Facile synthesis and size control of highly monodispersed hybrid silica spheres

合集下载

材料化工专业英语生词本

材料化工专业英语生词本

材料化工专业英语生词本Synthesis 合成Properties 性质Anatase 锐钛矿rutile 金红石brookite板钛矿Crystalline 结晶的nanometer 纳米nanorods/wires纳米棒/线nanocrystals 纳米晶体nanocarriers 纳米载体nanoparticles (NPs)纳米颗粒nanocomposite纳米复合Hierarchical Nanostructures 分层纳米材料titanium dioxide TiO2 polymorphs of titania 多晶型 TiO2 amorphous 非晶的Three-dimensional 3Dfacile and controlled 容易控制hydrothermal 热液的annealing 退火investigate 调查,研究radially 放射状地petal 花瓣thin 薄的thick 厚的morphology 形态The surface area 表面积adsorption-desorption 吸附-解析(ads)orption isotherms 吸附等温线the Brunauer-Emmett-Teller BET 比表面积测试法specific surface areas 比表面积sensitivity 灵敏、灵敏性ethanol 乙醇、酒精ethylene glycol 乙二醇EG化学式C2H6O2分子式:HOC2H4OHsensor 传感器、感应器solar cells太阳能电池biosensors 生物传感器catalyst 催化剂Catalysis 催化photo-catalytic 光催化的inorganic 无机的objective 目标optimize 使完善、使优化optical 光学的magnetic 磁的application 应用bandgap 带隙transition metal oxides 过渡金属氧化物paint 油漆、颜料gas sensor 气敏元件、气敏传感器Li-ion battery 锂离子电池Electrochromic 电致变色的Photochromism 光致变色macro/mesoporous materials 宏/介孔材料CVD(Chemical Vapor Deposition, 化学气相沉积)Anodic 阳极的hydrothermal method 水热法Template 样板、模板oriented attachment 定向附着primary nanoparticle 初级纳米粒子anisotropic非等方性的、各向异性的capping agents 盖髓剂kirkendall effect柯肯达尔效应tetragonal structure 四方结构photovoltaic cells 光伏电池smart surface coatings 智能表面涂层single-phase 单相precursor 先驱、前导Herein 在此处、鉴于、如此 Nanoflakes 纳米片metal-enhanced fluorescence 金属增强荧光fluorophores 荧光团The Royal Society of Chemistry 英国皇家化学学会ESI (Electronic Supplementary Material) 电子补充材料 Innovative 创新的 Polymer 聚合物 Chemical 化学品 Silica 硅 FITC (fluorescein isothiocyanate )荧光异硫氰酸酯EiTC ( Eosin isothiocyanate ) 异硫氰酸曙红Fluorescence spectra 荧光光谱 control sample 对照样品 Dissolve 溶解Characterization 表征 analytical grade 分析纯 ethanol 乙醇ethylene glycol 乙二醇 ammonia aqueous solution (28 wt %)氨水溶液(100公斤里含28公斤) acetone 丙酮分子式:C3H6O 简式:CH3COCH3EtoH 乙醇 ( PS :Et 代表乙基CH3CH2- Me 代表甲基CH3-)TEOS (tetraethyl orthosilicate ) 原硅酸四乙酯the TEOS concentration TEOS 浓度 CTAB (hexadecyltrimethylammonium bromide ) 十六甲基溴化铵The CTAB surfactant CATB 表面活性剂Sinopharm Chemical Reagent Co. 国药集团化学试剂有限公司Polyvinylpyrrolidone (PVP, Mw = 55000) 聚乙烯吡咯烷酮(PVP ,MW = 55000=兆瓦,百万瓦特(megawatt))Rhodamine B (Rh B) 玫瑰精,若丹明B poly(allylamine hydrochloride) (PAH, Mw = 56000) 聚(烯丙胺盐酸盐) Deionized water 去离子水PAH ( polycyclic aromatic hydrocarbon )多环芳族烃 Via 经由、通过the three-neck flask 三颈烧瓶 oil bath 油浴precipitate 沉淀centrifugation 离心分离 rpm 每分钟转数 core-shell 核-壳a surfactant-templating sol-gel approach 表面活性剂模板溶胶 - 凝胶法homo-dispersed solution 均聚物分散夜agitate 搅拌ultrasonically and mechanically 超声波地、机械地solvent extraction method 溶剂萃取法reflux 回流an impregnation method 浸渍方法 vial 小瓶 dilute 稀释composite 合成物、复合物TEM (Transmission electron microscopy )透射电子显微镜copper grids 铜网carbon films 碳膜SEM(Scanning electron microscopy)扫描电子显微镜Spray 喷FESEM(Field-emission scanning el ectron microscopy)场发射扫描电子显微镜LCSM(Laser confocal scanning microscopy )激光共聚焦扫描显微镜X-ray diffraction (XRD) X 射线衍射X-ray diffractometer X射线衍射仪Nitrogen 氮Micromeritcs n. 微晶(粒)学,粉末工艺学;粉体学degas除去瓦斯vacuum 真空BET(The Brunauer-Emmett-Teller) pore volume 孔体积spectrofluorometer 荧光分光剂spectrophotometer分光光度计bandpass 带通PMT voltage (Photomultiplier Tube)光电倍增管电压Confocal luminescence images共聚焦荧光图像Silver 银silica spacer 硅垫片fabricate制造; 伪造; 组装; 杜撰the metal-enhancedMEF(the metal-enhanced fluorescence )金属增强荧光Fluorescence quenching 荧光猝灭FRET (Fo¨rs ter resonance energy transfer )福斯特共振能量转移Optimization 最佳化; 最优化excited-state 激发态plasmon 等离子基元quantum yields 量子产率quantum dots 量子点resonance n.共振,共鸣, 反响, 回声donor–acceptor pairs 给体- 受体对proximity 接近efficiency 效率the transfer distances 传输距离deposite 被沉淀,存放plastic planar substrate塑料平面基板photoluminescence (PL)光致发光luminescent 发光的single nanoparticle sensing单一纳米粒子传感dielectric电介质; 绝缘体adj.非传导性的RE complexes稀土复合Polyelectrolytes聚合高分子电解质Electrolyte电解质Multilayer 多层Concentric 同中心的functionalized organic molecules 官能有机分子conjugation 结合,配合tedious and fussy繁琐和挑剔obstacle n.障碍, 阻碍, 妨害物controlled release,控释detection and probe applications 检测和探头应用general一般的; 综合的; 普通的universal普遍的, 通用的, 全体的Inspired 启发Possess 拥有Pore 孔drugs and macro-molecules 药物和大分子herein在此处, 鉴于, 如此Ag@SiO2@mSiO2(Ag-core@silica-spacer@mesoporo us silica )The preparation procedure编制程序Water-soluble可溶于水的; 水溶性的,微溶于水A high-temperature solvothermal method一种高温溶剂热法Solvent 溶剂Esolution 分辨率twinned structures 联动结构,孪生结构concentration 浓度tune 调节is ascribed to 归因于dilute稀释spherical morphology 球形形态type-IV curves IV型曲线polyelectrolytesodium chloride食盐; 氯化钠plasmonic absorption电浆吸收an intuitive way 以直观的方式unambiguous 不含糊的, 明白的demonstrate 证明antibody 抗体NSF(National Sanitation Foundation)美国国家卫生基金会PRC(The People's Republic of China)中华人民共和国Shanghai Municipality上海市Shanghai Leading Academic Discipline Project上海重点学科建设项目Tri-functional hierarchical三官能分层DSSCs(dye-sensitized solar cells)染料敏化太阳能电池DOI(Digital Object Unique Identifier)是一种数字对象标识体系acid thermal method 酸热法titanium n-butoxid正丁醇钛acetic acid乙酸、醋酸kinetic 动能light-scattering 光散射photoelectrodes 光电极opto-electronic 光电的calcine煅烧short-circuit photocurrent density短路光电流密度open-circuit voltage开路电压compared to 相比,把什么比作什么electron 电子recombination rates 重组率oxide 氧化物inorganic 无机的sub-microspheres 亚微球beads珠子To date 迄今a ruthenium complex light-harvester钌络合物的光收割机volatile 挥发性的photoanode光阳极superior 好的,卓越的photons 光子photovoltaic performance光伏性能In addition to 除。

论文中英文摘要格式

论文中英文摘要格式

附件2:论文中英文摘要格式作者姓名:陈骏论文题目:钛酸铅基化合物晶体结构及其负热膨胀性作者简介:陈骏,男,1979年8月出生;2001年9月在北京科技大学攻读冶金物理化学硕士学位,2003年9月提前攻读博士学位,一直师从北京科技大学邢献然教授,2007年3月获博士学位;2007年4月留在北京科技大学物理化学系,加入邢献然教授长江学者学术梯队从事教学科研工作;2008年得到德国洪堡博士后研究基金资助,在TU-Darmstadt继续开展钛酸铅基化合物相结构等方面的研究。

读博士及其后的一年期间内,在国际著名期刊上发表第一作者论文12篇、第二作者论文5篇,作为主要研究人员获教育部科技奖励(自然科学奖)一等奖1项、授权专利2项;2008年获得北京市首届优秀博士论文称号。

中文摘要钛酸铅(PbTiO3)是一种重要的钙钛矿结构的铁电体,在介电、压电、铁电、热释电等方面具有重要的研究与应用价值;同时,它在室温至居里温度范围内还表现出奇特的热缩冷胀行为,即负热膨胀性(NTE),这种负热膨胀行为是其它钙钛矿结构化合物所不具有的,如CaTiO3、BaTiO3、KNbO3、BiFeO3等。

研究PbTiO3的负热膨胀性将有利于开发出负热膨胀性可控以及零膨胀材料,拓展负热膨胀材料在实际中的应用,PbTiO3负热膨胀机理的研究可指导新型负热膨胀材料的开发。

本论文主要以钙钛矿结构的铁电化合物Pb1-x A x Ti1-y B y O3(A=La、Sr、Cd、Bi、(La1/2K1/2)等;B=Fe、Zn等不同价态金属原子)为中心,研究A位与B位替代对其负热膨胀性、晶体结构、点阵动力学的影响,实现负热膨胀性能可控,开发零膨胀材料,并研究PbTiO3负热膨胀机理。

本文研究了Pb1-x A x TiO3(A=La、Sr、(La1/2K1/2)、Cd)体系的固溶体特性、晶体结构以及负热膨胀性能受掺杂的影响。

La、Sr、(La1/2K1/2)的掺杂都使PbTiO3的轴比(c/a)及居里温度(T C)不同程度地线性下降,La的掺杂大幅度地降低了PbTiO3的负热膨胀性能,在0.15≤x La ≤0.20范围内,Pb1-x La x TiO3表现出零膨胀性能。

铜和对苯二甲酸金属有机骨架材料绿色合成

铜和对苯二甲酸金属有机骨架材料绿色合成

铜和对苯二甲酸金属有机骨架材料绿色合成那立艳;张伟;华瑞年;宁桂玲【摘要】采用以水为唯一溶剂的绿色路线合成了金属有机骨架(MOFs)材料。

通过将羧酸类配体转化为水溶性铵盐配体,在水溶液中探索了金属有机骨架材料的绿色合成。

以醋酸铜(Cu(OAc)2)和对苯二甲酸(H2BDC)甲胺盐在水溶液中反应,获得了化合物CuBDC‐H2O 。

同时作为参照,以Cu(OAc)2和H2 BDC在N ,N‐二甲基甲酰胺(DM F)和水的混合溶液中,获得了化合物CuBDC‐DMF 。

通过粉末XRD、IR、SEM、TGA以及N2吸附测试等手段对两种产物进行了表征,结果显示经140℃真空热处理10 h后,化合物CuBDC‐DM F 具有和在水溶液中直接获得的产物CuBDC‐H2 O相同的晶体结构及相似的性质,而且以水作为反应介质的新的合成路线具有便捷、快速、低成本及节约能源等特点。

%A green process for the synthesis of metal‐organic frameworks (MOFs) particles that uses water as the only solvent is presented . The strategy is to convert carboxylic acids ligands into carboxylate ammonium salts ligands which have high solubility in water ,thus allowing the synthesis to be performed in water .CuBDC‐H2O (BDC=1 ,4‐benzenedicarboxylate) is synthesized by mixing aqueous solutions of Cu (OAc)2 and the methylammonium salt of H2 BDC .As a reference ,CuBDC‐DMF is obtained by mixing water solution of Cu (OAc)2 with DMF solution of H2BDC .The two compounds are characterized by powderXRD ,IR ,SEM ,TGA and N2 and adsorption measurements . The experimental results reveal that after evacuation at 140 ℃ for 10 h ,CuBDC‐DMF has the same crystal structure and properties with CuBDC‐H2 O ,andthe new synthetic route performed in water solution has the advantages of being straight forward ,rapid ,cheap and energy‐saving .【期刊名称】《大连理工大学学报》【年(卷),期】2013(000)004【总页数】5页(P474-478)【关键词】金属有机骨架;绿色合成;孔材料【作者】那立艳;张伟;华瑞年;宁桂玲【作者单位】大连理工大学精细化工国家重点实验室,辽宁大连 116024; 大连民族学院生命科学学院,辽宁大连 116600;大连民族学院生命科学学院,辽宁大连116600;大连民族学院生命科学学院,辽宁大连 116600;大连理工大学精细化工国家重点实验室,辽宁大连 116024【正文语种】中文【中图分类】O6410 引言金属有机骨架(MOFs)材料是在微孔晶体材料上发展起来的一种新型功能材料,由于其在气体存储与分离、催化、药物传递和传感器等方面的潜在应用而备受关注[1-5].目前用于合成MOFs材料的方法有溶剂诱导沉淀法[6]、溶剂热合成法[7]、反相微乳液法[8]、微波辅助合成法[9]、超声法[10]等.然而这些合成方法往往存在反应时间长、反应温度高、大量使用有机溶剂或复杂的反应设备等缺点,对其实际应用造成了制约,因而开发快速、简便、节约能源和环境友好的合成路线具有重要意义.DMF由于具有较高的沸点(140℃)和对羧酸类配体良好的溶解能力,是合成MOFs材料经常使用的溶剂.DMF分子中的氧原子通常以配体或客体分子的形式填充到孔道当中,因而,为了获得金属活性中心和开放的骨架结构,通常要对合成的产物进行热处理,以除去配位及孔道中的DMF分子.如果能在反应中以水代替DMF 溶剂,那么不仅能够节约成本,而且在热处理过程中,只需将水分子除去即可,可以明显缩短热处理过程的时间,降低热处理温度,进而有效地节约能源. 本文的合成策略是先将非水溶性的配体对苯二甲酸与甲胺反应,生成水溶性的甲胺羧酸盐;然后利用水溶性配体与金属盐在水溶液中完成聚合反应.由于CuBDC具有独特的磁性、优良的气体分离性能及催化活性[11],本文分别在水溶液及DMF溶液中进行CuBDC 的合成探索,通过对比两种反应体系的合成条件及产物性能,探索羧酸类配体构筑的MOFs材料的快速、高效、低能耗合成.1 实验部分1.1 试剂与仪器原料:试剂均为市售分析纯.仪器:日本岛津XRD-6000 衍射仪;Nicolet FT-IR 740红外光谱仪;日本日立S-4800高分辨电子显微镜;Micromeritics ASAP 2020表面分析仪;美国Perkin-Elmer SDTA 851热失重分析仪.1.2 合成1.2.1 水溶性配体前驱体((NH3CH3)2BDC)的合成取1.667g(10mmol)对苯二甲酸,搅拌下滴加20%~30%的甲胺水溶液至溶液澄清,于真空干燥箱中20℃下减压至溶液黏稠,室温挥发得白色晶体.将上述晶体用水转移至100 mL 容量瓶中,配制成0.1mol/L甲胺盐水溶液,反应方程式如下:1.2.2 CuBDC-H2O的合成称取0.03 g Cu(OAc)2·H2O溶于7 mL 水中,搅拌下滴入0.1mol/L(NH3CH3)2BDC 溶液3 mL,马上产生浅蓝色沉淀,搅拌2h后离心.然后将产物经乙醇洗涤—超声分散—离心两次,自然干燥.1.2.3 CuBDC-DMF的合成称取0.03 g Cu(OAc)2·H2O溶于4mL水中,再称取0.04g H2BDC溶于6 mL DMF 中,两种溶液充分溶解后,搅拌下将配体溶液滴入金属盐水溶液中,马上产生蓝色沉淀,搅拌2h后,静置2h,离心.然后将产物经乙醇洗涤—超声分散—离心两次,自然干燥.2 结果与讨论2.1 XRD 表征两种产物及经140℃真空热处理10h 后CuBDC-DMF的粉末XRD 谱图见图1.由图可知有机溶液中获得的CuBDC-DMF 与水溶液中获得的CuBDC-H2O 峰位明显不同(图1曲线a、c),说明两者结构不同.CuBDC-DMF 是一种已知结构的化合物[11-12](与本文合成方法不同),具有开放的骨架结构,结构中的金属中心铜为五配位,4个氧原子来自于BDC基团,另外一个氧原子来自于DMF分子(图2(a)).当CuBDC-DMF 在140℃真空热处理10h脱除了DMF 基团后,其XRD 谱图(图1曲线b)与CuBDC-H2O(图1 曲线c)相同.这说明CuBDC-DMF高温脱除溶剂分子后,与在水溶液中一步获得的产物CuBDCH2O 具有相同的结构,图2(b)是CuBDC-H2O 的可能结构.图1 粉末XRD 谱图Fig.1 Powder X-ray diffraction(PXRD)patterns图2 晶体结构Fig.2 Crystal structures2.2 红外表征用KBr压片法测定了CuBDC-H2O、CuBDCDMF及经140℃真空热处理10h 后的CuBDCDMF红外光谱,见图3.通过对比吸收峰的位置,发现CuBDC-DMF经热处理后的红外谱图(图3曲线b)与CuBDC-H2O(图3曲线c)基本一致,两个谱图中,1 575cm-1与1 398cm-1处的吸收峰归属为BDC配体中羧酸基团的非对称伸缩振动和对称伸缩振动;1 690~1 730cm-1没有出现羰基的吸收峰,说明配体上的羧酸基团已全部去质子化.而在CuBDC-DMF 的红外谱图(图3曲线a)中,1 688cm-1处的吸收峰为客体DMF中羰基的吸收峰,1 628cm-1处的吸收峰可归属为与金属中心配位的DMF 中羰基的吸收峰,氧原子与金属中心配位作用的存在,使得吸收峰向短波数方向移动.1 292cm-1处的吸收峰为酰胺中C—N 键的伸缩振动.以上3个与DMF相关的特征吸收峰在真空热处理后消失,说明通过加热,已成功去除客体DMF 分子及配位的DMF基团,并且其结构与水溶液中一步获得的产物CuBDC-H2O 相同.图3 红外谱图Fig.3 IR spectra2.3 SEM 表征图4(a)和图4(b)分别是CuBDC-DMF 和CuBDC-H2O 的扫描电镜照片,可以看出,两种合成条件下获得的产物均为方形片状晶体.CuBDCDMF晶体长和宽约为400nm,厚度在50nm 左右,与文献报道该化合物的形貌基本一致[12];CuBDC-H2O 晶体长为10μm,宽为4μm,厚度在1μm 左右.由于在水溶液中进行反应时,配体已经提前完成了去质子化的过程,因而反应速度比较快,所以CuBDC-H2O的尺寸明显大于CuBDC-DMF.图4 扫描电镜照片Fig.4 SEM images2.4 吸附测试采用-196℃下氮气吸附的方法对两种不同条件下获得的化合物进行了氮气吸附等温测试.样品量约为0.2g,测试前均在140℃真空干燥10h,采用BET 方法在p/p0=0.05~0.33获得比表面积.从图5可以看出,两种化合物在相对低的压力范围内(p/p0<0.1),都有一个明显的台阶存在,然后曲线趋于平缓,吸附等温曲线为I型,说明了样品中微孔孔道的存在.CuBDC-DMF和CuBDC-H2O 在低压区(p/p0=0.01)时,氮气的吸附量分别为65cm3/g和68cm3/g,随着压力的升高,吸附量略有增加,在高压区(p/p0=1.0)时,氮气的吸附总量分别为89cm3/g和80cm3/g,BET 比表面积分别为407m2/g和439m2/g.从以上结果可以看出,在CuBDC-DMF脱除客体及配位的DMF基团后,与在水溶液中获得的产物CuBDC-H2O 具有相似的比表面及孔结构信息.图5 氮气吸附等温曲线Fig.5 N2adsorption isotherms采用巨正则蒙特卡罗法(grand canonical Monte Carlo)模拟了CuBDC-DMF 在77K时的氮气吸附曲线[13],见图5.分子模型是通过CuBDC-DMF的实验XRD 晶体学数据建立的.采用通用力场(UFF)描述MOF骨架原子[14],N2力场参数为σ=0.331nm,ε=36 K.利用Music code软件进行模拟[15],并用BET 方法对模拟吸附等温线的线性段(p/p0=0.001~0.015)进行拟合,进而得到BET 方程参数及比表面积,结果如图6所示.模拟吸附曲线及理论比表面积均与实验结果接近.图6 BET 法比表面积计算Fig.6 Specific surface area calculation by the BET method2.5 热稳定性测试对CuBDC-DMF、CuBDC-H2O 及经140℃真空热处理10h后CuBDC-DMF 进行了热失重分析,温度区间为30~500℃,氮气气氛.CuBDCDMF热失重曲线(图7 曲线a)显示该化合物在90~250℃失重值约为27%,100℃左右的失重可归属为水分子的脱除,在140~250℃的失重可归属为配体DMF的失去,温度超过300℃,化合物的骨架开始塌陷.图7中曲线c是CuBDC-H2O的热失重曲线,可以看出化合物在200℃之前基本没有失重,骨架结构可稳定存在至300℃.图7中曲线b 是CuBDC-DMF 经真空热处理后的热失重情况,热失重曲线与CuBDC-H2O 的基本相同,说明热处理过程除去了配位的DMF 分子后,CuBDC-DMF与CuBDC-H2O 拥有相同的骨架热稳定性能.图7 热失重曲线Fig.7 TGA curves3 结论(1)通过水溶性羧酸甲胺盐配体的合成,开发出一种一步绿色合成金属有机骨架材料的新方法.(2)对比有机体系和水体系中CuBDC 合成过程及产物性质,发现有机体系下获得的配合物在真空热处理除去配位的溶剂分子后,与在水溶液中一步获得的产物具有相同的结构和相似的性质.但以水溶液代替有机溶剂使用,不仅降低了合成成本,减少了污染,同时缩短了真空热处理过程的时间,降低了热处理温度.(3)本文开发的水溶液合成路线具有简便、快速、节能和环保的特点,该绿色合成路线具有可推广性,可用于更多以羧酸类配体构筑的金属有机骨架材料的合成.【相关文献】[1]Murray L J,Dinca M,Long J R.Hydrogen storage in metal-organic frameworks [J].Chemical Society Reviews,2009,38(5):1294-1314.[2]Li J R,Kuppler R J,Zhou H C.Selective gas adsorption and separation in metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1477-1504.[3]WU Chuan-de,HU Ai-guo,ZHANG Lin,et al.A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis [J].Journal of the American Chemical Society,2005,127(25):8940-8941.[4]Horcajada P,Serre C,Vallet-Regi M,et al.Metalorganic frameworks as efficient materials for drug delivery [J].Angewandte Chemie International Edition,2006,45(36):5974-5978.[5]CHEN Bang-lin,WANG Liang-bo,XIAO Yunqing,et al.A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions[J].Angewandte Chemie International Edition,2009,48(3):500-503.[6]Oh M,Mirkin C A.Chemically tailorable colloidal particles from infinite coordinationpolymers [J].Nature,2005,438(7068):651-654.[7]Jung S,Oh M.Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles [J].Angewandte Chemie International Edition,2008,47(11):2049-2051.[8]Rieter W J,Taylor K M,An H,et al.Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents [J].Journal of the American Chemical Society,2006,128(28):9024-9025.[9]Ni Z,Masel R I.Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis[J].Journal of the American Chemical Society,2006,128(38):12394-12395.[10]QIU Ling-guang,LI Zong-qun,WU Yun,et al.Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines[J].Chemical Communications,2008(31):3642-3644. [11]Carson C G,Hardcastle K,Schwartz J,et al.Synthesis and structure characterization of copper terephthalate metal-organic frameworks [J].European Journal of Inorganic Chemistry,2009(16):2338-2343.[12]XIN Zhi-feng,BAI Jun-feng,SHEN Yong-ming,et al.Hierarchically micro-and mesoporous coordination polymer nanostructures with high adsorption performance [J].Crystal Growth &Design,2010,10(6):2451-2454.[13]Walton K S,Snurr R Q.Applicability of the BET method for determining surface areas of microporous metal-organic frameworks [J].Journal of the American Chemical Society,2007,129(27):8552-8556.[14]Karra J R,Walton K S.Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC [J].Langmuir,2008,24(16):8620-8626.[15]Gupta A,Chempath S,Sanborn M J,et al.Objectoriented programming paradigms for molecular modeling[J].Molecular Simulation,2003,29(1):29-46.。

超顺磁性杂化铁氧体纳米微球的制备与表征

超顺磁性杂化铁氧体纳米微球的制备与表征

超顺磁性杂化铁氧体纳米微球的制备与表征王宇航【摘要】采用经济环保的一步水热法制备了杂化铁氧体MFe2O4(M=Mg、Zn、Mn、Ni)磁性纳米微球,通过调节反应物配比控制其粒径、内部孔道结构和组成,通过SEM、TEM、VSM、XRD对其形貌、内部孔道结构及比饱和磁化强度进行分析测试.结果表明,一步水热法制备的MFe2O4(M=Mg、Zn、Mn、Ni)磁性纳米微球具有高比饱和磁化强度和良好的水溶性,其粒径、组成可随反应物配比进行调控.%We prepared hybridization ferrite MFe2O4(M=Mg,Zn,Mn,Ni) magnetic nanoparticles by an economical and green one-step hydrothermal method.We controlled the particle size,internal pore structure,and composition of nanoparticles by regulating reactant ratio.Moreover,we analyzed and determined their morphology,internal pore structure,and specific saturation magnetization by SEM,TEM,VSM,and XRD.The results showed that MFe2O4(M=Mg,Zn,Mn,Ni) magnetic nanoparticles had high specific saturation magnetization and good water solubility,and their particle sizes and compositions could be controlled by regulating reactant ratio.【期刊名称】《化学与生物工程》【年(卷),期】2017(034)008【总页数】4页(P44-47)【关键词】杂化铁氧体纳米微球;超顺磁性;比饱和磁化强度【作者】王宇航【作者单位】陕西学前师范学院化学与化工系,陕西西安 710100【正文语种】中文【中图分类】O614.8随着科技的发展,无机功能化纳米微球的应用范围逐步扩大[1-4],构筑粒径可控的单分散性无机功能化纳米微球成为研究热点。

碳量子点自上而下制备方法专利技术综述

碳量子点自上而下制备方法专利技术综述

碳量子点自上而下制备方法专利技术综述摘要:碳量子点是近年来新兴的碳材料,本文综述了碳量子点的相关技术背景,按照“自上而下”法综述了碳点的技术演进路线。

关键词:碳点荧光制备一、概述碳点是一种尺寸小于10nm的分散的类球形荧光碳纳米颗粒,由于其粒径小、成本低、生物相容性好的特点,其应用已经受到了越来越多的重视,在生化传感、成像分析、环境检测、光催化技术及药物载体等领域具有很好的应用潜力。

碳点的制备方法可概括为自上而下法和自下而上法两大类,自上而下法是通过各种途径将大的碳材料剥离成小的碳颗粒,然后对颗粒表面进一步修饰来提高其发光效率的方法,所得碳点主要是石墨类型,荧光量子产率通常低于10%。

图1 碳点制备方法技术发展路线从图1可以看出,南卡罗来纳大学于2004年通过弧光放电首次发现了碳点,在之后的几年内其他碳点的制备方法应运而生。

二、碳点自上而下法技术路线演进图2“自上而下”法专利技术路线演进自2004年xu在弧光放电实验中发现碳点后,引发了材料领域的对碳点的高度兴趣,继而在2006年和2007年又相继出现激光消蚀法和电化学法制备碳点,这几种方法都属于“自上而下”法制备碳点的常用方法。

专利CN106904594A是以甲苯为碳源,采用电弧放电一步法制备白光碳量子点荧光发光材料;专利CN103449404A在碱性条件下以小分子醇类为碳源,含有醇类的电解液中制备了碳点,此法产率较高、操作简单,上述两篇都为自上而下法制备碳点的代表性专利。

2.1弧光放电法电弧放电法是最初发现荧光碳点的方法,2004年Xu等[1]用凝胶电泳法分离纯化电弧放电法合成的单壁碳纳米管悬浮液时,发现悬浮液在凝胶电泳作用下能分成三部分,速度最快的那部分在350nm紫外灯下有荧光信号,进一步采用电泳法可依次分离出发射蓝绿色,黄色和橘红色荧光的三种荧光纳米材料,从而发现了可以发射荧光的新型碳纳米材料 CDs 虽然该方法制得的CDs荧光性能较好,但是其产率低,仅占悬浮液的10wt%,同时纯化过程复杂,不利于产物的收集。

水热碳化法制备碳纳米材料

水热碳化法制备碳纳米材料

《纳米材料与纳米技术》论文水热碳化法制备碳纳米材料摘要:水热碳化法是一种重要的碳纳米材料的制备方法,本文综述了近年来以糖类和淀粉等有机物为原料,采用水热碳化法制备各种形貌可控碳纳米材料的研究现状,并提出了该方法研究中存在的问题以及今后可能的发展方向。

关键词:水热碳化法、碳纳米材料、碳微球、碳空心球、核壳结构复合材料1 引言形态可控的碳纳米材料由于独特的结构和性能而受到研究者的普遍关注[1],常见的制备方法有化学气相沉积法(CVD)[2]、乳液法[3]和水热碳化法[4]等。

水热碳化法是指在水热反应釜中,以有机糖类或者碳水化合物为原料,水为反应介质,在一定温度及压力下,经过一系列复杂反应生成碳材料的过程[5]。

图1为水热碳化法所制备的各种形貌的碳材料。

与其他制备方法相比,采用水热碳化法所制备的纳米碳材料具有显微结构可调、优良的使用性能、产物粒径小而均匀等特点。

本文综述了水热碳化法制备形态可控碳纳米材料的最新研究进展,概括了工艺因素对碳纳米材料合成过程的影响,最后提出了水热法合成碳纳米材料今后可能的研究方向。

图 1 水热碳化法制备各种形貌碳材料的示意图2 水热碳化法制备碳微球碳微球由于具有大的比表面积、高的堆积密度以及良好的稳定性等,被应用于锂离子电池[6]、催化剂载体[7]、化学模板[8]、高强度碳材料[9]等方面,拥有广阔的应用前景。

Yuan等[10]以蔗糖为碳源,先采用水热碳化法合成碳微球,再使用熔融的氢氧化钾溶液对合成产物进行活化处理,制得粒径为100-150nm的碳微球。

研究表明活化后碳微球的石墨化程度有很大提高,且表现出良好的电化学性能。

其比容量达到382F/g,单位面积电容达到19.2μF/cm2,单位体积容量达到383F/cm。

Liu等[11]以琼脂糖为原料,采用水热碳化制备出粒径范围为100~1400nm的碳微球,研究结果表明碳微球的粒径随琼脂糖的浓度的增加而增大,且所制备的碳微球的表面富含大量的含氧官能团,这些官能团可以很好地吸附金属离子或者其它有机物等,因此该材料在生物化学、药物传输以及催化剂载体等方面具有很好的应用前景。

离子液体作为催化剂在傅克烷基化反应中的应用进展

离子液体作为催化剂在傅克烷基化反应中的应用进展

离子液体作为催化剂在傅克烷基化反应中的应用进展摘要:离子液体由于具有特殊的性质,包括挥发性低,极性大,良好的热稳定性,通过调整阴阳离子具有不同的溶解性等特点,已经作为绿色催化剂应用于傅克烷基化反应。

与传统催化剂反应相比,离子液体后处理简单且回收后可多次重复使用。

本文综述了离子液体作为催化剂在傅克烷基化反应中最新研究成果。

关键词:氯铝酸盐离子液体;功能化离子液体;傅克烷基化反应Progress of ionic liquids catalyzing in Friedel-Crafts alkylation reactionsAbstract: Ionic liquids have special properties, including low volatility, big polarity, good thermal stability, with different solubilities by adjusting ions, and has been used as a green catalyst for Friedel-Crafts alkylation reaction. Compared with the conventional catalyst, the ionic liquids are simple post-processing, recovered and can be used repeatedly. This paper reviews latest research results of the ionic liquids as a catalyst in the Friedel-Crafts alkylation.Key words:Chlorine aluminate ionic liquids; functional ionic liquids; Friedel-Crafts alkylation reaction引言离子液体,又称为室温离子液体、室温熔融盐(熔点一般<100 ℃),是由有机阳离子和无机或有机阴离子构成的在室温或近室温下呈液态的盐类化合物。

J.Nanopart.Res激光合成碳点

J.Nanopart.Res激光合成碳点

RESEARCH PAPERLaser synthesis and size tailor of carbon quantum dotsShengliang Hu •Jun Liu •Jinlong Yang •Yanzhong Wang •Shirui CaoReceived:1July 2011/Accepted:5November 2011/Published online:17November 2011ÓSpringer Science+Business Media B.V.2011Abstract Carbon quantum dots (C-dots)with aver-age sizes of about 3,8,and 13nm were synthesized by laser irradiation of graphite flakes in polymer solution.The obtained C-dots display size and excitation wavelength dependent photoluminescence behavior.The size control of C-dots can be realized by tuning laser pulse width.The original reason could be the effects of laser pulse width on the conditions of nucleation and growth of pared with short-pulse-width laser,the long-pulse-width laser would be better fitted to the size and morphology control of nanostructures in the different material systems.Keywords Carbon nanoparticle ÁLaser ablation in liquid ÁSize control ÁPhotoluminescence ÁThermodynamic theoryIntroductionNanomaterials exhibit special properties or behavior that they would not do if they were not so small (Hodes 2007).Nanometer-size-determined properties are often called since many properties of materials undergo qualitative,often sudden,changes below a certain size scale (Hodes 2007;Link and El-Sayed 2003).On the basis of the differences of material chemical composition,such threshold size can vary from a nanometer or even less to the micrometer range.Even when the size reduces below such certain size scale,the physical properties of a material of a particular fixed chemical composition changes con-tinuously with change in crystal size due to size quantization effect (Hodes 2007;Link and El-Sayed 2003;Chen et al.2006).Therefore,the size control or tailor becomes a decisive factor in nanomaterial development.However,it is not easy to tailor the size of nanomaterials that we need.A great deal of effort has been put into this task,but all the developed methods follow as the basic mechanism:size control of nucleation and growth (and aggregation)limitation of nuclei (Li et al.2008;Park et al.2011;Wang et al.2010;Oh et al.2010).Electronic supplementary material The online version of this article (doi:10.1007/s11051-011-0638-y )containssupplementary material,which is available to authorized users.S.Hu (&)ÁJ.LiuKey Laboratory of Instrumentation Science &Dynamic Measurement (North University of China),Ministryof Education,Science and Technology on Electronic Test and Measurement Laboratory,Taiyuan 030051,People’s Republic of China e-mail:hsliang@S.Hu ÁY.Wang ÁS.CaoSchool of Materials Science and Engineering,North University of China,Taiyuan 030051,People’s Republic of ChinaJ.YangState Key Laboratory of New Ceramics and Fine Processing,Tsinghua University,Beijing 100084,People’s Republic of ChinaJ Nanopart Res (2011)13:7247–7252DOI 10.1007/s11051-011-0638-yLaser ablation is an efficient physical method for nanomaterial synthesis through laser irradiation of a solid target in liquid(Mafune´et al.2000;Amendola and Meneghetti2007;Khan et al.2009;Liu et al. 2010).Although this technique has many advantages (such as simplicity and versatility),and can prepare a variety of nanostructures(Khan et al.2009;Liu et al. 2010;Singh et al.2010;Hu et al.2009a,b,2011),there is still an open question of how to tailor the product size from laser ablation by the simple regulation of laser parameters.Previously,many efforts made focused on the liquid medium adjustments for size reduction and novel nanostructures(Mafune´et al. 2000;Khan et al.2009;Liu et al.2010;Singh et al. 2010).A few of researchers even found the effects of laser power on the size,but no one revealed the origin of size control under laser ablation in liquid(LAL) (Mafune´et al.2000;Amendola and Meneghetti2007). Herein,taking laser synthesis of carbon quantum dots (C-dots)as an example,we showed a facile method to attain size tailor by the regulation of laser parameters. With the aid of thermodynamic theory,the possible origin of size control upon LAL was also given in this report.C-dots constitute a fascinating class of recently discovered nanocarbons that consist of discrete and quasispherical nanoparticles with small sizes(Baker and Baker2010).In addition to their well-known biocompatibility,which could be a more suitable alternative for in vivo biolabeling(Baker and Baker 2010;Lu et al.2009;Hu et al.2009a,b),C-dots also exhibit many interesting properties,such as photo-induced electron transfer,redox and‘two-photon excitation absorption(Baker and Baker2010;Wang et al.2009;Li et al.2010).Therefore,such C-dots have attracted intensive research.Various synthetic routes have been developed to produce C-dots,but can be generally classified into two main groups: top–down and bottom–up methods(Baker and Baker2010).Our reported laser synthesis belongs to a top–down approach.We utilize a laser with a long-pulse width,that is,a millisecond-pulsed laser, to prepare C-dots.Such a laser is commonly used for welding but seldom for the synthesis of nanom-aterials.Due to its long-pulse width,the laser-induced physical processes are expected to be easily controlled by the regulation of pulse width.Thus, this is helpful to our realization of size tailor of nanomaterials upon LAL.ExperimentalGraphite powders with an average size of2l m were purchased from Qindao Graphite Co.Ltd.A Nd:YAG pulsed laser with a wavelength of1.064l m and power density of59106W/cm2was used to irradiate graphiteflakes dispersed in the poly(ethylene glycol) (PEG1500N)solution.The laser pulse width used in the experiment can be tuned from0.2to10ms under the same laser power density,which can be measured by a laser power meter(LEM2020).Ultrasound was employed during the laser irradiation to expedite the movement of graphite powders.After4-h irradiation a homogeneous black suspension was obtained which was centrifuged(5,000rpm)and separated into a black carbon precipitate and a colorful supernatant. The supernatant was used for further analysis.The photoluminescence(PL)spectra were measured on a Hitachi F4500fluorescence spectrophotometer.FEI Tecnai G2F20field-emission-gun transmission elec-tron microscopy(TEM)was employed to analyze the structure of C-dots.Results and discussionThree samples were prepared by employing the laser pulse widths of0.3,0.9,and1.5ms and three same colorful supernatants(Fig.1a shows a typical direct photograph)were obtained after centrifugation.To easily explain,they were named as samples A,B,and C in turn,which are corresponded to the samples produced from the laser pulse widths of0.3,0.9,and 1.5ms,respectively.Under irradiation with a365nm ultraviolet(UV)lamp,all the samples show blue color and one of their direct photographs is given in Fig.1b. PL spectra of three samples were measured at the same excitation wavelength(430nm)and the results were shown in Fig.1c.It can be seen that the differences of PL spectra between samples A,B,and C are not large. Only about10nm changes between their maximum peaks are observed.Moreover,the light emissions of three samples depend on the excitation wavelength. Figure1d shows the typical excitation wavelength dependent PL behavior of sample A.It can be seen that the peak positions of PL spectra are tunable with excitation wavelengths and the full width at half maximum(FWHM)of luminescent peak reduces with the decrease of excitation energy.Although samples A,B,and C have the same color and PL behavior,their fluorescence quantum yields (FQYs)that can be calculated according with the references (Lakowicz 1999;Liu et al.2007;Xu et al.2004)are obviously different (See Supporting Infor-mation).The FQY of sample A (12.2%)is above ten times higher than that of sample C (1.2%)while the FQY of sample B is 6.2%.To get the reasons why the FQYs of three samples were different,we studied their size distributions and microstructures according to high-resolution TEM (HRTEM)characterizations and the results were given in Fig.2.It can be seen from Fig.2d,e and f that the maximum values of the fitted Gaussian peak for the sizes of samples A,B,and C are 3.2,8.1,and 13.4nm,respectively,suggesting the sizes of C-dots increase as laser pulse width increases.On the other hand,the microstructures of three samples were investigated to disclose the differences of both the sizes and FQYs.HRTEM images indicate that carbon nanoparticles in sample A are singlecrystalline grain and have some defects while carbon nanoparticles in sample B and C are composed of two and more crystalline grains.The typical interfaces between nanometer grains have been marked by red arrows in Fig.2b,c,suggesting that a large nanocrys-tal is formed by coagulation of several nuclei.Since the FQYs could be determined by the sizes,it is important to understand the effect of laser pulse width on the size of C-dots.Accordingly,we will discuss the nucleation and growth process under laser irradiation with the aid of thermodynamic theory to disclose the formation of C-dots with the different sizes.The interaction between the laser beams and the graphite flakes produces an instant local high-temper-ature and high-pressure vapor/plasma plume at the interface of the graphite flake and the surrounding liquid medium (Fig.3-Step 1)(Bai et al.2010;Yang 2007).Due to liquid confinement,a bubble is formed from laser-induced plume at the laser focus,andrapidly expands up to a maximum radius (GregorcˇicˇFig.1a A typical photograph of the supernatant obtained by centrifugation;b the direct photograph of the obtained supernatant irradiated by 365nm UV lamp;c emission spectra of samples A,B,C obtained at 430nm wavelength excitation;d PL spectra of sample A obtained by the different wavelengthexcitationFig.2a –c are typical HRTEM images of sample A,B,and C,respectively;d –f correspond to the size distributions of sample A,B,and Cet al.2007;Takada et al.2010;Sasaki and Takada 2010).Subsequently,after a laser pulse width finishes,the bubble starts to shrink due to the pressure of the surrounding liquid,leading to the cooling of its inner region and thus to the formation of clusters or nuclei (Fig.3-Step 2)(Takada et al.2010;Sasaki and Takada 2010;Brujan et al.2002).Since the interaction time between the laser beams and the graphite flakes is determined by the laser pulse width,the bubbles containing the different cluster densities can be formed under the same laser beam energy when thelaser pulse width is changed.Accordingly,two cases can be obtained when the short (C1)and long (C2)laser pulse widths are employed.According to our thermodynamic calculations (see Supporting information),both the critical radius and the nucleation barrier reduce as the supersaturation and the temperature increase (see Fig.4).Specially,they rapidly decrease with the increase of the super-saturation when the supersaturation is below 4.It can be seen from Fig.5that the nucleation time decreases as the supersaturation and temperature increase while the nucleation rate increases with their increase.Accordingly,our thermodynamic calculations suggest that the higher supersaturation or cluster density in the bubble is beneficial for nucleation.The increase of nucleation rate results in the reduction of the distance between individual nuclei.In addition,the smaller the nuclei,the easier the movement is.Therefore,the formed nuclei could be contacted with one another with the further shrink of the bubble.Thus,the coagulation takes place and then leads to the formation of the larger nuclei.However,the coalescence can not have enough time to complete possibly due to rapid cooling resulted from the bubble collapse.Certainly,the nuclei could also become larger bygrowth.Fig.3Schematic of the mechanism of size control of C-dots obtained upon LAL.C1and C2correspond to the cases at the short and long laser pulse widths,respectivelyFig.4a The dependence of the critical radius and nucleation barrier on the supersaturation at the given temperatures;b the relationship curve between the nucleation energy barrier and the supersaturation at the giventemperatures Fig.5a The dependence of the nucleation time on the supersaturation under the various temperatures;b the relation-ship curve between the nucleation rate and the supersaturation under the various temperaturesBased on the Wilson-Frenkel growth law (Hu et al.2010),we obtained the relationship curves between the growth velocity of the nuclei and the supersaturation at the given temperatures (Fig.6).The results indicate that the growth velocity slowly increases when the supersaturation is beyond 3,and it decreases quickly as the temperature decreases,i.e.,the high supersatura-tion and low temperature are not in favor of the growth of the nuclei.This suggests that the nucleation is easier than the growth in the bubble with the high density.Thereby,the nuclei become large by coagulation when the high cluster density is created in the bubble.Since the cluster density in the bubble is determined by the interaction time between pulsed laser and materials,the different sizes of C-dots can be generated when the laser pulse width is changed.After the collapse of the bubbles,the surface reaction takesplace when nano-particles touch with polymer (PEG 1500N ).As a conse-quence carbon nanoparticles with surface passivation (Hu et al.2009a ,b ),i.e.,C-dots,are produced (Fig.3-Step 3).The other role of surface passivation playedprevents nanoparticles from aggregating (Mafune´et al.2000;Singh et al.2010).Since the surface energy traps are generally believed as the origin of the light emission from C-dots (Sun et al.2006),having good surface passivation is favorable to the FQY improvement.However,whether the surface passiv-ation with polymer is good or bad generally depends on the specific surface of carbon nanoparticles.This is why the FQYs of C-dots depend on their sizes.Previously,nanoparticles or nanostructures are generally fabricated by using short-pulse-width laser,for instance,a nanosecond pulsed laser with a pulse width of several nanoseconds and power density of 108–1010W/cm 2(Liu et al.2010;Yang 2007).However,it could be not suited to prepare ultrasmall nanostructures and tailor the product size.On the onehand,LAL method,indeed,does not allow good control of reaction parameters compared with chem-ical reduction methods and so it is hard to obtain the predetermined sizes upon LAL (Amendola and Mene-ghetti 2007).On the other hand,the high energy flux is provided in a short time and then the high density is generated in the laser-induced bubble.Lots of nuclei are formed simultaneously and then coagulated with the shrink of the bubble.Therefore,the large nano-structures are generally obtained using the short-pulse-width laser with the high power density (Liu et al.2010;Singh et al.2010;Yang 2007).Although the moderate regulation for laser beam energy can be carried out by laser itself,a smaller bubble is generated from lower laser power density and then the too quick cooling takes place due to the short interaction time between laser beams and target,suggesting hard nucleation and growth.Thus,the synthesis efficiencies of nanomaterials could be low.However,when a long-pulse-width laser is employed,the laser-induced conditions generated in the bubble can be tailored by the changes of laser pulse width and then the size control could be realized.Moreover,the high synthe-sis efficiency could be still obtained in the experiment.Therefore,based on above consideration,the long-pulse-width laser with the lower power density would be better fitted for the preparation of ultrasmall nanostructures and the control of size distribution.ConclusionOne-step synthesis of C-dots was performed by laser irradiation of graphite flakes in polymer solution.The obtained C-dots exhibit the excitation wavelength dependent PL behavior.The PL efficiencies of C-dots depend on their size distribution.Their size distribu-tion can be controlled by regulating pulse width of the millisecond-pulsed laser with the lower power density.Tuning laser pulse width could change the laser-induced conditions in the bubble and then lead to the changes of the nucleation and growth process and produce the different size distribution.Therefore,the long-pulse-width laser could be better fitted to various nanostructure synthesis and size tailor,and would be applied in different material systems.Acknowledgments This study was financially supported by the National Natural Science Foundation of China(Nos.Fig.6The relationship curve between the growth velocity and the supersaturation at the given temperatures50902126,51172214),Shanxi Province Science Foundation for Youths(No.2009021027),and Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi. ReferencesAmendola V,Meneghetti M(2007)Controlled size manipula-tion of free gold nanoparticles by laser irradiation and their facile bioconjugation.J Mater Chem17:4705–4710Bai P,Hu S,Zhang T,Sun J,Cao S(2010)Effect of laser pulse parameters on the size andfluorescence of nanodiamonds formed upon pulsed-laser irradiation.Mater Res Bull 45:826–829Baker SN,Baker GA(2010)Luminescent carbon nanodots: emergent nanolights.Angew Chem Int Ed49:6726–6744 Brujan EA,Keen GS,Vogel A,Blake JR(2002)Thefinal stage of the collapse of a cavitation bubble close to a rigid boundary.Phys Fluids14:85–92Chen CQ,Shi Y,Zhang YS,Zhu J,Yan YJ(2006)Size dependence of Young’s modulus in ZnO nanowires.Phys Rev Lett96:075505(1–4)GregorcˇicˇP,Petkovsˇek R,Mozˇina J(2007)Investigation of a cavitation bubble between a rigid boundary and a free surface.J Appl Phys102:094904(1–8)Hodes G(2007)When small is different:some recent advances in concepts and applications of nanoscale phenomena.Adv Mater19:639–655Hu S,Bai P,Tian F,Cao S,Sun J(2009a)Hydrophilic carbon onions synthesized by millisecond pulsed laser irradiation.Carbon47:876–883Hu S,Niu KY,Sun J,Yang J,Zhao NQ,Du XW(2009b)One-step synthesis offluorescent carbon nanoparticles by laser irradiation.J Mater Chem19:484–488Hu S,Lu X,Yang J,Liu W,Dong Y,Cao S(2010)Prediction of formation of cubic boron nitride nanowires inside silicon nanotubes.J Phys Chem C114:19941–19945Hu S,Yang J,Liu W,Dong Y,Cao S(2011)Carbon nanocage bubbles produced by pulsed-laser ablation of carbon in water.Carbon49:1505–1507Khan SZ,Yuan Y,Abdolvand A,Schmidt M,Crouse P,Li L, Liu Z,Sharp M,Watkins KG(2009)Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid.J Nanopart Res11:1421–1427 Lakowicz RZ(1999)Principles offluorescence spectroscopy, 2nd edn.Klumer Academic/Plenum Publishers,New York Li Z,Tan B,Allix M,Cooper AI,Rosseinsky MJ(2008)Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection.Small4:231–239Li H,He X,Kang Z,Huang H,Liu Y,Liu J,Lian S,Tsang CHA, Yang X,Lee S-T(2010)Water-solublefluorescent carbonquantum dots and photocatalyst design.Angew Chem Int Ed49:4430–4434Link S,El-Sayed MA(2003)Optical properties and ultrafast dynamics of metallic nanocrystals.Annu Rev Phys Chem 54:331–366Liu H,Ye T,Mao C(2007)Fluorescent carbon nanoparticles derived from candle soot.Angew Chem Int Ed46: 6473–6475Liu P,Cui H,Wang CX,Yang GW(2010)From nanocrystal synthesis to functional nanostructure fabrication:laser ablation in liquid.Phys Chem Chem Phys12:3942–3952 Lu J,Yang J-X,Wang J,Lim A,Wang S,Loh KP(2009)One-pot synthesis offluorescent carbon nanoribbons,nanopar-ticles,and graphene by the exfoliation of graphite in ionic liquid.ACS Nano3:2367–2375Mafune´F,Kohno J-Y,Takeda Y,Kondow T,Sawabe H(2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution.J Phys Chem B104:9111–9117 Oh W-K,Yoon H,Jiang J(2010)Size control of magnetic carbon nanoparticles for drug delivery.Biomaterials31:1342–1348 Park KH,Im SH,Park OO(2011)The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials.Nanotechnology22:045602 (1–6)Sasaki K,Takada N(2010)Liquid-phase laser ablation.Pure Appl Chem82:1317–1327Singh SC,Mishra SK,Srivastava RK,Gopal R(2010)Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles.J Phys Chem C114:17374–17384Sun Y-P,Zhou B,Lin Y,Wang W,Fernando KAS,Pathak P, Meziani MJ,Harruff BA,Wang X,Wang H,Luo PG,Yang H,Kose ME,Chen B,Veca M,Xie S-Y(2006)Quantum-sized carbon dots for bright and colorful photolumines-cence.J Am Chem Soc128:7756–7757Takada N,Nakano T,Sasaki K(2010)Formation of cavitation-induced pits on target surface in liquid-phase laser ablation.Appl Phys A101:255–258Wang X,Cao L,Lu F,Meziani MJ,Li H,Qi G,Zhou B,Harruff BA,Kermarrec F,Sun Y-P(2009)Photoinduced electron transfers with carbon dots.Chem Commun25:3774–3776 Wang F,Han Y,Lim CS,Lu Y,Wang J,Xu J,Chen H,Zhang C, Hong M,Liu X(2010)Simultaneous phase and size control of up conversion nanocrystals through lanthanide doping.Nature463:1061–1064Xu X,Ray R,Gu Y,Ploehn HJ,Gearheart L,Raker K,Scrivens WA(2004)Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.J Am Chem Soc126:12736–12737Yang GW(2007)Laser ablation in liquids:applications in the synthesis of nanocrystals.Prog Mater Sci52:648–698。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Facile synthesis and size control of highly monodispersed hybrid silica spheres through a novel nuclei controlling methodQishu Qu a ,⁎,Ping Xu a ,Debby Mangelings b ,Chun Yang a ,Xiaoya Hu aa Jiangsu Key Laboratory of Environmental Materials and Environmental Engineering,College of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,China bDepartment of Analytical Chemistry and Pharmaceutical Technology,Center for Pharmaceutical Research,Vrije Universiteit Brussel-VUB,Laarbeeklaan 103,B-1090Brussels,Belgiuma b s t r a c ta r t i c l e i n f o Article history:Received 16April 2010Received in revised form 2November 2010Available online 3December 2010Keywords:Monodisperse;Hybrid;Silica spheresMonodispersed hybrid silica spheres with particles sizes up to 4μm were obtained by controlling the number of nuclei generated in the initiation phase of particle formation using a two-step sol –gel method.This method has two advantages:(i)the particle size can be tuned easily just by variation of the amount ammonia added in the step of precursor hydrolysis,and (ii)the amount of precursor used to prepare particles with the same diameter is at least ten times lower than with traditional methods.The effects of stirring speed and stirring time on the resulting particle size were also studied.©2010Elsevier B.V.All rights reserved.1.IntroductionToday organic –inorganic hybrid materials are of great interest in the field of biosensors [1–6],drug delivery [7],luminescence [8],catalysis [9],and magnetic materials [10].Within the organic –inorganic hybrid materials,monodispersed spherical silica particles modi fied with various active organic groups such as vinyl,thiol,and amine were widely used.Two different methods can be employed to prepare silica based organic –inorganic hybrids,i.e.postgrafting and co-condensation [11].For postgrafting,pure silica particles are synthesized first using a classical Stöber method [12],or using other methods,such as the surfactant template route [13],an evaporation-driven self assembly method,[14],or a porous organic bead template method [15].The obtained silica particles are redispersed in reaction medium and a silane coupling agent is covalently linked onto the surface silanol groups of the silica particles [9,16].This method is time-consuming and the particle surfaces can only be partially covered.However,although the Stöber method is the most used method to prepare silica spheres and yields monodispersed spherical particles,it can only produce particles with an upper size limit of about 2μm.In contrast,the co-condensation method refers to the direct synthesis of functionalized organosilica species by co-condensation of tetraalkoxysilane and organosilane precursors [17,18].A higher and more homogeneous surface coverage of functional groups can be yielded by this method.Trau et al.simpli fied this method by using a functionalized silane monomer,3-mercaptopropyl trimethoxysilane (MPTMS)[19–21].In this study,thiol-functionalized silica microspheres were synthesized through a two-step process involving acid-catalyzed hydrolysis and base-catalyzed condensation of MPTMS in aqueous pared with the traditional Stöber method where large quantities of alcohol were employed,no alcohol was needed in this method and particles with diameter up to 5μm were obtained.Recently,Lee et al.[22]further simpli fied the direct synthesis method.With their method,thiol-functionalized monodispersed spherical silica particles with narrow size distribution were obtained by base-catalyzed condensation of MPTMS,which was dissolved in water in advance.Hybrid silica spheres with diameter ranging from 1to 4μm were obtained using various amounts of MPTMS as precursor.In this study,we report a facile two-step synthetic route to achieve size controlled monodispersed hybrid silica spheres with a narrow size distribution using a nuclei controlling pared to the method developed by Lee et al.in which MPTMS was dissolved first in pure water and then catalyzed by a high concentration of base,MPTMS was dissolved first in water containing a little amount of ammonia (first step)in our method and then the mixture was catalyzed further using a high concentration of ammonia (second step).Since the number of nuclei generated in the first step was limited by the small amount of base,further condensation of silica spheres occurred by particle growth on the limited quantity of nuclei.Thus,to obtain the particles with the same diameter,only 10%of the amount of MPTMS was needed compared to the methods developed by Trau et al.[19–21]or Lee et al.[22].In addition,hybrid silica spheres with diameters of up to 4μm can be obtained just by changing the amount of ammonia used in the first step of synthesis.Journal of Non-Crystalline Solids 357(2011)976–980⁎Corresponding author.Tel.:+8651487975590;fax:+8651487975244.E-mail address:quqishu@ (Q.Qu).0022-3093/$–see front matter ©2010Elsevier B.V.All rights reserved.doi:10.1016/j.jnoncrysol.2010.11.004Contents lists available at ScienceDirectJournal of Non-Crystalline Solidsj ou r n a l h o me pa g e :ww w.e l s ev i e r.c o m/l oc a t e /j no n c r ys o l2.Materials and methods 2.1.MaterialsMPTMS was purchased from Alfa Chemical (St.Louis,MO,USA).Ammonia was purchased from Chemical Reagent (Shanghai,China).Water used in all the experiments was doubly distilled and puri fied by a Milli-Q system (Millipore,Milford,MA,USA).2.2.SynthesisTwo grams of MPTMS and various amounts of NH 3⋅H 2O (1,2,and 3μL)were added into 100mL of H 2O under gentle stirring (115rpm)for 12h.Then,0.1mL NH 3⋅H 2O was added to the solution and the reaction was allowed to proceed at room temperature for 2h.After that,the precipitate was centrifuged three times in water.As a comparison,hybrid silica particles were also prepared using the method developed by Lee et al.Two grams of MPTMS was added in 100mL H 2O under vigorous stirring until the oil droplets were completely dissolved.Then 0.1mL NH 3⋅H 2O was added to the solution and the mixture was stirred for ~2h.2.3.CharacterizationThe morphology was evaluated using Environmental Scanning Electron Microscope (ESEM)micrographs under low variable water pressure (0–1Torr)on a Philips ESEM XL30.The average particlediameter was calculated from the diameters of 200particles in a SEM picture for each sample.3.ResultsFig.1shows the SEM images of hybrid silica spheres prepared using different amounts of ammonia (1to 3μL)in the first step to control the number of nuclei in the solution.It can be seen from Fig.1that the hybrid silica spheres obtained are monodispersed and micrometer-sized particles.As the amount of ammonia increased from 1to 3μL,the particle diameter presents a noticeable change from 3.8to 1.3μm.In all these experiments,only 2mL of MPTMS was used.Fig.2shows the SEM images of the particles obtained when a high concentration of ammonia was added into the solutions in the second step after stirring for different times.It can be seen in Fig.2that the particle size distribution narrows when the stirring time in the first step increases.Fig.3shows the effect of stirring speed on the particles sizes.It can be found that the diameter of the particles decreased with the increasing stirring speed.The average diameters of the particles are 1.22and 0.84μm when the stirring speed was 115and 140rpm,respectively.4.DiscussionConventional sol –gel synthesis of monodispersed spherical silica particles uses silicon alkoxides as precursor and ammonia as the catalyst in a water/ethanol solution.In this procedure,the rate ofFig.1.SEM micrographs of the monodispersed hybrid silica spheres prepared using different amounts of ammonia added in the first step.(a)1μL NH 3⋅H 2O.(b)2μL NH 3⋅H 2O.(c)3μL NH 3⋅H 2O.The graph represents obtained particle sizes as a function of the amount ammonia used.A linear regression line was fitted through the data.977Q.Qu et al./Journal of Non-Crystalline Solids 357(2011)976–980hydrolysis of silicon alkoxide,nuclei generation,and primary particle formation are all very fast when catalyzed by a suf ficient amount of ammonia.The number of nuclei is large is because the rate of nuclei generation is faster than that of primary particle formation.As a result,particles with smaller diameters are obtained.In the synthetic process developed by Lee et al.[22],MPTMS was first dissolved and fully hydrolyzed in pure water.Then a large amount of ammonia was added into the mixture,resulting in the formation of a lot of nuclei and inducing the growth of primary particles.Therefore,the particle sizes with this method are also small.It can be seen that in all the above mentioned methods the number of nuclei is uncontrollable which leads to the smaller particles.To obtain particles with large diameter,larger amounts of silicon alkoxide have to be used.Since the number of nuclei depends not only on the concentration of precursor but also on the concentration of the catalyst used in the synthetic process,particles with larger diameters can be obtained when small amounts of ammonia are used as catalyst in the initial hydrolysis process of the ing our method,monodispersed hybrid silica spheres with a diameter up to 3.8μm were obtained.In contrast,the method of Lee et al.was used to obtain the particles with a diameter of 3.8μm,at least 20mL MPTMS had to be used,which is 10times larger than in our method.In our experiments,it was found that the final obtained particle size increased observably with only a slight decrease in ammoniaFig.2.SEM pictures and the histogram displaying the effect of different stirring times on the particle size and distribution.(a)4h,(b)6h,(c)8h,(d)10h,(e)12h.Two microliter NH 3⋅H 2O was used in the first step.978Q.Qu et al./Journal of Non-Crystalline Solids 357(2011)976–980content used in thefirst step.These results indicate that the number of nuclei generated in thefirst step of hydrolysis mainly depends on the amount of ammonia used.When only a small amount of ammonia is used in thefirst step,the rate of hydrolysis of MPTMS,nuclei generation,and particle growth are all slower compared with othermethods[23,24].Since the used stirring speed is low,the hydrolysis rate of MPTMS is also slower.Thus,the gradually hydrolyzed MPTMS only produces a limited number of nuclei.The growth of the primary particles afterwards begins on the surface of these nuclei,resulting in particles with larger diameters.As the rate of hydrolysis of MPTMS,nuclei generation,and particle growth are all slower when very little amount of ammonia was added in thefirst step,the whole synthetic process would take a long time.If a large amount of ammonia is added into the solution in the second step when not all the MPTMS is hydrolyzed,particle sizes with a broad distribution will be obtained.Thus,when a large amount of ammonia is added into the solution before12h,the remaining un-hydrolyzed MPTMS will be hydrolyzed further,resulting in nuclei formation and the generation of more smaller particles.In order to obtain particles with a narrow size distribution,the stirring time should be long enough,i.e.at least12h.It is well known that during the particles synthesis process overconcentration of the precursor in some regions of the solution, leading to the generation of more nuclei,can be avoided by stirring at high speed.Therefore,in normal synthetic processes,the stirring speed was set to be fast enough to ensure equal dispersion of the precursor in the solution.However,the available amount of hydrolyzed MPTMS used as the source for nuclei generation increases with increasing stirring speed.As a result,the number of formed nuclei increases because a higher amount of monomer is hydrolyzed.in thefirst step was very little in our experiments,overconcentration of ammonia in the solution does not occur,even with a low stirring speed.The stirring speed was therefore kept at115rpm and the stirring time for thefirst step was12h.Afterwards,a large amount of ammonia(typically100μL)was added which induced the polycondensation of primary particles and resulted in the formation of stable and larger particles.5.ConclusionsIn summary,our results indicate that by adding a very little amount of ammonia in thefirst step of hydrolysis of MPTMS,it is possible to prepare monodispersed hybrid silica spheres up to4μm with a small amount of MPTMS.The diameter of the hybrid silica spheres can be easily tuned by changing the volume of ammonia.This simple one-pot synthetic method can be extended to produce different diameters of silica spheres functionalized with other organic groups.AcknowledgmentsWe are grateful for the support of the National Natural Science Foundation of China(20975090and20875081),the Qing Lan Project, and by a Bilateral Project between China and Belgium(BWS07/03).}Fig.2(continued).979Q.Qu et al./Journal of Non-Crystalline Solids357(2011)976–980References[1]K.Sarkar,K.Dhara,M.Nandi,P.Roy,A.Bhaumik,P.Banerjee,Adv.Funct.Mater.19(2009)223.[2]H.Tan,N.S.Liu,B.P.He,S.Y.Wong,Z.K.Chen,X.Li,J.Wang,mun.(2009)6240.[3]I.Sokolov,S.Naik,Small 4(2008)934.[4]Y.H.Jin,S.Lohstreter,D.T.Pierce,J.Parisien,M.Wu,C.Hall,J.X.J.Zhao,Chem.Mater.20(2008)4411.[5] rson,H.Ow,H.D.Vishwasrao,A.A.Heikal,U.Wiesner,W.W.Webb,Chem.Mater.20(2008)2677.[6]R.Kumar,I.Roy,T.Y.Hulchanskyy,L.N.Goswami,A.C.Bonoiu,E.J.Bergey,K.M.Tramposch,A.Maitra,P.N.Prasad,ACS Nano 2(2008)449.[7]L.Contessotto,E.Ghedini,F.Pinna,M.Signoretto,G.Cerrato,V.Crocella,Chem.Eur.J.15(2009)12043.[8]J.Font,P.de March,F.Busque,E.Casas,M.Benitez,L.Teruel,H.Garcia,J.Mater.Chem.22(2007)2336.[9]Q.H.Yang,J.Liu,L.Zhang,C.Li,J.Mater.Chem.19(2009)1945.[10] B.Julian-Lopez,C.Boissiere,C.Chaneac,D.Grosso,S.Vasseur,S.Miraux,E.Duguet,C.Sanchez,J.Mater.Chem.17(2007)1563.[11]M.H.Lim,A.Stein,Chem.Mater.11(1999)3285.[12]W.Stober,A.Fink,E.Bohn,J.Colloid Interface Sci.26(1968)62.[13] C.T.Kresge,M.E.Leonowicz,W.J.Roth,J.C.Vartuli,J.S.Beck,Nature 359(1992)710.[14]G.V.Rama Rao,G.P.López,J.Bravo,H.Pham,A.K.Datye,H.F.Xu,T.L.Ward,Adv.Mater.14(2002)1301.[15]U.Meyer,rsson,H.P.Hentze,R.A.Caruso,Adv.Mater.14(2002)1768.[16] B.Gonzalez,M.Colilla,C.L.de Laorden,M.Vallet-Regi,J.Mater.Chem.19(2009)9012.[17]Z.Meng,C.Y.Xue,Q.H.Zhang,X.H.Yu,K.Xi,X.D.Jia,Langmuir 25(2009)7879.[18]X.Zhuang,Q.F.Zhao,Y.Wan,J.Mater.Chem.20(2010)4715.[19] A.P.R.Johnston,B.J.Battersby,wrie,M.Trau,mun.(2005)848.[20] ler,R.Vogel,P.P.T.Surawski,S.R.Corrie,A.Rühmann,M.Trau,Chem.Commun.(2005)4783.[21] ler,R.Vogel,P.P.T.Surawski,K.S.Jack,S.R.Corrie,M.Trau,Langmuir 21(2005)9733.[22]Y.G.Lee,J.H.Park,C.Oh,S.G.Oh,Y.C.Kim,Langmuir 23(2007)10875.[23]T.Matsoukas,E.Gulari,J.Colloid Interface Sci.124(1988)252.[24]T.Matsoukas,E.Gulari,J.Colloid Interface Sci.132(1989)13.Fig.3.SEM micrographs of the monodispersed hybrid silica spheres prepared with 3μL NH 3⋅H 2O in the first step using a different stirring speed.(a)115rpm and (b)140rpm.980Q.Qu et al./Journal of Non-Crystalline Solids 357(2011)976–980。

相关文档
最新文档