最新高中数学必修一教材分析

合集下载

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿高中数学新教材必修一说课稿(通用5篇)作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,编写说课稿是提高业务素质的有效途径。

那么优秀的说课稿是什么样的呢?以下是本店铺为大家收集的高中数学新教材必修一说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学新教材必修一说课稿 1尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;④理解f(X)与f(a)(a为常数)的区别与联系;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

高中数学必修第一册人教A版(2019)第四章-《指数函数与对数函数》本章教材分析【2024版】

高中数学必修第一册人教A版(2019)第四章-《指数函数与对数函数》本章教材分析【2024版】

可编辑修改精选全文完整版《指数函数与对数函数》本章教材分析一、本章知能对标二、本章教学规划本章在研究指数幂和对数的基础上,以研究函数概念与性质的一般方法为指导,借鉴研究幂函数的过程与方法,学习指数函数和对数函数,帮助学生学会用函数图象和代数运算的方法研究它们的性质,理解这两类函数中蕴含的变化规律;运用函数思想和方法,探索用二分法求方程的近似解;通过建立指数函数、对数函数模型解决简单的实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具,提升数学抽象、数学建模、数学运算、直观想象和逻辑推理等数学核心素养.三、本章教学目标1.指数函数:通过了解指数的拓展过程,让学生掌握指数幂的运算性质;了解指数函数的实际意义,理解指数函数的概念.能借助描点法、信息技术画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.2.对数函数:通过具体事例,让学生理解对数的概念和运算性质,掌握换底公式;了解对数函数的概念,能画对数函数的图象,了解对数函数的单调性与特殊点;知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).3.二分法与求方程近似解:结合指数函数和对数函数的图象,让学生了解函数的零点与方程解的关系、函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.4.函数与数学模型:利用计算工具,比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.四、本章教学重点难点重点:实数指数幂及其运算,对数及其运算,指数函数和对数函数的概念、图象、性质及其应用. 难点:抽象概括指数函数和对数函数的概念及性质.五、课时安排建议本章教学约需11课时,具体安排如下:六、本章教学建议1.注重引导学生按研究函数的基本思路展开研究本章教学要注重让学生再次经历研究函数的基本过程:背景—概念—图象和性质—应用.要注意引导学生通过计算分析具体实例的数据中蕴含的变化规律抽象形成相应的函数概念,利用教科书中的问题引导学生思考和总结.2.用函数的观点联系相关内容,培养学生的数学整体观本章的核心内容是指数函数和对数函数,全章都应该围绕核心内容展开教学,以更好地帮助学生形成函数观点和思想方法.指数幂的运算、对数的概念及其运算性质和公式、指数和对数的关系,是学习指数函数、对数函数必备的基础,运用这些运算性质,通过运算,解决具体的问题教学中要从整体上把握上述运算性质、函数概念、图象、性质以及应用的关系.3.加强“形”与“数”的融合,循序渐进地研究指数函数和对数函数为了能选择合适的函数类型构建数学模型,刻画现实问题的变化规律,教学时可以依据教科书,从两个方面帮助学生体会不同函数模型增长的差异:一是通过观察函数图象,利用图象直观比较指数函数与线性函数、对数函数与线性函数增长速度的差异;二是通过教科书中的实例,结合具体问题情境理解不同函数增长的差异,教学的关键是从局部到整体,从不同角度观察、比较不同函数图象增长变化的差异,从而直观体会直线的增长、指数爆炸、对数增长的含义4.加强背景和应用,发展学生数学建模素养数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.教学中,应注意参考教科书,结合这些素材,引导学生从数学的视角发现问题、提出问题,构建指数函数和对数函数模型,确定模型中的参数,计算求解,检验结果,改进模型,最终解决问题,让学生体会数学的来源与应用,丰富学生对数学的认识,提升数学建模素养.5.注重借助信息技术工具研究指数函数和对数函数在不同函数增长差异的教学中,利用信息技术可以作出函数在两个不同范围的图象,帮助学生从不同角度观察到不同函数增长的差异.6.注意通过无理数指数幂的教学渗透极限思想教科书通过“用有理数指数幂逼近无理数指数幂”的思想方法引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数,让学生充分经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;通过在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.这样从“数”与“形”的两个角度,加强了逼近和极限思想的渗透,有助于学生从中初步体会这一重要思想.。

高中数学新课标人教A版必修第一二册教材解读〖《一元二次函数、方程和不等式》章整体解读〗

高中数学新课标人教A版必修第一二册教材解读〖《一元二次函数、方程和不等式》章整体解读〗

第二章一元二次函数、方程和不等式整章内容解读1.本章的知识结构和研究脉络是怎样的?本章的知识结构如图1所示:学生在初中学习等式的内容时,先学习了用含有未知数的等式(方程)表示问图1题中的相等关系,接着以解方程为目的,学习了等式的一些基本性质,然后研究了两种具体的方程——一元一次方程和一元二次方程的解法和应用.概括起来就是“现实背景—相等关系与等式——等式性质——方程及其解法——应用”.本章在构建不等式内容的结构体系时,采用了与等式类似的顺序:现实背景——不等关系与不等式——关于两个实数大小关系的基本事实——不等式性质——不等式解法、证明——应用.2.依据课标,本章的定位、核心素养、思想方法、育人价值是怎样的?在课标中“一元二次函数、方程和不等式”属于必修主题一“预备知识”.它们的定位是为高中数学课程做好知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.本章是多种数学素养培养的载体,具体可以用下表表示:核心素养载体数学抽象不等关系,基本不等式的应用,一元二次不等式本章蕴含着丰富的数学思想方法,特别是数形结合、分类讨论、函数、数学模型等思想方法.在探索发现重要不等式,在用几何方法解释实数的基本事实、不等式的性质和基本不等式,在研究二次函数与一元二次方程、不等式的解的情况时,都充分应用了数与形结合的方法.在探索或证明不等式的部分性质,在研究一元二次不等式的解的情况时,都充分应用了分类讨论的思想方法.从函数观点看方程和不等式,充分体现了函数思想之下知识之间整体性和联系性,也体现了函数的重要性.基本不等式、一元二次不等式是解决实际问题的数学模型,遇到实际问题,通过识别、转化为基本模型达到解决的目的.通过学习本章内容,可以帮助学生逐渐养成借助直观理解概念,进行逻辑推理的思维习惯,以及把实际问题抽象成数学问题,并按照一定的模型或程序有序求解的分析问题、解决问题的能力.还可以引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习.3.本章知识与其他知识之间有什么联系?怎样把握教学的深度和广度?本章知识与其他知识联系非常密切.首先,学习本章的起点是初中的相关知识.通过类比初中学过的等式和方程,确定本章的整体研究思路.类比等式的性质,学习不等式的性质,理解等式与不等式的共性与差异.通过梳理初中从一元一次函数观点看一元一次方程、一元一次不等式的思想方法,类比得到探索一元二次不等式解法的路径,获得二次函数求解一元二次不等式的程序.第二,本章内容是整个高中数学的基础,在后续的学习中将会经常用到本章所学的知识.一方面,本章所学的具体知识在后续学习中经常会用到,比如,不等式的性质,重要不等式,基本不等式,一元二次不等式的解法,等等.另一方面,本章的研究方法在后续学习中若能主动应用,将有助于提高思维的灵活性,比如,函数对方程、不等式的“整合”作用,从函数观点看方程和不等式中体现出来的数学整体观和联系性,等等.因此,在本章教学中要注重梳理初中的知识,以帮助学生扫清障碍,提升学习效果.4.本章的学习目标有哪些?根据课标,本章的学习目标如下:(1)等式性质与不等式性质梳理等式的性质,理解不等式的概念,掌握不等式的性质.(2)基本不等式掌握基本不等式2a b +≤(a ,b ≥0).结合具体实例,能用基本不等式解决简单的最大值或最小值问题.(3)从函数观点看一元二次方程会结合二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.(4)从函数观点看一元二次不等式①经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.②借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系.5.与2021年课标下的教科书相比,本章内容主要有哪些变化?与按照2021年颁布的课程标准编写的教科书相比,本章的变化如下:(1)位置的变化:2021年课程标准中,不等式的内容在必修数学5中,2021年版课程标准中,不等式的内容安排在必修主题一的“预备知识”中.(2)内容的变化:从知识点看,内容没有变化,但是从内容的处理方式看上有三点改变:第一,注重初高中的衔接,从复习初中内容开始,自然引申出新的内容.第二,注重类比,突出研究一个数学对象的基本路径,比如先复习等式性质的研究方法,再由方法引导,探究不等式的性质;复习一次函数观点看一元一次方程和不等式的方法,在此基础上研究二次函数观点看一元二次方程和不等式的方法.第三,注重函数观点看问题,体现数学知识的整体性和联系性.。

新课标高中数学人教A版必修一教材解读

新课标高中数学人教A版必修一教材解读

新课标高中数学人教A 版必修一教材解读5三明二中 范训库2.9方程的根与函数的零点(1节)三维目标:知识与技能:理解函数(特别是二次函数)零点的概念,领会函数零点与相应方程的关系,掌握零点存在的判定条件过程与方法:从已有的基础出发,从具体到一般揭示方程的根与对应函数的零点之间的关系,零点存在的判断情感、态度与价值观:从函数与方程的联系中体验数学中的转化思想的意义和价值。

教材分析:重点:方程的零点存在的判断难点:方程的零点与方程的根关系教学顺序:由二次函数图象与x 的交点与相应方程的根的关系----零点的定义----零点与根的关系----零点的判断—范例选讲.例1:求下列函数的零点:(1)452+-=x x y (2)x x y 83-=(3)x x y 52+-= (4))23)(2(22+--=x x x y例2:课本P88:例1例3:对于函数n mx x x f ++=2)(,若0)(,0)(>>b f a f ,则函数)(x f 在区间),(b a 内( )A 一定有零点B 一定没有零点C 可能有两个零点D 至多有一个零点学生练习:课本P88:练习1补充:求证函数54ln )(-+=x x x f 在),0(+∞内有且仅有一个零点。

作业:学案P60--61:1-12补充一节:二次方程的根的分布问题(略)2.10用二分法求方程的近似解(1课时)知识与技能:会用二分法求函数的零点或方程的根的近似解,继续深化对函数与方程之间的联系的认识.过程与方法:通过具体实例的求解,体验、总结二分法的过程与步骤.情感、态度与价值观:体会数学逼近过程,感受精确与近似的相对统一。

教材分析:重点:二分法求方程的近似解难点:对近似解所在范围的缩小的理解教学顺序:引入------二分法求近似解过程范例-----二分法的定义------归纳出二分法的步骤---对精确度ε<-||b a 的理解----范例选讲例1:课本P90:例2例2:用二分法求函数3)(3-=x x f 的一个正零点(精确到0.01)(共计算7次)学生练习:1.求方程03323=-+x x 的一个实数解(精确到0.01)(共求10次)2.求函数632)(23--+=x x x x f 的一个正零点(精确到0.1)()7.1=x3.课本P91:练习2作业:学案P61---62几点说明:1.函数概念的教学可以从学生在义务教育阶段已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念,再引入高中函数的定义,并加以比较两者定义的区别和联系。

高中数学新课标教材必修一

高中数学新课标教材必修一

高中数学新课标教材必修一高中数学新课标教材必修一,是高中数学教学的基础部分,旨在培养学生的数学思维和解决问题的能力。

本教材涵盖了高中数学的基础知识和核心概念,为学生进一步学习数学打下坚实的基础。

以下是该教材的主要内容概述:1. 数与式本单元介绍了实数的概念、性质以及运算规则,包括有理数、无理数、数轴、绝对值等。

同时,也讲解了代数式的运算,包括整式的加减、乘除以及因式分解等。

2. 函数函数是高中数学的重要内容,本单元详细讲解了函数的定义、性质、图像以及应用。

包括一次函数、二次函数、指数函数、对数函数等常见函数类型。

3. 解析几何解析几何部分介绍了坐标系、直线、圆等基本几何图形的方程和性质。

学生将学习如何利用代数方法解决几何问题,以及如何通过几何图形来理解代数概念。

4. 三角函数三角函数是研究角度和三角形边长关系的数学工具。

本单元包括了正弦、余弦、正切等基本三角函数的定义、性质和图像,以及解三角形的方法。

5. 概率与统计概率与统计是现代数学的重要组成部分,本单元介绍了随机事件、概率的计算、统计数据的收集和分析等基础知识。

6. 数列数列是一系列按照一定规则排列的数。

本单元讲解了等差数列和等比数列的定义、性质、求和公式以及应用。

7. 空间几何空间几何部分介绍了空间中点、线、面的位置关系,以及多面体和旋转体的性质。

学生将学习如何描述和理解三维空间中的几何图形。

8. 向量向量是数学中描述方向和大小的数学工具。

本单元包括向量的概念、运算、坐标表示以及向量在几何和物理中的应用。

9. 复数复数是实数的扩展,包括实部和虚部。

本单元介绍了复数的运算、复平面、复数的几何意义以及复数的应用。

10. 逻辑与证明逻辑与证明是数学思维的重要组成部分,本单元讲解了逻辑推理的基本规则、证明方法以及数学命题的证明技巧。

通过学习高中数学新课标教材必修一,学生不仅能够掌握数学的基础知识,还能够培养逻辑思维、空间想象能力和解决问题的能力,为未来的学习和生活打下坚实的基础。

高中数学必修一教材解析教案

高中数学必修一教材解析教案

高中数学必修一教材解析教案高中数学必修一教材是大学入学考试中数学考试的重要基础,其重要性不容小觑。

在学习过程中,教师需要具备一定的教学方法和技巧,能够让学生更好地理解和掌握教材内容。

本文将为大家介绍一种可供教师参考的高中数学必修一教材解析教案。

1. 教案结构与特点我们来看一下该教案的基本结构和特点。

该教案总共分为四大部分,分别为:(1)教学目标和内容(2)教学流程和方法(3)课堂练习和作业(4)复习和总结其中,教学目标和内容部分要求教师在开展教学前,明确教学目标并准确把握教材内容。

教学流程和方法部分则是详细展现教学过程,包括教学环节划分、教学方式选择、教学方法运用等。

课堂练习和作业部分则是用于促进学生理论知识和实际问题的结合,让学生掌握教材内容并能够运用到具体情境中。

复习和总结部分则是针对教学过程中出现的问题进行解决,并对本次教学进行总结和回顾。

该教案特点则是重视思维方法的培养和实际问题的引导。

通过培养学生逻辑思维和应用能力,使学生能够更好地理解和掌握教材内容,并能够在实际问题中运用所学知识。

同时,该教案还注重对学生的个性化关注,鼓励学生积极参与讨论和交流,以更好地促进教学效果。

2. 教案实例我们通过一个具体的教案实例来说明该教案的实施过程和效果。

(1)教学目标和内容本节课的教学目标为:通过讲解解二次方程的一般解法和特殊情况,让学生掌握解二次方程的方法和技巧,并能够在实际问题中运用所学知识。

(2)教学流程和方法本节课的教学分为三个环节:环节一:导入与问题情境引入通过生活实际问题来引入解二次方程的概念和实际应用。

教师可以用以下问题情境来引导学生思考:小明和小李在一起喝茶,发现两人各自花费不同,但总共花费相同。

如果小明花费x元,小李花费y元,且x+y=10元,小明和小李各花费了多少元?环节二:知识点讲解着重讲解解二次方程的一般解法和特殊情况,并让学生通过练习题来掌握方法和技巧。

环节三:实际问题的练习通过实际问题的练习来加深学生对所学知识的理解和应用能力。

新旧版本教材第一章集合与常用逻辑用语 教材分析与教学建议 课件高一上学期数学人教A版 必修第一册

新旧版本教材第一章集合与常用逻辑用语 教材分析与教学建议 课件高一上学期数学人教A版 必修第一册
集合是刻画一类事物的语言和工具;常用逻辑用语 是数学语言的重要组成部分,是数学表达和交流的工具, 是逻辑思维的基本语言。
定位:(1)作为预备知识;(2)作为数学基本语言
【知识结构】
【课时建议】 本章共安排了5个小节,教学时间约需10课时: 1.1 集合的概念 1课时 1.2 集合间的基本关系 1课时 1.3 集合的基本运算 2课时 阅读与思考 集合中元素的个 数 1.4充分条件与必要条件 2课时 1.5 全称量词与存在量词 2课时 阅读与思考 几何命题与充分条件、必要条件 小结 2课时
引例的变化
旧教材
新教材
更新与精简,更容易提炼集合的概念,时代性强。
二 教材分析
2 习题的变化
旧教材
新教材
集合原来旧教材共14道题,现行教材是16道题,从数量上增加 了两道题。旧教材是集合这一部分整体上设置了一个习题,而 现行教材每一小节都设置了一个习题,并且每一个习题都有了: 复习巩固,综合应用,拓广探索三个栏目,三个栏目由易到难, 层层递进,是现行教材的一大特色。
【教学建议】
1、重视教材 (2)理解知识展开的内在逻辑: (3)钻研例习题的功能作用,充分用好教科书例习题;
例 1 已知{0, 1, 2a} {a 1, | a |, a 1},求实数 a 。
例 2 已知集合 A {x | x 1 n 1, n Z}, B {x | x 1 n, n Z}。
2
2
求证: A B 。
训练运算与逻辑推理
【教学建议】
1、重视教材 (4)正确对待“阅读与思考”:
【教学建议】
2、注重创设使用数学语言的情境和机会 学习集合语言最好的方法是使用。 在教学中要创设使学生运用集合语言进行表达和交流的情境

数学必修1教材分析

数学必修1教材分析

数学必修1教材分析数学必修1教材分析一、教材概述数学必修1是高中数学教材的一部分,主要内容包括函数的概念、性质和图像,以及函数的单调性和奇偶性。

此外,还包括了集合、不等式、数列和算法初步等知识。

这一册教材旨在让学生掌握函数的基础知识和基本技能,以及与函数相关的数学思想,为学生后续的数学学习和应用打下坚实的基础。

二、教材特点1.注重基础知识数学必修1教材注重基础知识的讲解和传授,通过对函数的概念、性质和图像的详细介绍,让学生逐渐理解和掌握函数的基本概念和性质。

同时,教材也强调对基本技能的训练,例如函数的运算、图像的绘制等,为学生后续的学习和应用打下坚实的基础。

2.突出数学思想数学必修1教材不仅注重基础知识的讲解,同时也突出了数学思想的传授。

例如,通过函数单调性和奇偶性的讲解,让学生深入理解函数的图像和性质之间的联系。

此外,教材还介绍了集合、不等式等数学思想,帮助学生掌握数学基础知识,并为后续的学习和应用提供重要的思想支撑。

3.强调实践应用数学必修1教材不仅注重基础知识和数学思想的讲解,同时也强调实践应用。

例如,教材中介绍了如何利用函数知识解决实际问题,例如如何利用函数模型解决最优化问题等。

此外,教材还设计了大量的实际问题,让学生通过分析和解决实际问题来提高数学应用能力。

三、教学内容及学时安排数学必修1教材的教学内容主要包括以下几个方面:1.函数的概念和性质(4学时)这部分内容主要介绍函数的概念、性质和图像,包括函数的定义域、值域、单调性、奇偶性等。

学生需要通过学习这些内容,理解和掌握函数的基本概念和性质,为后续的学习打下基础。

2.函数的图像(4学时)这部分内容主要介绍如何绘制函数的图像,以及图像的平移、伸缩等变换。

学生需要通过学习这些内容,掌握函数的图像表示方法和图像变换的基本技能。

3.集合与不等式(4学时)这部分内容主要介绍集合的基本概念、集合之间的关系和运算,以及不等式的性质和证明方法。

学生需要通过学习这些内容,掌握集合的基本概念和不等式的性质及证明方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一教材分析
作为新课程高中数学的起始模块—必修一,它是由“第一章集合和函数概念、第二章基本初等函数、第三章函数的应用”三部分内容组成.下边为了便于讨论,我们分章对于教材作一一分析.
1 集合
集合是近代数学中的一个重要概念,集合概念及其基本理论又是近代数学的一个重要的基础,它不仅与高中数学的许多内容有着联系,而且已经渗透到自然科学的众多领域,应用十分广泛。

中学数学所研究的各种对象都可以看作集合或集合中的元素,用集合语言可以简明地表述数学概念,准确、简捷地进行数学推理.
本章内容以集合的含义与表示、集合的基本关系、集合的基本运算为逻辑链条统领全章,这种安排与以往的教材的处理有很大的区别.例如,集合的基本关系,是将集合的包含和相等关系放在一起,并给出子集的概念;集合的基本运算,是将集合的交、并、补放在这一节,并给出全集的概念,这样安排给学生展现出知识间的联系,便于学生学习.
教学目标
集合语言是现代数学的基本语言.使用集合语言,可以简洁、准确地表达数学的一些内容(集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础),因此高中数学课程中只是将集合作为一种语言来学习.
⑴了解集合的含义,明确元素与集合的“属于”关系.掌握描写某些数集的专用符号.
⑵理解集合的表示法,能用集合语言对事物进行准确,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
⑶理解集合之间包含与相等的含义,能识别给定集合的子集.培养分析、比较、归纳的逻辑思维能力.
⑷了解全集与空集的含义.
⑸理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.
⑹理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.
⑺能使用Venn图表达集合的关系及运算.
教学重点和难点
教学重点
(1)了解集合的含义与表示.
(2)理解集合间的包含与相等含义,子集与真子集的概念.
(3)理解交集与并集、全集与补集的含义.
教学难点
(1)运用集合的两种常用表示法—列举法与描述法正确表示一些简单的集合.(集合法的恰当选择)(2)属于关系与包含关系的区别.
(3)交集与并集的概念的理解,交集与并集的符号之间的区别与联系.
知识结构与教学安排
2 函数
20世纪初,在英国数学家贝利和德国数学家克莱因等人的大力倡导和推动下,函数进入了中学数学。

克莱因提出了一个重要的思想——以函数概念和思想统一数学教育的内容,他认为:“函数概念,应该成为数学教育的灵魂。

以函数概念为中心,将全部数学教材集中在它周围,进行充分地综合。

”在高中课程中,函数与方程、数列、不等式、线性规划、算法、导数及其应用,包括概率统计中的随机变量等,以及选修系列3、4中的大部分专题内容,都与函数有着密切的联系。

用函数(映射)的思想去理解这些内容,是非常重要的一个出发点。

反过来,通过这些内容的学习,可以加深对于函数思想的认识。

实际上,在整个高中数学课程中,都需要不断地体会、理解“函数思想”给我们带来的“好处”。

教学目标
⑴了解函数是描述变量之间的依赖关系的重要数学模型.
⑵能用集合与对应的语言刻画函数概念.
⑶了解构成函数的三要素,会求一些简单函数的定义域和值域.
⑷能根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
⑸了解简单的分段函数,并能简单应用.
⑹了解映射的概念.
⑺了解增函数、减函数的概念,理解函数的单调性,能利用单调性的定义判断函数的单调性.
⑻理解二次函数的图象变换,掌握二次函数的性质,并会利用二次函数的图象和性质求最值.
(9)了解函数奇偶性的含义,会判断函数的奇偶性,能根据函数的奇偶性解决有关问题.
(10)能运用函数的图象理解和研究函数的性质.
教学重点和难点
教学重点
(1)理解函数的模型化思想,用集合与对应的语言来刻画函数.
(2)理解函数的概念,函数的表示法.
(3)理解函数单调性、奇偶性的概念,学会判断和证明函数的单调性、奇偶性.
(4)掌握用函数的单调性求一些函数的最大值
教学难点
f x的理解,分段函数的表示及图像.
(1)对抽象符号()
(2)应用定义证明单调性.
(3)利用数学本质正确判断函数的奇偶性.
知识结构与教学安排
课时安排
本章教学时间约需要13课时,具体分配如下:
1.1 集合约4课时
1.2 函数及其表示约4课时
1.3 函数的基本性质约3课时
实习作业约1课时小结约1课时
3 指数函数和对数函数
函数是贯穿中学数学的核心内容,本章继第一章学习完函数概念和基本性质后,较为系统地研究最重要的两个基本初等函数:指数函数和对数函数.通过这些函数的研究,使学生进一步认识到函数是刻画现实世界变化规律的重要模型,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型.并要求结合实际问题,感受运用函数概念建立模型的过程与方法.
教学目标
⑴理解有理指数幂的含义,了解无理指数幂及实数指数幂的意义,掌握幂的运算.
⑵了解指数函数模型的实际背景.
⑶理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点.
⑷在解决实际问题的过程中,体会指数函数是一类重要的函数模型.
⑸理解对数的概念及其性质,知道能用换底公式将一般对数转化为自然对数或常用对数. ⑹了解对数的发展历史以及简化运算的作用.
⑺了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.
⑻能够画出具体的对数函数的图象,了解对数函数的单调性与特殊点.
⑼了解反函数的定义,知道指数函数x
y a =与对数函数log (0,1)a y x a a =>≠互为反函数.
⑽掌握幂函数、指数函数和对数函数的变化特点,会区别它们变化的速度的不同.
教学重点和难点
教学重点
(1)指数函数、对数函数的概念和运算性质.
(2)指数函数和对数函数的图象和性质.幂函数的一些性质 (3)对数式与指数式的互化 教学难点
(1) 分数指数幂的概念理解. (2) 对数函数概念的理解
(3)底数a 对指数函数与对数函数的函数值变化的影响.
课时安排
本章教学时间约需要14课时,具体分配如下:
2.1 指数函数约6课时
2.2 对数函数约6课时
2.3 幂函数约1课时
小结约1课时
4 函数的应用
函数是高中数学的起始课程,函数的重要性主要表现在两个方面:一是函数思想的价值;二是函数的应用价值.从两个方面学习函数的应用,一是函数与其它数学内容的联系:再一个是函数与实际的联系.力图在理念、方法和能力上为高中阶段的学习奠定基础.
教学目标
⑴结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.
⑵根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解二分法是求方程近似解的常用方法.
⑶能利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
教学重点和难点
教学重点
(1)函数的零点与方程根之间的联系,初步形成用函数的观点处理问题的意识
(2)通过“二分法”求方程的近似解.
(3)将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

教学难点(1)函数与方程的关系、函数与方程思想的渗透.
(2)怎么选择数学模型分析解决实际问题。

知识结构与教学安排
本章教学时间约需要9课时,具体分配如下:
3.1 函数与方程约3课时3.2 函数建模及其应用约4课时
实习作业约1课时小结约1课时。

相关文档
最新文档