时针转动为正,反之为负
Fl 8
B
一端固定一端铰支情况
M AB M
AB
M
F AB
F M BA M BA M BA
3i 3Fl 3i A AB ( ) l 16 0
A 1, AB F 0
M AB 3i
M BA 0
3i
3i l
AB 1, A F 0
3i AB l
1
M1
3i X 1 3i A AB l
(1)

A
A B
AB
(1)
M AB 3i A M BA 0
3i AB l
(2)
A

X1
F B
l 2
同样用力法求解 X 1
11 X1 1 p 0
X1 3Fl 16
l 2
基本体系
l 11 3EI
R1P 10
ql
q
Z2
l/2 l/2
EI=常数
ql
ql
q
R2 Z1 R1
解: n 2 R1=0
ql
l
r21
Z1=1
基本体系
R2=0 r11Z1 r12 Z 2 R1P 0
r21Z1 r22 Z 2 R2P 0
刚度系数
r11
ql
Z2=1
q
R2P
R1P
rij (i=j)
——建立杆件内力与位移之间的关系
1.杆端内力、位移正负规定:
F
A
Fl 8 F 2 Fl 8 F 2 Fl 8 F 2
l
B
Fl M图 8 F F图 S 2
(1)杆端弯矩以绕杆顺时针转动为正,反之为负
M AB
Fl 8
M BA
Fl 8
(2)杆端剪力以绕杆内一点顺时针转动为正,反之为负
FSAB
M AB 3i l
M BA 0
3Fl 16
F F , A AB 0
M AB 3Fl 16
M BA 0
练习 设 400 , 为已知由转角位移方程可推得 两端弯矩分别为
EI
l

B
A


EI i l
6i Fl M AB 4i A 2i B AB l 8 6i Fl M BA 2i A 4i B AB l 8



解: 1.判定基本未知量个数 n
1
(无侧移结构)
2.构建基本体系,建立位移方程
R1 0
根据叠加原理: R1 R11 R1 p 0
( R11 r11 z1 )
r11Z1 R1 p 0
(8 4)
R11
A
R1P
C
Z1
B

A
12kN/m
B
80kN
C
2.构建基本体系,建立位移方程
4.8
Z1
4 8
r11
4
r12 r21
M 2图
4 4
8
r22
Z2
2 4
M1 图
4.8
B
r11
r12
8 4
r21
B
r22
8 4
4
r11 16.8
r21 r12 4
60 50 60
r22 12
R1P
R1 p
120
R2 P
50
B
60 60
R2 P R2 P 60
50
R1P 10
2.力法与位移法的基本思路: F 力法: (1)选多余未知力作为基本未知量
X1 X2
(2)根据变形条件写出力法方程
11 X1 12 X 2 1 p 0 21 X1 22 X 2 2 p 0
(3)解出返回到基本结构,求出最后内力图
位移法:
8.2 等截面直杆的转角位移方程
A
B
6i Fl M BA 2i A 4i B AB 0 l 8 1 3i 1 F B ( A AB M BA ) 2 l 2i
3i F M AB 3i A AB M AB l M BA 0
(B 不是独立的角位移)
8.3位移法的基本未知量和基本结构
独立的结点位移数目(n)=独立的结点位角移数目(n1)+独立的结点线位移数目(n2 )
基本未知量:独立的 结点位移.包括角位移和线位移 基本结构:增加附加约束后,使得原结构的结点不能 发生位移的结构.
n1 2
n2 0
n n1 n2 2
基本结构
n1 2
n2 1
n n1 n2 3
l
M AB M BA
3i 2i 200 3i 2i 200
两端固定的情况
M AB 4i A 2i B M BA
一端固定一端铰支情况
6i F AB M AB l 6i F 2i A 4i B AB M BA l
相关文档
最新文档