3-4 列方程解应用题(10)销售问题
《新课堂》销售问题 练习题

答: 每千克应降价 3元.
1、列一元二次方程解应用题的步骤:
审题
设元 找等量关系 列方程 解方程 验根 答
2、探究是平均增长率或降低率问题 。
销售量/个 降价前 降价后 每件利润/元 总销售利润/元
30
30+2x
50
50×30
x 1
50-x
做一做 1. 某商场将进货价为30元的台灯以40元售出,平均 每月能售出600个.市场调研表明:当销售价为每上涨 1元时,其销售量就将减少10个.商场要想销售利润平 均每月达到10000元,每个台灯的定价应为多少元?这 时应进台灯多少个?
0.2
) 张. ____
1. 某种明星卡,平均每天可销售600张,每张盈 利0.5元.为了尽快减少库存,采取降价措施, 若每张降价0.2元,则每天可多售300张.如果每 天盈利300元,每张应降价多少元?
解 : 设每张应降价x元, 根据题意, 得
x (0.5 x)(600 300 ) 300. 0.2 2 整理得: x 40x 144 0.
x 1000-2x 1
100+x (1000-2x)(100+x)
3.某果园有100棵桃树,一棵桃树平均结1000个桃子, 现准备多种一些桃树以提高产量.试验发现,每多种一 棵桃树,每棵桃树的产量就会减少2个.如果要使产量增 加15.2%,那么应多种多少棵桃树?
解 : 设多种桃树 x棵, 根据题意 ,得
每天的销售量 每张的销售 总销售利润/元 /张 利润/元 降 价 前
500 0.3 500×0.3
降 价 500+ x 100 0.1 后
0.3-x
x (500+ 100) (0.3-x) 0.1
人教版七年级数学导学案3.4实际问题与一元一次方程——销售问题(1)含课后配套作业及答案

3.3一元一次方程的应用——销售问题【教学目标】能熟练地找出销售问题中的相等关系列方程解应用题【复习引入】1.一种药品现在售价56.10元,比原来降低了15%,问原售价为__56.10×(1+1 5%)=64.515__元.2.“五一”黄金周期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出八折后再打八折,乙店则一次性六折优惠,若同样价格的商品,下列结论正确的是( B )A.甲比乙优惠B.乙比甲优惠C.两店优惠条件相同D.不能进行比较【知识点梳理】销售问题中常用的关系式:(1)利润=进价×利润率,(2)利润=售价-进价.【应用举例】例1某种商品的进价为100元,若要使利润率达20%,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?分析:若设售价x元,则利润为_20 元或用x表示为x-100元,可列方程为__ x-100 =__20 ,解之得x=_120_.针对性练习某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20%,乙种成衣卖价也是120元但亏损20%,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?答案:解:设甲种成衣的进价为x元,乙种成衣的进价为y元。
则由题意的x x-120=20%=-yy120-20%解得x=100 解得y=150甲种成衣盈利=120-100=20元乙种成衣亏损=150-120=30元该次销售实际是亏损=30-20=10元例2某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元?分析:若设标价为每枝x元,则售价为_80%x__元,利润为_3_元,用x表示为80%x-5元,可列方程为_80%x-5 =3_ _,解之得x=_10__.针对性练习1.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?答案:解:设这种商品的定价是x元。
由题意得75%x+25=90%x-20移项合并同类项得,-0.15x=45系数化为1得,x=300答:这种商品的定价为300元。
列方程解应用题销售中的盈亏问题

列方程解应用题—销售中的盈亏问题教师:苏云礼单位:桐畈镇中学授课年级:七年级时间:2014年11月19日一、教学目标(一) 知识与技能 1. 通过分析打折销售中的数量关系,经历应用方程解决实际问题的过程;2. 了解商品销售中相关概念的含义,通过分析打折销售中的数量关系,利用成本、售价、标价、利润、利润率之间的关系列方程解决实际问题.(二) 过程与方法通过分析打折销售中的数量关系.(三) 情感、态度与价值观在学习数学过程中体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学生热爱数学的热情,实事求是的态度及与人合作、交流的能力.二、教学重难点重点:根据打折销售这一问题情境中的数量关系列出一元一次方程,能运用方程解决实际问题;难点:从利润、成本、售价之间的数量关系找出等量关系,建立方程并正确求解.突破难点的关键是要理解售价、标价、进价、利润、利润率等相关概念的意义和它们之间的关系,考虑问题时多与实际问题联系三、教学准备布置社会调查任务,选择一个适当的打折活动做调查。
目的:把知识生活化。
商品销售虽然是发生在学生身边的事情,但亲自经历商品销售的往往是少数学生。
因此提前让学生进行调查,给他们充分的独立思考、探究的时间。
使学生独立面对新问题,然后在独立思考的同时他们学生也有充分的时间和空间进行讨论、交流、研究,不仅达到提前预习的目的,更让学生体验数学与周围世界的联系以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系。
四、教学过程设计环节一情境引入汇报结果获取信息同学们到商场了解了有关打折销售的问题,获得了那些信息请大家交流一下. (目的:由于学生小学已经学过一部分相关知识而且又提前安排了社会调查。
安排这样的交流活动实际是学生独立面对生活时能力的体现,同时也体现了新的课程理念所倡导的在自主、合作中学习. 学生活动效果。
学生调查的很全面事例很详实.他们对各种打折方式都进行了探讨。
一元一次方程解应用题--销售问题

1.某商场的电视机原价为2500元,现以8折销售,如果想使降价前后的销售额都为10万元,那么销售量应增加多少?2.一件夹克按成本提高50%后标价,后因季节关系按标价的8折出售,每件售出价刚好是60元,请问这批夹克每件的成本价是多少?3.一件商品按成本价提高20%后标价,又以9折销售,售出后每件的获得为20元,这种商品的成本价是多少?4.节日某商场搞促销活动,把原定价3860元的进口彩电以九折优惠出售,结果仍可获利25%,问这种彩电的进价是多少元?5.某件商品原售价是50元,因销售不好打九折出售,后又因商品紧俏提价若干,每件商品售价为54元,问提价的百分率是多少?6.某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元?7.商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱搞出10%,但每日耗电量却为0.55度,现将A型冰箱打折出售,商场最少打几折消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)8.某商店将某种超级DVD按进价提高35%,然后打出“九折酬宾”外送50元出租车费的广告,结果每台超级VCD获利208元,求每台超级VCD的进价是多少?9.一件商品,成本价5元,按市场标价的8折出售每件还获利2元,问市场标价多少钱?10.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?答案1题:设降价后卖了x台 2500*80%*X=10万 X=50 所以50-40=10台2题:设夹克的成本为X元 X*(1+50%)*80%=60 X=503题:解:设这种商品的成本价为x元,依题意得:x(1+20%)×90%-X=20,解以上方程得:x=250.答:这种商品的成本价是2504题:等量关系为:定价×90%=进价×(1+25%),x=2779.25题:】解:设提价的百分率是x,依题意得50×0.9(1+x)=54,解之得x=0.2=20%,答:提价的百分率是20%.6题:分析可根据成本表示出相应的等量关系:定价×60%+20=定价×80%-15,把相关数值代入即可求解.解答解:设这种商品定价为x元,60%x+20=80%x-15,解得x=175.点评考查一元一次方程的应用,根据成本得到相应的等量关系是解决本题的关键7题:【分析】本题主要是根据两种电冰箱使用10年所需用的电量不同来列不等式.即设商场打x折,先列出A冰箱10年的总费用2190×x 10+365×10×1×0.4,再列出B冰箱10年的总费用2190×(1+10%)+365×10×0.55×0.4,列出不等式即可.【解答】解:设商场将A型冰箱打x折出售,消费者购买才合算,依题意得2190×x 10 +365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4,即219x+1460≤2409+803,解这个不等式得,x≤8,【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据耗电量、售价、打折情况列出不等式求解8题:解:设DVD的进价为x元x(1+35%)*0.9-50-x=208x=12009题:8.7510题:700元。
3-4 列方程解应用题(4)工程问题

甲乙合作工效=甲工效+乙工效
工程问题(工作总量为“1”)
例1:某工作由甲单独做需要3小时 完成,乙单独做需要5小时完成,
求两人合作完成这项工作需要几小
时?
例2:一件工作,甲单独做20小时
甲、乙合作
完成,乙单独做12小时完成,现在 先由甲单独做4小时,剩下的部分
乙单独做
由甲、乙合作,剩下的部分需要几 小时完成?
针对练习:1、课本 P102 T9; 2、《金牌学案》P73 例题.
变式1
某工厂计划26小时生产一批零件, 后因每小时多生产5件,用24小时, 不但完成了任务,而且还比原计划 多生产了60件,问原计划每小时生 产多少零件?
变式2
某车间接到一批零件加工任务,计 划每天加工120件,可以如期完成, 而实际每天多做40件,结果提前6 天完成 ,求这批零件总数。
针对练习:《金牌学案》 P73:T3; P74:T2、T4、T5.
例3:
有一水池,用两台水泵抽水,若单
开甲泵,5小时可抽完这池水;若
单开乙泵, 2.5小时可以抽完,现 在甲泵先抽2小时,剩下的再由乙 泵单独抽,还需要多少时间才能抽 完?
针对练习:《金牌学案》P74 尝试提高
例4 整理一批图书,由一个人做要40小 时完成,现在计划由一部分人先做 4小时,再增加2人和他们一起做8 小时,完成这项工作,假设这些人 的工作效率相同,具体应先安排多 少人工作?
食堂存煤若干,原来每天烧3吨, 用去15吨后改进设备,耗煤量每 天降为原来的一半,结果多烧10 天,求原有存煤多少吨.
针对练习:课本P108 T7
3个月一共烧煤27吨,平均每个月烧多少? 3个月烧完一堆煤,每个月烧多少? 修一段路,甲队每天修200米,乙队每天修 300米,两队合作,每天可修多少米?若这 段路为5000米,几天可修完? 一项工作,单独做,甲3小时完成,每小时 完成多少?乙4小时完成,每小时完成多少? 两人合作,每小时完成多少?几小时可全 部完成?
七年级数学上册3-4 实际问题与一元一次方程同步习题精讲精练【含答案】

3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了()cm2.A.2x B.2x+8 C.3x D.3x+122.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程()A.=B.=C.﹣8=+3 D.4x+8=5x﹣33.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为()A.10x+5(x﹣1)=70 B.10x+5(x+1)=70C.10(x﹣1)+5x=70 D.10(x+1)+5x=705.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是()A.2 B.3 C.4 D.56.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为()A.10(x﹣1)=8x﹣6 B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6 D.10(x+1)=8x+67.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省()A.18元B.16元C.18或46.8元D.46.8元8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是()A.64 B.72 C.98 D.1189.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为()A.10天B.15天C.20天D.25天10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.612.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为()A.+15+6 B.C.D.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有人.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为.15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为公里.17.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为.18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张元.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a=,b=,c=;(2)求对G、K两个医药集团的疫苗都能接受的人数.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了()cm2.A.2x B.2x+8 C.3x D.3x+12解:3(4+x)﹣3×4=3x.答案:C.2.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程()A.=B.=C.﹣8=+3 D.4x+8=5x﹣3解:设这队同学共有x人,可列得方程:=.答案:B.3.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,依题意得:160﹣x=60%x,160﹣y=﹣20%y,解得:x=100,y=200,∴(160﹣100)+(160﹣200)=60﹣40=20(元),∴在这次买卖中这家商店盈利20元.答案:B.4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为()A.10x+5(x﹣1)=70 B.10x+5(x+1)=70C.10(x﹣1)+5x=70 D.10(x+1)+5x=70解:设每个肉粽x元,则每个素粽(x﹣1)元,依题意得:10x+5(x﹣1)=70.答案:A.5.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是()A.2 B.3 C.4 D.5解:设该队获胜x场,则负了(6﹣x)场,依题意得:3x+(6﹣x)=14,解得:x=4.答案:C.6.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为()A.10(x﹣1)=8x﹣6 B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6 D.10(x+1)=8x+6解:设该校准备的桌子数为x,依题意得:10(x﹣1)=8x+6.答案:B.7.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省()A.18元B.16元C.18或46.8元D.46.8元解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有超过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元).答案:C.8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是()A.64 B.72 C.98 D.118解:设7个日期的中间数为x,则另外6个数分别为(x﹣8),(x﹣6),(x﹣1),(x+1),(x+6),(x+8),∴7个数之和为7x.当7x=64时,x=,不合题意;当7x=72时,x=,不合题意;当7x=98时,x=14,符合题意;当7x=118时,x=,不合题意.答案:C.9.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为()A.10天B.15天C.20天D.25天解:设快马追上慢马的时间为x天,则此时慢马走了(x+6)天,依题意得:240x=150(x+6),解得:x=10.答案:A.10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=解:设物价是y钱,根据题意可得:=.答案:D.11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.6解:由题意,可得8+x=2+7,解得x=1.答案:A.12.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为()A.+15+6 B.C.D.解:设A、B两地间距离为x千米,由题意得:.答案:B.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有48人.解:设这些学生共有x人,根据题意得:﹣2=,解得x=48,答案:48.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为6x+14=8x.解:设有牧童x人,依题意得:6x+14=8x.答案:6x+14=8x.15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为﹣2.解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.答案:﹣2.16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为23公里.解:∵甲的速度是每小时6公里,乙速度是甲速度的,∴乙速度是6×=4.5公里/小时,设A、B两地的距离为x公里,依题意,得:x﹣(1+)×6﹣4.5×1=11或(1+)×6+4.5×1﹣x=11,解得:x=23或x=1(不合题意),答案:2317.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为=.解:设共有x本课外读物,根据题意得:=,答案:=.18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张32元.解:设总票数为a张,8月份零售票按每张x元定价,由题意得:20××a×+24×(a﹣a)=25×(1﹣)×a+(a﹣a)x,∴8a+4a=a+ax,∴x=.∴x=32.即:零售票应按每张32元定价,才能使这两个月的票款总收入相等.答案:32.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.解:(1)250﹣75÷15×10=250﹣50=200(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)设小华从输液开始到结束所需的时间为t分钟,依题意有(t﹣20)=160,解得t=60.故小华从输液开始到结束所需的时间为60分钟.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a=300,b=200,c=170;(2)求对G、K两个医药集团的疫苗都能接受的人数.解:(1)因为“接受K的比接受G的多30人”,所以a=330﹣30=300(人).因为“能接受G的市民占调查人数的60%”,所以m==500(人).因为“能接受G的市民占调查人数的60%,其余不接受G”,所以b=500﹣300=200(人).因为“接受K的比接受G的多30人,其余不接受K”,所以c=500﹣330=170(人).答案:300;200;170;(2)设对G、K两个医药集团的疫苗都能接受的人数为x人,根据题意,得,解得x=210.答:对G、K两个医药集团的疫苗都能接受的人数为210人.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.解:(1)∵数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,∴点B表示的数为﹣20,由题意可得:|8﹣3t﹣(﹣20+2t)|=8,解得:t=4或,∴t的值为4或;(2)由题意可得:|8﹣3t﹣(﹣20﹣2t)|<8,解得:20<t<36,∴t的取值范围为20<t<36.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为225(1﹣a%)元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.解:(1)B商品标价是225元,出售价格按标价降低a%,那么降价后的标价是225(1﹣a%)元,答案:225(1﹣a%);(2)设A商品进价为m元,则m(1+50%)=150.解得m=100.设B商品的进价为n元,则n(1+50%)=225.解得n=150.由题意得:[150(1﹣10%)﹣100]×20+[225(1﹣a%)﹣150]×10=1000.解得:a=20,∴a的值是20.。
初一一元一次方程:销售问题应用题(答案)

《一元一次方程:销售问题》应用题【基本知识】(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.(6)利润额=成本价×利润率;售价=成本价+利润额;新售价=原售价×折扣1、小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.图641--【解】设小明上次购买书籍的原价是x元,由题意,得0.82012x x+=-,解得160x=.因此,小明上次所买书籍的原价是160元,2、某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?[分析]通过列表分析已知条件,找到等量关系式【解】设标价是x 元,80%604060100x -=解之:x =105 优惠价为),(8410510080%80元=⨯=x 3、 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元【解】设进价为x 元,80%x (1+40%)—x =15,x =125 答:进价是125元。
4、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折. 【解】设至多打x 折,根据题意有1200800800x -×100%=5% 解得x =0.7=70%答:至多打7折出售.5、一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?【解】设成本为x元,则售价为x(1+50%)×80%,(获利28元,即售价-成本=28元),则x(1+50%)×80%-x=28解得x=140元。
第3章 3.4 第2课时 销售问题和利息问题

1.一年前小红把 500 元的压岁钱存进了银行中的少儿储蓄,一年后本息和正
好能购买一部学习机.已知学习机每部 530 元,则银行的年利率是( D )
A.0.5%
B.5%
C.0.6%
D.6%
2.小明把 400 元钱存入银行,年利率为 6.66%,到期时小明得到利息 133.20
元.他一共存了( B )
16.一件外衣的进价为 200 元,按标价的 8 折销售时,利润率为 10%.求这件 售价-进价
外衣的标价为多少元?(注:利润率= 进价 ×100%) 解:设这件外衣的标价为 x 元,依题意得:0.8x-200=200×10%,0.8x=20 +200,0.8x=220,x=275. 答:这件外衣的标价为 275 元.
第3章 一元一次方程
3.4 一元一次方程模型的应用 第2课时 销售问题和利息问题
会列方程解利润有关的应用题.
【例 1】某商店有两个进价不同的计算器都卖了 64 元,其中一个盈利 60%,
另一个亏损 20%,在这次买卖中,这家商店( D )
A.不赔不赚
B.赚了 32Байду номын сангаас元
C.赔了 8 元
D.赚了 8 元
捐给了失学儿童.则小亮开始存入( C )
A.190 元
B.195 元
C.200 元
D.205 元
10.某商店有两个进价不同的计算器都卖了 64 元,其中一个盈利 60%,另一
个亏损 20%,在这次买卖中,这家商店( D )
A.不赔不赚
B.赚了 32 元
C.赔了 8 元
D.赚了 8 元
11.小强的妈妈为小强明年上高中的费用存了一年期(年利率为 4.14%)的教育
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——销售问题
打折、折扣问题
商品标价200元,九折出售,售价多少元?
商品打八折出售,售价为14.8元,原价是多少 商品原价是150元,打折后是90元,求折扣是多 少?
问题展示
一顾客走入商店,看到一件衣服标价80元,看 到旁边有个牌子,写着:“让利销售,全场8 折!” 她算了算,还觉得贵,于是问售货员:“50块 买不买?” 售货员回答:“我进价都60块,只赚了你4元钱.” 80元:标价;8折:折扣数;50元:顾客还价; 60元:进价;4元:利润
利润与利润率
利润=售价-进价 利润率:利润占进价的百分之几,即
利润 利润率= ×100%, 进价
进价×利润率=利润,
利润与利润率
商品进价40元,售价50元,利润是多少?利润 率是多少? 进价64元的商品,要获利16元,售价是多少? 进价64元的福娃卖出后,商场获得25%的利润, 那么售价应是多少元?
练习1:某电讯商城将某品牌手机 产品按进价提高35%,然后打出 “九折酬宾,外送50元打的费”的
广告,结果每部手机仍获利208元,
则每部手机的进价是多少元?
练习2:若某商品进价为40元,标 价为60元,店主计划获得20%的利 润,请你帮他计算一下广告进价+进价×利润率
问题解答
一件衣服售价60元时盈利25%,则 进价多少? 另一件衣服售价60元时亏损25%, 则进价多少?
卖出这两件衣服总的是盈利还是亏 损?或者不盈不亏?
例1: 若将一个标价为75元的福娃打 八折销售时,商场获利 20%,试求
每个福娃的进价应为多少元?