高中数学必修专题复习
高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。
一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。
我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。
掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。
1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。
我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。
1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。
我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。
1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。
向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。
我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。
1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。
高一数学知识点复习必修一

高一数学知识点复习必修一(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学知识点复习必修一本店铺为大家整理的,知识点有时候特指教科书上或考试的知识。
高中数学必修2复习资料

必修2数学复习资料第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1、 三视图: 正视图:从前往后; 侧视图:从左往右; 俯视图:从上往下。
2、 画三视图的原则: 长对齐、高对齐、宽相等3、直观图:斜二测画法4、斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1、棱柱、棱锥的表面积: 各个面面积之和2、圆柱的表面积3、圆锥的表面积2r rl S ππ+=4、圆台的表面积22R Rl r rl S ππππ+++=5、球的表面积24R S π=(二)空间几何体的体积 1、柱体的体积 h S V ⨯=底2、锥体的体积 h S V ⨯=底313、台体的体积h S S S S V ⨯++=)31下下上上(4、球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11、平面含义:平面是无限延展的2、平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母γβα、、等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为ααα⊂⇒⎪⎪⎭⎪⎪⎬⎫∈∈∈∈L L B L A B A 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,222r rl S ππ+= D CBAαC · B· A·LA· α使.,,ααα∈∈∈C B A公理2作用:确定一个平面的依据。
高考最新数学必修必考知识点归纳总结

高考最新数学必修必考知识点归纳总结数学没有捷径,就是课前做好预习、做例题、做好相应课后习题,课上依然认真听讲,课后还要认真做数学作业。
下面是作者为大家整理的有关高考数学必修必考知识点归纳总结,期望对你们有帮助!高考数学必修必考知识点归纳总结高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难知道)2、基本的初等函数(指数函数、对数函数)3、函数的性质及运用(比较抽象,较难知道)高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考核面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(挑选或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且常常和其他函数混合起来考核。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性计划,听课时易知道,但做题较复杂,应掌控技能。
高考必考5分)不等式不单独命题,一样和函数结合求最值、解集。
高考数学必考知识点归纳文科选修选修1--1:重点:高考占30分1、逻辑用语:一样不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的运用(高考必考)选修1--2:1、统计:2、推理证明:一样不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
高三数学专题总复习

高考数学复习专题专题一集合、逻辑与不等式集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.解答:(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a 不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(U A )∩(U B )={1,9},A ∩B ={2},B ∩(U A )={4,6,8}.求集合A ,B .解:根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A ={2,3,5,7},B ={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素构成的集合叫做A 、B 的交集.记作:A ∩B .对于两个给定的集合A 、B ,把它们所有的元素并在一起构成的集合叫做A 、B 的并集.记作:A ∪B . 如果集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合叫做A 在U中的补集.记作U A .2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.答:(-∞,-1]. 【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b a b a b a =+,则b -a =______.【分析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则a b 没有意义), 所以,a +b =0,ab =-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( )(A)1 (B)2 (C)3 (D)42.下列各式中,A 与B 表示同一集合的是( )(A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C)A={0},B=∅(D)A={y|y=x2+1},B={x|y=x2+1} 3.已知M={(x,y)|x>0且y>0},N={(x,y)|xy>0},则M,N的关系是( )(A)M N(B)N M(C)M=N(D)M∩N=∅4.已知全集U=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则下式中正确的关系是( )(A)U=A∪B(B)U=(U A)∪B(C)U=A∪(U B) (D)U=(U A)∪(U B)二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(U A)∩(U B)={1,9},求集合A和B.11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.解:(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.解:(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.评述:原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【分析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件解:条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3 (B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0 (D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A不是B的子集”可用数学语言表达为( )(A)若∀x∈A但x∉B,则称A不是B的子集(B)若∃x∈A但x∉B,则称A不是B的子集(C)若∃x∉A但x∈B,则称A不是B的子集(D)若∀x∉A但x∈B,则称A不是B的子集二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件.6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B ⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题:①AB ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅ ③A B ⇔A B ④A B ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)∃x ∈{x |x ∈Z },log 2x >0;(4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.§1-3 不等式(含推理与证明)【知识要点】1.不等式的性质.(1)如果a >b ,那么b <a ;(2)如果a >b ,且b >c ,那么a >c ;(3)如果a >b ,那么a +c >b +c (如果a +c >b ,那么a >b -c );(4)如果a >b ,c >d ,那么a +c >b +d ;(5)如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc ;(6)如果a >b >0,c >d >0,那么ac >bd ;(7)如果a >b >0,那么a n >b n (n ∈N +,n >1);(8)如果a >b >0,那么)1,N (>∈>+n x b a n n ;2.进行不等式关系判断时常用到的实数的性质:若a ∈R ,则)R (0.0||;02+∈≥≥≥a a a a .3.会解一元一次不等式,一元二次不等式,简单的分式不等式、绝对值不等式.简单的含参数的不等式.4.均值定理:如果a 、b ∈R +,那么.2ab b a ≥+当且仅当a =b 时,式中等号成立. 其他常用的基本不等式:如果a 、b ∈R ,那么a 2+b 2≥2ab ,(a -b )2≥0.如果a 、b 同号,那么.2≥+ba ab 5.合情推理之归纳推理与类比推理;演绎推理;综合法、分析法与反证法.【复习要求】1.运用不等式的性质解决以下几类问题:(1)根据给定的条件,判断给出的不等式能否成立;(2)利用不等式的性质,实数的性质以及函数的有关性质判断实数值的大小关系;(3)利用不等式的性质等判断不等式变换中条件与结论间的充分必要关系.2.熟练掌握一元一次不等式,一元二次不等式、简单的分式不等式、绝对值不等式的解法.并会解简单的含参数的不等式.3.了解合情推理和演绎推理的含义,能利用归纳和类比等进行简单的推理.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.能较为灵活的运用综合法、分析法与反证法证明数学问题.熟练运用比较法比较数与式之间的大小关系.比较法:常有“作差比较法”和“作商比较法”;综合法:从已知推导致结果的思维方法;分析法:从结果追溯到产生这一结果的原因的思维方法;反证法:由证明p ⇒q 转向证明⌝q ⇒r ⇒…⇒t ,而t 与假设矛盾,或与某个真命题矛盾,从而判定⌝q 为假,进而推出q 为真的方法,叫做反证法.一般来讲,由分析法得到的证明思路往往用综合法的方式来书写.【例题分析】例1 若a >b >c ,则一定成立的不等式是( )A .a |c |>b |c |B .ab >acC .a -|c |>b -|c |D .cb a 111<< 【分析】关于选项A .当c =0时,a |c |>b |c |不成立.关于选项B .当a <0时,ab >ac 不成立.关于选项C .因为a >b ,根据不等式的性质a -|c |>b -|c |,正确.关于选项D .当a >b >0>c 时,cb a 111<<不成立.所以,选C . 例2 a ,b ∈R ,下列命题中的真命题是( ) A .若a >b ,则|a |>|b | B .若a >b ,则ba 11< C .若a >b ,则a 3>b 3D .若a >b ,则1>b a 【分析】关于选项A .当a =-1,b =-2时,|a |>|b |不成立.关于选项B .当a >0,b <0时,ba 11<不成立. 关于选项C .因为a >b ,根据不等式的性质a 3>b 3,正确.关于选项D .当b <0时,1>ba 不成立.所以,选C . 【评析】判断不等关系的正误,其一要掌握判断的依据,依据相关的理论判断,切忌仅凭感觉进行判断;其二要掌握判断的方法.判断不等式的理论依据参看本节的知识要点,另外,后面专题讲到的函数的相关知识尤其是函数的单调性也是解决不等式问题的非常重要的方法.判断一个不等式是正确的,就应该给出一个合理的证明(或说明),就像例1、例2对正确的选项判断那样.判断一个不等式是不正确的,应举出反例.例3 解下列不等式:(1)x 2-x -1>0;(2)x 2-3x +2>0;(3)2x 2-3x +1≤0; (4);021>--x x (5)|2x -1|<3;(6).1212≤--x x 解:(1)方程x 2-x -1=0的两个根是251,21±=x x 结合函数y =x 2-x -1的图象,可得不等式x 2-x -1>0的解集为}.251251|{+>-<x x x 或 (2)不等式x 2-3x +2>0等价于(x -1)(x -2)>0,易知方程(x -1)(x -2)=0的两个根为x 1=1,x 2=2,结合函数y =x 2-3x +2的图象,可得不等式x 2-3x +2>0的解集为{x |x <1或x >2}.(3)不等式2x 2-3x +1≤0等价于(2x -1)(x -1)≤0,以下同(2)的解法, 可得不等式的解集为}.121|{≤≤x x (4)021>--x x 等价于(x -1)(x -2)>0,以下同(2)的解法,可得不等式的解集为{x |x <1或x >2}.(5)不等式|2x -1|<3等价于-3<2x -1<3,所以-2<2x <4,即-1<x <2,所以不等式|2x -1|<3的解集为{x |-1≤x <2}.(6)不等式1212≤--x x 可以整理为,021≤-+x x ,021≤-+x x 等价于.021021=-+<-+x x x x 或以下同(4)的解法,可得不等式的解集为{x |-1≤x <2}.【评析】一元一次不等式、一元二次不等式的解法要熟练掌握.其他不等式的解法适当掌握.1.利用不等式的性质可以解一元一次不等式.2.解一元二次不等式要注意函数、方程、不等式三者之间的联系,通过研究与一元二次不等式相对应的一元二次方程的根的情况、进而结合相应的二次函数的图象就可以解决一元二次不等式解集的问题了.所以,解一元二次不等式的步骤为:计算二次不等式相应的方程的判别式;求出相应的一元二次方程的根(或根据判别式说明无根);画出相应的二次函数的简图;根据简图写出二次不等式的解集.3、不等式0>--bx a x 与(x -a )(x -b )>0同解;不等式0<--b x a x 与(x -a )(x -b )<0同解; 4*、不等式|f (x )|<c 与-c <f (x )<c 同解;不等式|f (x )|>c 与“f (x )>c 或f (x )<-c ”同解.在解简单的分式不等式时要注意细节,例如(5)题关于“≤”号的处理.例4 解下列关于x 的不等式;(1)ax +3<2;(2)x 2-6ax +5a 2≤0.解:(1)由ax +3<2得ax <-1,当a =0时,不等式解集为∅;当a >0时,不等式解集为}1|{ax x -<;当a <0时,不等式解集为}1|{a x x ->.(2)x 2-6ax +5a 2≤0等价于不等式(x -a )(x -5a )≤0,当a =0时,不等式解集为{x |x =0};当a >0时,不等式解集为{x |a ≤x ≤5a };当a <0时,不等式解集为{x |5a ≤x ≤a }.【评析】含参数的不等式的解法与不含参数的不等式的解法、步骤是完全一致的.要注意的是,当进行到某一步骤具有不确定性时,需要进行分类讨论.如(2)的解决过程中,当解出方程(x -a )(x -5a )=0的两根为x 1=a ,x 2=5a 之后,需要画出二次函数y =x 2-6ax +5a 2的草图,这时两根a 与5a 的大小不定,需要讨论,当分a =0,a >0,a <0三种情况之后,就可以在各自情况下确定a 与5a 的大小,画出二次函数y=x 2-6ax +5a 2的草图写出解集了.例5 已知a >b >0,c <d <0,m <0.求证:⋅->-db mc a m 证明:方法一(作差比较) ,))(()]()[())(()]()[(d b c a d c a b m d b c a c a d b m d b m c a m ---+-=-----=--- 由已知b -a <0,c -d <0,又m <0,所以m [(b -a )+(c -d )]>0,因为a >b >0,c <d <0,所以a -c >0,b -d >0, 所以0))(()]()[(>---+-d b c a d c a b m ,所以⋅->->---db mc a md b m c a m 即,0 方法二因为c <d <0,所以c -d <0,又a >b >0,所以a -b >0,所以a -b >c -d ,所以a -c >b -d >0, 所以d b c a -<-11,又因为m <0,所以⋅->-db mc a m 例6 已知a +b +c =0,a >b >c ,求证:(1)a >0;(2).2->ac 证明:(1)假设a ≤0,因为a >b >c ,所以b <0,c <0.所以a +b +c <0,与a +b +c =0矛盾.(2)因为b =-a -c ,a >b ,所以,所以2a >-c ,又a >0,所以a c ->2,所以.2->ac 例7 已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于41. 证明:假设(1-a )b ,(1-b )c ,(1-c )a 均大于41, 即,41)1(,41)1(,41)1(>->->-a c c b b a ,21)1(,21)1(,21)1(>->->-a c c b b a 因为a ,b ,c ∈(0,1),所以1-a ,1-b ,1-c ∈(0,1),所以1)1(2)1(>-≥+-b a b a ,同理(1-b )+c >1,(1-c )+a >1, 所以(1-a )+b +(1-b )+c +(1-c )+a >3,即0>0,矛盾. 所以(1-a )b ,(1-b )c ,(1-c )a 中至少有一个不大于41. 【评析】证明常用的方法有比较法、综合法、分析法与反证法等.证明不等式也是如此. 1、例5中的方法一所用到的比较法从思维、书写的角度都较为容易,也相对易于把握,要熟练掌握.2、例5中的方法二所用到的综合法是一般证明题常用的方法,其书写方法简明、易读,但要注意的是,这样的题的思路常常是分析法.比如,例5中的方法二的思路我们可以认为是这样得到的:欲证,db mc a m ->-只需证明m (b -d )>m (a -c )(因为b -d >0,a -c >0),即只需证明b -d <a -c ,即只需证明a -b >c -d ,而由已知a -b >0,c -d <0,所以可以循着这个思路按照相反的顺序书写.所以,在很多情况下,分析法更是思考问题的方法,而综合法更是一种书写方法.3、适合用反证法证明的常见的命题一般是非常显而易见的问题(如例6(1))、否定式的命题、存在性的命题、含至多至少等字样的命题(如例7)等等.证明的步骤一般是:(1)假设结论的反面是正确的;(2)推出矛盾的结论;(3)得出原来命题正确的结论.例8 根据图中图形及相应点的个数找规律,第8个图形相应的点数为______.【分析】第一个图有1行,每行有1+2个点; 第二个图有2行,每行有2+2个点; 第三个图有3行,每行有3+2个点; ……第八个图有8行,每行有8+2个点,所以共有8×10=80个点. 答:80.练习1-3一、选择题 1.若011>>ba 则下列各式正确的是( ) (A)a >b(B)a <b(C)a 2>b 2(D)2211ba < 2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )(A)a 2<b 2(B)a 2b <ab 2(C)ba ab 2211< (D)b a a b < 3.已知A ={x ||x |<a },B ={x |x >1},且A ∩B =∅,则a 的取值范围是( )(A){a |a ≤1} (B){a |0≤a ≤1} (C){a |a <1} (D){a |0<a <1} 4.设集合M ={1,2,3,4,5,6},S 1,S 2,…,S k 都是M 的含有两个元素的子集,且满足:对任意的S i ={a i ,b i }、S j ={a j ,b j }(i ≠j ,i ,j ∈{1,2,3,…,k })都有},min{},min{jj j j i ii i a b b a a b b a =/,(min{x ,y }表示两个数x ,y 中的较小者),则k 的最大值是( ) (A)10 (B)11(C)12(D)13二、填空题5.已知数列{a n }的第一项a 1=1,且),3,2,1(11 =+=+n a a a nnn ,请计算出这个数列的前几项,并据此归纳出这个数列的通项公式a n =______. 6.不等式x 2-5x +6<0的解集为____________. 7.设集合A ={x ∈R ||x |<4},B ={x ∈R |x 2-4x +3>0},则集合{x ∈R |x ∈A ,且x ∉A ∩B }=____________.8.设a ∈R 且a ≠0,给出下面4个式子: ①a 3+1;②a 2-2a +2;③a a 1+;④⋅+221aa 其中恒大于1的是______.(写出所有满足条件式子的序号)三、解答题9.解下列不等式:(1)2x 2+x >0;(2)x 2+3x +1<0;(3)032<-x x ;(4)|2-x |<3;(5)21>-x x.10.已知a +b +c =0,求证:ab +bc +ca ≤0.11.解下列关于x 的不等式:(1)x 2-2ax -3a 2<0;(2)ax 2-x >0;习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x | (D)若x 不是正数,则x ≠|x | 2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法 (B)减法 (C)乘法 (D)除法 5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0(C)cb 2<ab 2(D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______. 7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号) 三、解答题 11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题一 集合、逻辑与不等式参考答案练习1-1一、选择题1.B 2.B 3.A 4.C 提示:4.集合A 表示非负偶数集,集合B 表示能被4整除的自然数集,所以{正奇数}(U B ),从而U =A ∪(U B ). 二、填空题5.{x |x <4} 6.4个 7.{x |-1<x <2} 8.a 1;2个(x 为a 1或a 3). 三、解答题9.(A ∩B )∪C ={1,2,3,4}10.分析:画如图所示的韦恩图:得A ={0,2,3,5,7},B ={2,4,6,8}.11.答:①a <4;②a ≥-2;③-2≤a <4提示:画数轴分析,注意a 可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B 二、填空题5.必要不充分条件 6.若|x |≤1,则x ≥-1 7.充要条件 8.④ 提示:8.因为A B ,即对任意x ∈A ,有x ∈B .根据逻辑知识知,AB ,即为④.另外,也可以通过文氏图来判断. 三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题. (3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab =0,则a 2+b 2=0;是假命题;例如a =0,b =1否命题:若a 2+b 2≠0,则ab ≠0;是假命题;例如a =0,b =1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.练习1-3一、选择题1.B 2.C 3.A 4.B 二、填空题 5.n16.{x |2<x <3} 7.{x ∈R |1≤x ≤3| 8.④ 三、解答题9.答:(1)}210|{-<>x x x 或;(2)}253253|{+-<<--x x ; (3)}230|{<<x x ;(4){x |-1<x <5};(5)}310|{<<x x . 10.证明:ab +bc +ca =b (a +c )+ac =-(a +c )(a +c )+ac =-a 2-ac -c 20]43)2[(]434[22222≤++-=+++-=c c a c c ac a所以ab +bc +ca ≤0.11.解:(1)原不等式⇔(x +a )(x -3a )<0.分三种情况讨论:①当a <0时,解集为{x |3a <x <-a };②当a =0时,原不等式⇔x 2<0,解集为∅; ③当a >0时,解集为{x |-a <x <3a }. (2)不等式ax 2-x >0⇔x (ax -1)>0. 分三种情况讨论:①当a =0时,原不等式⇔-x >0,解集为{x |x <0};②当a >0时,x (ax -1)>0⇔x (x -a 1)>0,解集为}10|{ax x x ><或; ③当a <0时,x (ax -1)>0⇔x (x -a 1)<0,解集为}01|{<<x ax .习题1一、选择题1.D 2.D 3.A 4.C 5.C 提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立. 二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确. 三、解答题 11.解:不等式21<x 即,021,021<-<-xx x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x ,所以,原不等式的解集为{x |x <0或21>x }.12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b(2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0. 故不等式的解集为{x |0≤x ≤1}. 14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=-∴A 中至少有-1,21,2三个元素.(2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.专题二 函 数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函 数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A ,B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.记作f :A →B ,其中x 叫原象,y 叫象.2、设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种映射叫做集合A 上的一个函数.记作y =f (x ),x ∈A .其中x 叫做自变量,自变量取值的范围(数集A )叫做这个函数的定义域.所有函数值构成的集合{y |y =f (x ),x ∈A }叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心. 【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象. 2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f (x )(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域. 【例题分析】例1 设集合A 和B 都是自然数集合N .映射f :A →B 把集合A 中的元素x 映射到集合B 中的元素2x +x ,则在映射f 作用下,2的象是______;20的原象是______.【分析】由已知,在映射f 作用下x 的象为2x +x . 所以,2的象是22+2=6;设象20的原象为x ,则x 的象为20,即2x +x =20.由于x ∈N ,2x +x 随着x 的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 则f (1)=______;若f (0)+f (a )=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f (1)=3.又f (0)=-1,所以f (a )=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a 2+2a +2=-1,即a 2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( )(A)22)(,t y x y ==(B)2|,|t y x y ==(C)1,112+=--=x y x x y (D)x x y x y 2,==【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1);11--=x y(2);3212-+=x x y(3);)1()3lg(0-+-=x xx y(4);2|2|12---=x x y解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}. (2)由x 2+2x -3>0得,x >1或x <-3.所以,所求函数的定义域为{x |x >1或x <-3}.(3)由⎪⎩⎪⎨⎧=/-=/>-,01,0,03x x x 得x <3,且x ≠0,x ≠1, 所以,所求函数的定义域为{x |x <3,且x ≠0,x ≠1}(4)由⎩⎨⎧=/=/≤≤-⎩⎨⎧=/-≥-⎩⎨⎧≠--≥-,4,0,112|2|01,02|2|0122x x x x x x x 且即,,得,所以-1≤x ≤1,且x ≠0.所以,所求函数定义域为{x |-1≤x ≤1,且x ≠0}.例5 已知函数f (x )的定义域为(0,1),求函数f (x +1)及f (x 2)的定义域.【分析】此题的题设条件中未给出函数f (x )的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x 的取值范围;②受对应法则f 制约的量的取值范围在“已知”和“求”当中是一致的.那么由f (x )的定义域是(0,1)可知法则f 制约的量的取值范围是(0,1),而在函数f (x +1)中,受f 直接制约的是x +1,而定义域是指x 的范围,因此通过解不等式0<x +1<1得-1<x <0,即f (x +1)的定义域是(-1,0).同理可得f (x 2)的定义域为{x |-1<x <1,且x ≠0}.例6 如图,用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并指出定义域.解:根据题意,AB =2x .⋅--==2π2,πxx l AD x 所以,.)2π2(π212π2222lx x x x x l x y ++-=+--=⋅⋅根据问题的实际意义.AD >0,x >0.解.π20,02π2,0+<<⎪⎩⎪⎨⎧>-->l x xx l x 得 所以,所求函数定义域为⋅+<<}π20|{lx x 【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y =tan x ,则2ππ+≠k x ,k ∈Z . (2)不给出f (x )的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知21)1(x xxf -=,求f (x )的解析式; (2)已知221)1(xx x x f +=+,求f (3)的值;(3)如果f (x )为二次函数,f (0)=2,并且当x =1时,f (x )取得最小值-1,求f (x )的解析式;(4)*已知函数y =f (x )与函数y =g (x )=2x 的图象关于直线x =1对称,求f (x )的解析式. 【分析】(1)求函数f (x )的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.⋅-=-=1)1(111)1(2xxx xxf 通过这样“凑型”的方法,我们可以明确看到法则f 是“原象对应于原象除以原象的平方减1”.所以,⋅-=1)(2x xx f。
高中数学必修一三角函数复习题(附答案)

三角函数复习题1.已知角θ的终边经过点P(4,m),且sinθ=35,则m等于 ( )A.−3B.3C.163D.±32.已知角的终边在直线y=−3x上,则sinα值为3.已知sinθ=1−a1+a ,cosθ=3a−11+a若θ为第二象限角,则tanθ的值是4.已知−π<x<0,sin x+cos x=15.则:(1)sin x−cos x的值为(2) 的值为5.函数在区间上的最小值是6.已知定义在实数集上的偶函数在区间上单调递增,且若是的一个内角,且满足,则的取值范围为7.若函数的图像经过点,则其图像一定经过点( )A. B. C. D.8.下列关于函数的说法正确的是①是以为周期的函数:②当且仅当时,函数取得最小值③的称轴为为直线④当时,9.将函数的图像向右平移个周期后,所得图像称应的函数解析式为 ( )A. B.C. D.10.已知则( )A. B. C. D.11.化简:12.已知扇形的周长为20,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?13.设函数(1)求函数的最小正周期(2)求函数在上的最大值.参考答案1.B 由得,且,解得,故选B.易错提示:可得,解题时要充分分析求解参数得范围.2.答案解析:设角的终边上 任意一点为,则,当,是第四象限角,此时,当,是第四象限角,此时,综上,.3答案解析: 因为,所以,解得或当时,,不是第二象限角舍去当时,,是第二象限角,符合题意,所以.4.答案 (1)(2)解析(1)由,两边平方得,所以,因为,所以 所以,又,所以(2)联立方程组,解得,,5.答案解析: ,由,知,令则,所以在上单调递增,在上单调递 ,所以6.答案解析:偶函数在区间上单调递增,所以在区间上单调递 .所以,所以,所以,,所以且,因为A是 的一个内角,所以,,所以7.答案 C解析: 由A错,B错C正确,D错误8.答案 ①②④解析:做出的图像,由图可知①②④正确.9.答案 D 函数的最小正周期为 ,所得图像的解析式为10.答案 A解析:11.解:12.解13.解。
高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。
c>bc c.若。
>b,则。
+c>b+cl I B.若α>b,则-〉-a D D.着。
>b,则。
2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。
+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。
÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。
在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。
人教高中 数学必修一必修二的总复习(共32张PPT)

4、若
1 a log 1 3 b 3 2
0.2
c2
1 3
,则它们的大小关系为 c>b>a
5、不等式 log2 ( x 7) 4 的解集为———————— 6、若函数 y f ( x) 在(-1,1)上是减函数,且 f (1 a) f (2a 1) , 则a的取值范围为 0 a 2
3、 判断f(-x)与f(x)之间的关系。 类型题:必修一课本:P35例5 ;P75第4题 综合题: 必修一课本: P82 第10题;P83第3题
例:已知函数
f ( x) loga
x 1 (a 0且a 1) 【必修一优化方案P52例3】 x 1
(1)求函数的定义域 (2)判断函数的奇偶性和单调性
高中数学必修一 【复习重点】
(1)基本特性:确定性、互异性、无序性 1、集合: (2)元素和集合的关系: a A, a B (3)子集、真子集、集合相等:
A B
(子集)
A
B(真子集)
A B
(4)交集、并集、补集: A B A B CU A B {x 2k 1 x 2k 1} 例:1、设集合 A {x 3 x 2}
x2 2 x 则 x 0 时, f ( x) ———————
(3)判断函数的单调性:
证明步骤:1、取点; 2、列差式; 3、化简后与0比较大小; 4、下结论。
类型题:必修一课本:P29例2 P31例4 P78例1
(4) 判断函数的奇偶性:
判断步骤:1、求定义域; 2、判断定义域是否关于原点对称;
平行x轴的线段平行于x’ 轴; (3)确定线段长度
平行x轴的线段长度保持不变; (4)成图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念知识架构第一讲 集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: AB ={}x x A x B ∈∈或;③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
重难点: 1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:问题:已知集合221,1,9432x y x y M xN y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N=( ) A. Φ;B. {})2,0(),0,3(;C. []3,3-;D. {}3,2[错解]误以为集合M 表示椭圆14922=+y x ,集合N 表示直线123=+yx ,由于这直线过椭圆的两个顶点,于是错选B[正解] C ; 显然{}33≤≤-=x x M ,R N =,故]3,3[-=N M(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。
3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质(1)交集:①A B B A =;②A A A = ;③φφ= A ;④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ;(2)并集:①A B B A =;②A A A = ;③A A =φ ;④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系 题型1:集合元素的基本特征[例1](2008年理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是A B *的元素[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
题型2:集合间的基本关系[例2].数集{}Z n n X ∈+=,)12(π与{}Z k k Y ∈±=,)14(π之的关系是( )A .X Y ;B .Y X ;C .Y X =;D .Y X ≠[解题思路]可有两种思路:一是将X 和Y 的元素列举出来,然后进行判断;也可依选择支之间的关系进行判断。
[解析] 从题意看,数集X 与Y 之间必然有关系,如果A 成立,则D 就成立,这不可能; 同样,B 也不能成立;而如果D 成立,则A 、B 中必有一个成立,这也不可能,所以只能是C 【名师指引】新定义问题是高考的一个热点,解决这类问题的办法就是严格根据题中的定义,逐个进行检验,不方便进行检验的,就设法举反例。
[新题导练]1.第二十九届夏季奥林匹克运动会将于2008年8月8日在举行,若集合A={参加奥运会比赛的运动员},集合B={参加奥运会比赛的男运动员},集合C={参加奥运会比赛的女运动员},则下列关系正确的是( )A .B A ⊆ B.C B ⊆ C.C B A = D. A C B = [解析]D ;因为全集为A ,而C B =全集=A2.(2006•改编)定义集合运算:{}B y x xy y x B ∈∈+==⊗A,,z A 22,设集合{}1,0A =,{}3,2=B ,则集合B ⊗A 的所有元素之和为[解析]18,根据B ⊗A 的定义,得到{}12,6,0A =⊗B ,故B ⊗A 的所有元素之和为183.(2007·改编)设P 和Q 是两个集合,定义集合=-Q P {}Q x P x x ∉∈且,|,如果{}1log 3<=x x P ,{}1<=x x Q ,那么Q P -等于[解析] {}31<<x x ;因为{})3,0(1log 3=<=x x P ,{})1,1(1-=<=x x Q ,所以)3,1(=-Q P4.研究集合{}42-==x y x A ,{}42-==x y y B ,{}4),(2-==x y y x C 之间的关系 [解析] A 与C ,B 与C 都无包含关系,而B A ;因为{}42-==x y x A 表示42-=x y 的定义域,故R A =;{}42-==x y y B 表示函数42-=x y 的值域,),4[+∞-=B ;{}4),(2-==x y y x C 表示曲线42-=x y 上的点集,可见,B A ,而A 与C ,B 与C 都无包含关系考点二:集合的基本运算[例3] 设集合{}0232=+-=x x x A ,{}0)5()1(222=-+++=a x a x x B (1) 若{}2=B A ,数a 的值;(2)若A B A = ,数a 的取值围若{}2=B A ,[解题思路]对于含参数的集合的运算,首先解出不含参数的集合,然后根据已知条件求参数。
[解析]因为{}{}2,10232==+-=x x x A ,(1)由{}2=B A 知,B ∈2,从而得0)5()1(4222=-+++a a ,即0342=++a a ,解得1-=a 或3-=a当1-=a 时,{}⎣⎦2,2042-==-=x x B ,满足条件; 当3-=a 时,{}{}20442==+-=x x x B ,满足条件所以1-=a 或3-=a(2)对于集合B ,由)3(8)5(4)1(422+=--+=∆a a a 因为A B A = ,所以A B ⊆①当0<∆,即3-<a 时,φ=B ,满足条件; ②当0=∆,即3-=a 时,{}2=B ,满足条件;③当0>∆,即3->a 时,{}2,1==A B 才能满足条件, 由根与系数的关系得⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧-=⨯+-=+725521)1(22122a a a a ,矛盾 故实数a 的取值围是3-≤a【名师指引】对于比较抽象的集合,在探究它们的关系时,要先对它们进行化简。
同时,要注意集合的子集要考虑空与不空,不要忘了集合本身和空集这两种特殊情况. [新题导练]6.若集合{}R x y y S x∈==,3,{}R x x y y T ∈-==,12,则T S 是( )A. S ;B. T ;C.φ;D. 有限集[解析] A ;由题意知,集合{}R x y y S x∈==,3表示函数R x y x∈=,3的值域,故集合),0(+∞=S ;{}R x x y y T ∈-==,12表示函数R x x y ∈-=,12的值域,),1[+∞-=T ,故S T S =7.已知集合{}2),(=+=y x y x M ,{}4),(=-=y x y x N ,那么集合N M 为( )A.1,3-==y x ;B.)1,3(-;C.{}1,3-;D.{})1,3(-[解析]D ;N M 表示直线2=+y x 与直线4=-y x 的交点组成的集合,A 、B 、C 均不合题意。
8.集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,数a 的值.[解析] 10,1,2;先化简B 得, {}1,2B =.由于A B B =A B ⇔⊆,故1A ∈或2A ∈. 因此10a -=或210a -=,解得1a =或12a =.容易漏掉的一种情况是: ∅=A 的情形,此时0a =.故所数a 的值为10,1,2.备选例题1:已知{}1+==x y y M ,{}1),(22=+=y x y x N ,则N M 中的元素个数是( )A. 0;B. 1;C.2;D.无穷多个[解析]选A;集合M 表示函数1+=x y 的值域,是数集,并且R M =,而集合N 表示满足122=+y x 的有序实数对的集合,即表示圆122=+y x 上的点,是点集。
所以,集合M 与集合N 中的元素均不相同,因而φ=N M ,故其中元素的个数为0[误区分析]在解答过程中易出现直线1+=x y 与圆122=+y x 有两个交点误选C ;或者误认为1+=x y 中R y ∈,而122=+y x 中11≤≤-y ,从而]1,1[-=N M 有无穷多个解而选D 。
注意,明确集合中元素的属性(是点集还是数集)是准确进行有关集合运算的前提和关键。
备选例题2:已知集合A 和集合B 各有12个元素,B A 含有4个元素,试求同时满足下面两个条件的集合C 的个数:(Ⅰ)C B A ,且C 中含有3个元素; (Ⅱ)φ≠A C (φ表示空集) [解法一]因为A 、B 各有12个元素,B A 含有4个元素, 因此,B A 的元素个数是2041212=-+ 故满足条件(Ⅰ)的集合C 的个数是320C上面集合中,还满足φ=A C 的集合C 的个数是38C因此,所求集合C 的个数是108438320=-C C[解法二]由题目条件可知,属于B 而不属于A 的元素个数是8412=- 因此,在B A 中只含有A 中1个元素的所要求的集合C 的个数为28112C C 含有A 中2个元素的所要求的集合C 的个数为18212C C 含有A 中3个元素的所要求的集合C 的个数为312C所以,所求集合C 的个数是10843121821228112=++C C C C C★抢分频道基础巩固训练:1. (09年吴川市川西中学09届第四次月考)设全集{}{}R,(3)0,1U A x x x B x x ==+<=<-, 则右图中阴影部分表示的集合为 ( )A .{}0x x >;B .{}30x x -<<;C .{}31x x -<<-;D .{}1x x <- [解析]C ;图中阴影部分表示的集合是B A ,而{}03<<-=x x A ,故{}13-<<-=x x B A2. (09届高三摸底考)已知{}{}2(1)0,log 0A x x x B x x =->=< 则A B =A .(0,1);B .(0,2);C .)0,(-∞;D .)(,0)(0,-∞+∞[解析] A ;因为{}10<<=x x A ,{}10<<=x x B ,所以{}10<<=x x B A3. (09届高三调研考)集合{1,0,1}-的所有子集个数为 [解析]8;集合{1,0,1}-的所有子集个数为823=4.(09年市高三第一次月考)集合A 中的代表元素设为x ,集合B 中的代表元素设为y ,若B x ∈∃且A y ∈∀,则A 与B 的关系是[解析]A B ⊆ 或A B ⋂≠∅;由子集和交集的定义即可得到结论5.(2008年天津)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值围是( )A .13-<<-a ;B .13-≤≤-aC .3-≤a 或1-≥a ;D .3-<a 或1->a[解析]A ;{}{}5132|>-<=>-=x x x x x S 或,{}8|+<<=a x a x T ,R T S = 所以⎩⎨⎧>+-<581a a ,从而得13-<<-a综合提高训练:6.{}01<<-=m m P ,{}恒成立对于任意实数x mx mx R m Q 0442<-+∈= 则下列关系中立的是( )A .P Q ;B .Q P ;C .Q P =;D .φ=Q P[解析]A ;当0≠m 时,有⎩⎨⎧<-⨯⨯-=∆<0)4(4)4(02m m m ,即 {}01<<-∈=m R m Q ;当0=m 时,0442<-+mx mx 也恒成立,故 {}01≤<-∈=m R m Q ,所以P Q7.设)(12)(N n n n f ∈+=,{}5,4,3,2,1=P ,{}7,6,5,4,3=Q ,记 {}P n f N n P ∈∈=)(ˆ,{}Q n f N n Q ∈∈=*)(ˆ,则)ˆˆ()ˆˆ(P C Q Q C P N N =( )A. {}3,0;B.{}2,1; C. {}5,4,3; D. {}7,6,2,1 [解析] A ;依题意得{}2,1,0ˆ=P ,{}3,2,1ˆ=Q ,所以{}0)ˆˆ(=Q C P N , {}3)ˆˆ(=P C Q N ,故应选A 8.(09届第一次调研考)设A 、B 是非空集合,定义{}A B x x A B x A B ⨯=∈⋃∉⋂且,已知A={|x y =,B={|2,0}x y y x =>,则A ×B 等于( ) A .[)0,+∞;B .[][)0,12,+∞;C .[)[)0,12,+∞;D .[]0,1(2,)+∞[解析]D ;22002x x x -≥⇒≤≤,∴A=[0,2],021xx >⇒>,∴B=(1,+∞),∴A ∪B=[0, +∞),A ∩B=(1,2],则A ×B =[]0,1(2,)+∞第2讲 函数与映射的概念★知识梳理1.函数的概念 (1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),((2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域。