人教课标版高中数学必修二第一章学情分析与教材分析-新版
最新人教版高中数学必修2-全册教案

最新⼈教版⾼中数学必修2-全册教案第⼀章空间⼏何体第⼀章课⽂⽬录1.空间⼏何体的结构1.空间⼏何体的三视图和直观图1.3空间⼏何体的表⾯积与体积知识结构:⼀、空间⼏何体的结构、三视图和直观图1.柱、锥、台、球的结构特征圆柱:以矩形的⼀边所在的直线为旋转轴,其余边旋转形成的曲⾯所围成的⼏何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转⽽成的曲⾯叫做圆柱的侧⾯;⽆论旋转到什么位置,不垂直于轴的边都叫做圆柱侧⾯的母线。
棱柱与圆柱统称为柱体;(2)锥棱锥:⼀般的有⼀个⾯是多边形,其余各⾯都是有⼀个公共顶点的三⾓形,由这些⾯所围成的⼏何体叫做棱锥;这个多边形⾯叫做棱锥的底⾯或底;有公共顶点的各个三⾓形⾯叫做棱锥的侧⾯;各侧⾯的公共顶点叫做棱锥的顶点;相邻侧⾯的公共边叫做棱锥的侧棱。
底⾯是三⾓锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……圆锥:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转形成的曲⾯所围成的⼏何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的⾯叫做圆锥的底⾯;斜边旋转形成的曲⾯叫做圆锥的侧⾯。
棱锥与圆锥统称为锥体。
(3)台棱台:⽤⼀个平⾏于底⾯的平⾯去截棱锥,底⾯和截⾯之间的部分叫做棱台;原棱锥的底⾯和截⾯分别叫做棱台的下底⾯和上底⾯;棱台也有侧⾯、侧棱、顶点。
圆台:⽤⼀个平⾏于底⾯的平⾯去截圆锥,底⾯和截⾯之间的部分叫做圆台;原圆锥的底⾯和截⾯分别叫做圆台的下底⾯和上底⾯;圆台也有侧⾯、母线、轴。
圆台和棱台统称为台体。
(4)球以半圆的直径所在的直线为旋转轴,半圆⾯旋转⼀周形成的⼏何体叫做球体,简称为球;半圆的圆⼼叫做球的球⼼,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
(5)组合体由柱、锥、台、球等⼏何体组成的复杂的⼏何体叫组合体。
⼏种常凸多⾯体间的关系⼀些特殊棱柱、棱锥、棱台的概念和主要性质:名称棱柱直棱柱正棱柱有两个⾯互相平⾏,⽽其余每相邻两个⾯的交线都互相平⾏的多⾯体侧棱垂直于底⾯的棱柱底⾯是正多边形的直棱柱侧棱平⾏且相等平⾏且相等平⾏且相等侧⾯的形状平⾏四边形矩形全等的矩形对⾓⾯的形状平⾏四边形矩形矩形平⾏于底⾯的截⾯的形状与底⾯全等的多边形与底⾯全等的多边形与底⾯全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有⼀个⾯是多底⾯是正多边⽤⼀个平⾏于由正棱锥截得边形,其余各⾯是有⼀个公共顶点的三⾓形的多⾯体形,且顶点在底⾯的射影是底⾯的射影是底⾯和截⾯之间的部分棱锥底⾯的平⾯去截棱锥,底⾯和截⾯之间的部分的棱台侧棱相交于⼀点但不⼀定相等延长线交于⼀点相等且延长线交于⼀点侧⾯的形状三⾓形全等的等腰三⾓形梯形全等的等腰梯形对⾓⾯的形状三⾓形等腰三⾓形梯形等腰梯形平⾏于底的截⾯形状与底⾯相似的多边形与底⾯相似的正多边形与底⾯相似的多边形与底⾯相似的正多边形其他性质⾼过底⾯中⼼;侧棱与底⾯、侧⾯与底⾯、相邻两侧⾯所成⾓都相等两底中⼼连线即⾼;侧棱与底⾯、侧⾯与底⾯、相邻两侧⾯所成⾓都相等⼏种特殊四棱柱的特殊性质:名称特殊性质平⾏六⾯体底⾯和侧⾯都是平⾏四边⾏;四条对⾓线交于⼀点,且被该点平分正⽅体棱长都相等,各⾯都是正⽅形四条对⾓线相等,交于⼀点,且被该点平分2.空间⼏何体的三视图三视图是观测者从不同位置观察同⼀个⼏何体,画出的空间⼏何体的图形。
数学:第1章《立体几何初步》教材分析(必修二)

第1章《立体几何初步》教材分析立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间.所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义.《立体几何初步》一章,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》(以下简称《课程标准》)对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的.一、《课程标准》关于《立体几何初步》的表述及教学要求1.表述:《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质.三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求.在《立体几何初步》部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证.学生还将了解一些简单几何体的表面积与体积的计算方法.2.教学要求:2.1 空间几何体(1)利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧画法画出它们的直观图.(3)通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式.(4)完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).2.2 点、线、面之间的位置关系(1)借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.◆公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.◆公理3:过不在一条直线上的三点,有且只有一个平面.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.(2)以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辩论证,认识和理解空间中线面平行、垂直的有关性质与判定.通过直观感知、操作确认,归纳出以下判定定理:◆如果平面外一条直线和这个平面内的一条直线平行,那么该直线与这个平面平行.◆如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面.◆如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.通过直观感知,操作确认,归纳出以下性质定理,并加以证明.◆如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行.◆如果一条直线垂直于两个平行平面中的一个平面,那么它页垂直于另一个平面.◆如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(3)能运用已获得的结论证明一些空间位置关系的简单命题.二、对比《课程标准》与《教学大纲》,在要求上的主要变化1. 对于“空间几何体”:《教学大纲》要求:了解概念,掌握性质;《课程标准》则要求:认识柱、锥、台、球及简单组合体的结构特征. 《课程标准》把重点放在了空间想像能力上,对概念、性质则降低了要求.2. 对于“点、线、面之间的位置关系”:《课程标准》把重点放在了定性研究(平行和垂直)上,定量研究(角和距离)在必修中不作要求(移到选修中),对线、面垂直的判定定理不证明,移到空间向量中再证.分段设计,分层递进.3. 对知识发生的过程提出了较高的要求:多处使用了“观察”、“认识”、“画出”、“直观感知、操作确认,归纳”等情感、态度与价值要求的行为动词.对空间几何体的要求是直观感知;对线、面关系则要求操作确认、思辨论证;对判定定理的要求是操作确认、合情推理;对性质定理则要求思辨论证、逻辑推理.4. 不要求用反证法证明简单的问题.三、新课程教材和大纲教材处理图2 图1的变化与以往高中数学课程中的立体几何相比,立体几何教材处理的变化主要表现在几何定位,几何内容处理方式,几何内容的分层设计以及几何内容的增减等方面.1. 定位:定位于培养和发展学生把握图形的能力,空间想象与几何直观能力、逻辑推理能力等.强调几何直观,合情推理与逻辑推理并重,适当渗透公理化思想.2. 内容处理与呈现:按照从整体到局部的方式展开:柱、锥、台、球→ 点、线、面→ 侧面积、表面积与体积的计算(如图1),而原教材是点、线、面→ 柱、锥、台、球,即从局部到整体(如图2),突出直观感知、操作确认,并结合简单的推理发现、论证一些几何性质.3. 内容设计:螺旋上升,分层递进,逐步到位.在必修课程中,主要是通过直观感知、操作确认,获得几何图形的性质,并通过简单的推理发现、论证一些几何性质.进一步的论证与度量则放在选修2中用向量处理.教材在内容的设计上不是以论证几何为主线展开几何内容,而是先使学生在特殊情境下通过直观感知、操作确认,对空间的点、线、面之间的位置关系有一定的感性认识,在此基础上进一步通过直观感知、操作确认,归纳出有关空间图形位置关系的一些判定定理和性质定理,并对性质定理加以逻辑证明.不是不要证明,而是完善过程,既要发展演绎推理能力,也要发展合情推理能力.4. 教学内容增减:删除(或在选修课内体现的):(1)异面直线所成的角的计算.(2)直线与平面所成角的计算.(3)三垂线定理及其逆定理.(4)二面角及其平面角的计算.(5)多面体及欧拉公式.(6)原教材中有4个公理,4个推论,14个定理(都需证明)(不包含以例题出现的定理).新教材中有4个公理,9个定理(4个需证明).增加:(7)简单空间图形的三视图.专设“空间几何体的三视图和直观图”这一节,重点在于培养空间想像能力.(8)台体的表面积和体积等内容.立体几何内容采用上述处理方式,主要是为了增进学生对几何本质的理解,培养学生对几何内容的兴趣,克服以往几何学习中易造成的学生两极分化的弊端.四、江苏省数学学科关于《立体几何初步》的教学建议§1.1空间几何体(4课时)基本要求发展要求说明1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,了解柱、锥、台、球的概念.2.了解画立体图形三视图的原理,并能画出简单几何图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图.能识别上述的三视图表示的立体模型,会用斜二测法画出立体图形的直观图.1.能用运动的观点整体认知柱、锥、台、球.2.通过本节学习,进一步体会观察、比较、归纳、分析等一般科学方法的运用.1.柱、锥、台、球的结构特征只须通过实例概括,不必证明.2.空间几何体的性质不必深入挖掘.重点:让学生感受大量空间实物及模型,概括出柱、锥、台、球的结构特征,会用斜二测画法画空间几何体的直观图.难点:如何让学生概括柱、锥、台、球的结构特征.教学建议:1.新课标在几何教学中强调几何学习的直观性,强调实物、模型对几何学习的作用.因此对柱、锥、台、球的学习需要从实物图形的感知出发,抽象出其本质特征,来建立多面体、旋转体的概念,进一步研究它们的结构和分类.课外可让学生动手做一做,更直接的感受空间几何图形的特征.如建议学生用纸板或游戏棒或细铁丝(作骨架)做出下列几何体的模型:(1)正方体;(2)长方体;(3)三棱锥;(4)四棱锥;(5)三棱台.学生通过动手做,亲身体验柱、锥、台的结构特征,必会帮助学生逐步形成空间想像能力.2.用斜二测画法画直观图,关键是掌握画水平放置的平面图形,它是画空间几何体直观图的基础.而水平放置的平面图形的画法可以归结为确定点的位置的画法.在平面上确定点的位置我们可以借助直角坐标系来完成,因此画水平放置的直角坐标系是学生首先要掌握的方法.通过例题的教学使学生明确画直观图的基本要求.3. 关于“三视图”的一些补充说明:(1)画三视图容易忽视的问题①不给出“正方向”,把想当然的“正方向”看作是规定的“正方向” .如某中考题:“下面四个几何体中,左视图是四边形的几何体共有( )”A .1个B .2个C .3个D .4个严格意义上来说,该题(属开放性问题)是没有答案的,因为你没有给出正方向,所以不知左视图为何形.②视图中缺少应有的线段,尤其是缺少该用虚线描绘的不可见的物体轮廓线、分界线和棱.如常将四棱锥S -ABCD 的三视图作成图(10)而非图(11),即俯视图中缺少棱SC 。
高中数学-函数的单调性与导数教学设计学情分析教材分析课后反思

《函数的单调性与导数》教学设汁【教学目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:i.通过本巧的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
【教学的重点和难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。
教学难点:探索函数的单调性与导数的关系。
性问题.内容讲授例题讲解例1 : 求函数f(x) = x3-3x2的单调区间,并画出函数的大致图像.分析:根据上面结论,我们知道函数的单调性与函数导数的符号有关。
因此,可以通过分析导数的符号求出函数的单调区间.解:引导学生回答问题并同时板书.根据单调性的结论画出函数的图像.学生思考回答思路.学生利用导数知识解决函数的单调性问题.明确利用导数是求函数单调区间的最简单的方法.加深对单调性的理解,体会数形结合的思想.加强学生对利用导数求函数单调性的方法进一步熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.练习1求函数/(x ) = — lnx 的单调区间.函数的导数值大 于零时,其函数为 单调递增;函数的 导数值小于零时, 其函数为单调递 从函数的单调性 和导数的正负关 系的讨论环节中, 不断的比较了函 数和导函数的图 像,因此设置该 题,从熟悉的函数 到该题,题LI 更容 易解决.1求定义域;2求函数/(X )的导数, 3讨论单调区间,解不等式 广(力>°,解集为增区间;4解不等式广(切<°,解集为减区间.山学生共同回答.例2函数图像如下图,导函数图像可能为哪'一木讨论函数单调性的一般步骤 是什么教师根据一个学 生的作图进行讲 解.学生对所学知识 进一步巩固和熟 练掌握.【板书设计】参与课堂的学生为高二年级理科的学生,学生基础参差不齐,差别较大,而单调性的槪念是在髙一第一学期学过的,因此对于单调性槪念的理解不够准确,同时导数是髙中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表而上•本节课应着重让学生通过探究来研究利用导数判左函数的单调性.效果分析本节课教师运用了多种教学手段,创设了丰富的教学情境,成功的激发了学生的学习兴趣:教学目标简明扼要,便于实施,注重数学思想、能力的培养,广度和深度都符合数学课程标准的要求,符合学生的实际情况。
人教版高中数学必修2全部教案(最全最新)

人教版高中数学必修2第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程(一)创设情景,揭示课题1、由六根火柴最多可搭成几个三角形?(空间:4个)2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(学生讨论)(2)棱柱的主要结构特征(棱柱的概念):①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:(1)实物模型演示,投影图片;(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
新人教版高中数学必修二教案(全册)

新人教版高中数学必修二教案(全册)第一章:二次函数与一元二次方程1.1 二次函数的基本性质与图像- 教学目标:了解二次函数的定义和基本性质,掌握画出二次函数的图像的方法。
- 教学内容:二次函数的定义、顶点、对称轴等基本性质,画出二次函数的图像。
- 教学步骤:1. 引入二次函数的概念,阐述其基本性质。
2. 对比一次函数和二次函数的特点,引导学生理解二次函数的图像形态。
3. 指导学生根据给定的二次函数方程画出对应的图像。
- 教学反思:本节课通过引入二次函数的基本概念和性质,帮助学生理解二次函数的图像形态,并通过实例让学生练画出二次函数的图像,加深对二次函数的理解。
1.2 一元二次方程- 教学目标:掌握一元二次方程的概念、解法和应用。
- 教学内容:一元二次方程的定义、解法和应用。
- 教学步骤:1. 介绍一元二次方程的定义和基本概念。
2. 分析一元二次方程的解的情况,讲解解一元二次方程的方法。
3. 引入一元二次方程的应用,如求解实际问题等。
- 教学反思:通过讲解一元二次方程的定义、解法和应用,帮助学生掌握解一元二次方程的方法,并引导学生将所学知识应用于实际问题的求解中,提高数学应用能力。
第二章:不等式2.1 不等式的概念与性质- 教学目标:了解不等式的概念和性质,掌握解不等式的方法。
- 教学内容:不等式的定义、性质、解法。
- 教学步骤:1. 引入不等式的概念和基本性质。
2. 分析不等式的解的情况,介绍解不等式的方法。
3. 给出具体的不等式问题,引导学生解决实际问题。
- 教学反思:通过引入不等式的概念和性质,帮助学生掌握解不等式的方法,并通过实际问题的解决,提高学生的数学应用能力。
2.2 一元一次不等式组- 教学目标:了解一元一次不等式组的概念和解法。
- 教学内容:一元一次不等式组的定义、解法。
- 教学步骤:1. 引入一元一次不等式组的概念和基本性质。
2. 讲解解一元一次不等式组的方法。
3. 给出具体的一元一次不等式组问题,引导学生解决实际问题。
最新人教版高中数学必修二教案(全册)

最新人教版高中数学必修二教案(全册)第一章:二次函数与一元二次方程授课内容本章主要介绍二次函数及其性质以及一元二次方程的解法。
授课目标1. 理解二次函数的定义,并掌握其图像的性质;2. 掌握一元二次方程的解法,包括因式分解、公式法和配方法等;3. 能够在实际问题中应用二次函数和一元二次方程。
教学步骤1. 引入二次函数的概念,让学生了解二次函数的定义和一般式;2. 通过图像展示二次函数的性质,如顶点、对称轴、最值点等;3. 教授一元二次方程的解法,首先介绍因式分解法,然后讲解公式法和配方法;4. 给学生提供一些练题,让他们运用所学知识解决实际问题;5. 总结本章内容,强调重点和难点。
教学资源- 人教版高中数学必修二教材- 教案PPT- 二次函数和一元二次方程的练题教学评估- 学生课堂表现- 练题的完成情况- 小组合作讨论的质量第二章:数列与数学归纳法授课内容本章主要介绍数列的概念、性质以及数学归纳法的应用。
授课目标1. 理解数列和数列的通项公式的概念;2. 掌握常见数列的求和公式;3. 掌握数学归纳法的基本思想和应用方法;4. 能够在实际问题中应用数列和数学归纳法。
教学步骤1. 引入数列的概念,让学生了解等差数列和等比数列的定义;2. 通过例题演示如何求解数列的通项公式和求和公式;3. 引入数学归纳法的基本思想,并讲解其应用方法;4. 提供一些实际问题让学生运用数列和数学归纳法求解;5. 总结本章内容,强调重点和难点。
教学资源- 人教版高中数学必修二教材- 教案PPT- 数列和数学归纳法的练题教学评估- 学生课堂表现- 练题的完成情况- 小组合作讨论的质量...(继续编写剩余章节的教案)。
人教课标版高中数学必修二第一章学情分析与教材分析-新版

第一章空间几何体(一)学情分析:本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接.本章中的有关概念,主要采用分析详尽实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念.柱体、锥体、台体和球体是简单的几何体,繁复的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较繁复的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质.(二)教材分析:1.核心素养我们在高中阶段要培养学生数学的三大能力:计算能力,思维能力,空间想象能力.本章的主要任务就是培养学生的空间想象能力.值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,我们应该多强调感性认识.要确凿把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的严重作用.2.本章目标(1)认识柱、锥、台、球及其简单组合体的结构特征.①利用实物模型、计算机软件观察大量空间图形.②运用空间几何体的特征描述现实生活中简单物体的结构.(2)空间几何体的三视图和直观图①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简捷组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图.②通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的例外表示形式.③完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(3)空间几何体的表面积和体积①了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).②会使用球、棱柱、棱锥、台的表面积和体积公式计算一些简单几何体的体积和表面积.3.课时安排本章教学时间约需12课时,详尽分配如下:3课时3课时1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积和体积章末检测题4.本章重点3课时空间几何体的三视图和直观图、空间几何体的表面积和体积.5.本章难点根据几何体的三视图还原直观图,并求直观图的体积和表面积.。
人教版数学必修二教学工作计划

本学期的教学工作计划以《人教版数学必修二》教材为依据,以培养学生的数学思维能力、创新精神和实践能力为目标,注重学生的个性化发展,提高学生的数学素养。
二、学情分析本学期学生将进入高中阶段的学习,已具备一定的数学基础。
但学生的数学能力参差不齐,部分学生可能对某些数学概念和知识点掌握不够牢固。
因此,本学期教学工作将关注学生的个体差异,实施分层教学,满足不同学生的学习需求。
三、教学目标1. 知识目标:掌握必修二教材中的数学概念、公式、定理等基础知识,能够运用所学知识解决实际问题。
2. 能力目标:培养学生的数学思维能力、逻辑推理能力、空间想象能力和创新精神。
3. 情感目标:激发学生对数学学习的兴趣,树立学习数学的信心,培养良好的学习习惯。
四、教学内容及进度安排1. 平面向量及其应用(12课时)(1)平面向量的概念及运算(4课时)(2)平面向量的线性运算(4课时)(3)平面向量的几何应用(4课时)2. 复数(10课时)(1)复数的概念及运算(4课时)(2)复数的几何应用(3课时)(3)复数的应用(3课时)3. 立体几何初步(10课时)(1)空间几何体的概念及性质(4课时)(2)空间几何体的运算(3课时)(3)空间几何体的应用(3课时)4. 统计(10课时)(1)统计数据的收集与整理(3课时)(2)统计图表的制作与分析(4课时)(3)统计方法的应用(3课时)5. 概率(10课时)(1)概率的基本概念(3课时)(2)古典概型与几何概型(3课时)(3)概率的运算与应用(4课时)五、教学方法1. 采用启发式教学,引导学生主动探究,培养学生的学习兴趣。
2. 结合实际生活,设计富有创意的教学活动,提高学生的实践能力。
3. 实施分层教学,关注学生的个体差异,满足不同学生的学习需求。
4. 利用多媒体教学手段,丰富教学内容,提高教学效果。
六、教学评价1. 定期进行课堂检测,了解学生的学习情况。
2. 布置适量的课后作业,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章空间几何体
(一)学情分析:
本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接.
本章中的有关概念,主要采用分析详尽实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念.
柱体、锥体、台体和球体是简单的几何体,繁复的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较繁复的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质.
(二)教材分析:
1.核心素养
我们在高中阶段要培养学生数学的三大能力:计算能力,思维能力,空间想象能力.本章的主要任务就是培养学生的空间想象能力.
值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,我们应该多强调感性认识.要确凿把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的严重作用.
2.本章目标
(1)认识柱、锥、台、球及其简单组合体的结构特征.
①利用实物模型、计算机软件观察大量空间图形.
②运用空间几何体的特征描述现实生活中简单物体的结构.
(2)空间几何体的三视图和直观图
①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简捷组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图.
②通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的例外表示形式.
③完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).
(3)空间几何体的表面积和体积
①了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).②会使用球、棱柱、棱锥、台的表面积和体积公式计算一些简单几何体的体积和表面积.
3.课时安排
本章教学时间约需12课时,详尽分配如下:
3课时
3课时
1.1空间几何体的结构
1.2空间几何体的三视图和直观图
1.3空间几何体的表面积和体积
章末检测题
4.本章重点3课时
空间几何体的三视图和直观图、空间几何体的表面积和体积.5.本章难点
根据几何体的三视图还原直观图,并求直观图的体积和表面积.。