第13章 全等三角形教案(华师大版)

合集下载

华师大版数学八年级上册第13章《全等三角形》教学设计

华师大版数学八年级上册第13章《全等三角形》教学设计

华师大版数学八年级上册第13章《全等三角形》教学设计一. 教材分析华师大版数学八年级上册第13章《全等三角形》是学生在学习了平面几何基本概念、三角形、四边形等知识后,进一步研究全等三角形的性质和判定方法。

全等三角形是几何中的重要概念,是解决几何问题的基础。

本章内容主要包括全等三角形的定义、性质、判定方法以及全等三角形的应用。

通过本章的学习,使学生掌握全等三角形的性质和判定方法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了平面几何基本概念、三角形、四边形等知识,具备一定的逻辑思维能力和空间想象能力。

但全等三角形的学习对于学生来说是一个新的挑战,因为全等三角形的性质和判定方法较为抽象,需要学生能够理解和运用。

此外,学生对于实际问题的解决能力也有待提高。

三. 教学目标1.理解全等三角形的定义和性质,掌握全等三角形的判定方法。

2.能够运用全等三角形的性质和判定方法解决实际问题。

3.培养学生的逻辑思维能力、空间想象能力和解决实际问题的能力。

四. 教学重难点1.全等三角形的定义和性质。

2.全等三角形的判定方法。

3.全等三角形在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探索全等三角形的性质和判定方法。

2.运用多媒体辅助教学,直观展示全等三角形的性质和判定方法。

3.采用小组合作学习,培养学生团队合作精神。

4.注重实践操作,让学生在动手实践中掌握全等三角形的性质和判定方法。

六. 教学准备1.多媒体教学设备。

2.全等三角形的教学课件。

3.全等三角形的练习题。

4.三角板、直尺、圆规等绘图工具。

七. 教学过程1.导入(5分钟)利用多媒体展示全等三角形的图片,引导学生思考:什么是全等三角形?全等三角形有哪些性质?2.呈现(10分钟)讲解全等三角形的定义和性质,通过示例演示全等三角形的判定方法。

3.操练(10分钟)学生分组讨论,运用全等三角形的性质和判定方法解决实际问题。

2018年秋八年级数学华师大版上册教学设计:第13章 课题 全等三角形

2018年秋八年级数学华师大版上册教学设计:第13章 课题 全等三角形

2018年秋八年级数学华师大版上册教学设计:第13章课题全等三角形一、教学目标1.理解全等三角形的概念,并能够准确地运用全等三角形的判定条件;2.掌握全等三角形的性质,能够运用全等三角形的性质解决相关问题;3.培养学生的观察与推理能力,培养学生的空间思维能力;4.提高学生的合作学习、探究学习和解决问题的能力。

二、教学重点1.全等三角形的概念和判定条件;2.全等三角形的性质;3.运用全等三角形的性质解决相关问题。

三、教学难点1.运用全等三角形的判定条件判断两个三角形是否全等;2.运用全等三角形的性质解决相关问题。

四、教学准备1.教师准备:–教材:华师大版八年级上册数学教材;–PowerPoint课件;–教学实例和练习题。

2.学生准备:–课前预习教材相关内容。

五、教学过程1. 导入新知教师通过提问和引入实例的方式,导入全等三角形的概念,引发学生对全等三角形的思考。

2. 学习新知(1) 全等三角形的概念教师通过介绍正式定义,引导学生理解全等三角形的含义:如果两个三角形的对应边长和对应角度完全相等,那么这两个三角形是全等的。

并进行示意图的展示。

(2) 全等三角形的判定条件教师介绍全等三角形的判定条件,包括:•SSS判定条件:两个三角形的三边分别相等;•SAS判定条件:两个三角形的两边与夹角分别相等;•ASA判定条件:两个三角形的两角和一边分别相等;•AAS判定条件:两个三角形的两角和一边分别相等。

(3) 全等三角形的性质教师结合实际例子,介绍全等三角形的性质,包括:•对应顶点角相等性质;•对应边相等性质;•对应角相等性质。

3. 练习与实践(1) 实例分析教师通过实例分析的方式,让学生巩固并理解全等三角形的判定条件和性质。

(2) 练习题训练教师出示一些练习题,让学生巩固运用全等三角形的判定条件和性质解决问题的能力。

学生可以个别完成,也可以分组合作完成。

4. 拓展与延伸教师通过拓展和延伸的方式,引导学生发现更多使用全等三角形的情境,提高学生的空间思维能力和解决问题的能力。

华师版八年级数学上册教案:第13章 全等三角形3 等腰三角形(2课时)

华师版八年级数学上册教案:第13章 全等三角形3 等腰三角形(2课时)

13.3等腰三角形1等腰三角形的性质(第1课时)一、基本目标1.了解等腰三角形、等边三角形的概念,掌握等腰三角形、等边三角形的性质,且能熟练应用其性质求角的度数.2.理解等腰三角形“三线合一”的性质,能应用这个性质解决实际问题.二、重难点目标【教学重点】1.等腰三角形的概念及性质.2.等腰三角形性质的应用.【教学难点】等腰三角形“三线合一”的性质的理解及其应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P78~P81的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形是等腰三角形.相等的两边都叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.2.等腰三角形的性质:(1)等腰三角形的两底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线及高互相重合(简称“三线合一”).(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.3.三条边都相等的三角形是等边三角形.4.(1)等边三角形的各个角都相等,并且每一个角都等于60°.(2)等边三角形的三条边都相等,三个角都相等,也称为正三角形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.【互动探索】(引发学生思考)设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【解答】设∠A=x.∵AD=BD,∴∠ABD=∠A=x.∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x.∵AB=AC,∴∠ABC=∠BCD=2x.∵∠A+∠ABC+∠ACB=180°,∴x+2x+2x=180°,解得x=36°.∴∠A=36°,∠ABC=∠ACB=72°.【互动总结】(学生总结,老师点评)利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和(差)关系较多时,可考虑列方程解答,设未知数时,一般设较小角的度数为x.【例2】如图,已知AB=AC,BD⊥AC于点D,求证:∠BAD=2∠DBC.【互动探索】(引发学生思考)由∠BAD=2∠DBC,考虑作∠BAD的平分线,即作等腰三角形的高,再根据“等角的余角相等”求解.【证明】过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC,AE⊥BC,∴∠BDC=∠AEC=90°,∴∠C+∠DBC=∠2+∠C=90°,∴∠DBC=∠2,∴∠BAD=2∠DBC.【互动总结】(学生总结,老师点评)解决本题的关键:(1)利用等腰三角形“三线合一”作辅助线;(2)在有直角的平面几何图形中,可用“等角的余角相等”证明角相等.活动2巩固练习(学生独学)1.已知等腰三角形的一个角为80°,则其顶角为(D)A.20°B.50°或80°C.10°D.20°或80°2.如图,在△ABC,AB=AC,BC=6 cm,AD平分∠BAC,则BD=__3__cm.3.在△ABC中,AB=AC=5,∠A=60°,则BC=5.活动3拓展延伸(学生对学)【例3】已知△ABC是等腰三角形,且∠A+∠B=130°,求∠A的度数.【互动探索】要求∠A,需讨论∠A是等腰△ABC的顶角还是底角,再结合三角形的内角和求解.【解答】分情况讨论:当∠A为顶角时,∵∠A+∠B+∠C=180°,∠A+∠B=130°,∴∠C=50°,∴∠A=80°.当∠C为顶角时,则∠A=∠B.∵∠A+∠B=130°,∴∠A=65°.当∠B为顶角时,则∠A=∠C.∵∠A+∠B+∠C=180°,∠A+∠B=130°,∴∠A=∠C=50°.【互动总结】(学生总结,老师点评)本题体现了分类讨论思想.等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角.本易忽略讨论∠B是顶角还是底角.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!2 等腰三角形的判定(第2课时)一、基本目标探索等腰三角形和等边三角形的判定方法. 二、重难点目标 【教学重点】掌握等腰三角形及等边三角形的判定方法. 【教学难点】会运用等腰三角形及等边三角形的判定方法解决问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P81~P83的内容,完成下面练习. 【3 min 反馈】一、等腰三角形的判定方法1.等腰三角形的定义:如果一个三角形有两边相等,这个三角形为等腰三角形. 2.如图,在△ABC 中,∠B =∠C ,求证:AB =AC .证明:作∠BAC 的平分线AD 交BC 于点D ,则∠BAD =∠CAD . 在△BAD 和△CAD 中,∵⎩⎪⎨⎪⎧∠BAD =∠CAD ,∠B =∠C ,AD =AD ,∵△BAD ≌△CAD , ∴AB =AC .3.等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边_也相等(简写成_“等角对等边”__).二、等边三角形的判定方法1.等边三角形的判定方法:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.2.关于等腰三角形和等边三角形的区别与联系,下列说法正确的有__①②③___.(填序号)①有一个角是60°的等腰三角形是等边三角形;②等边三角形是等腰三角形的特殊情况;③等边三角形的底角与顶角相等;④等边三角形包括等腰三角形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DB=DC,∠ABD=∠ACD,求证:AB=AC.【互动探索】(引发学生思考)要证AB=AC,本题不能直接连结AD证全等得到,可以考虑连结BC利用等腰三角形的性质与判定方法求证.【证明】连结BC.∵DB=DC,∴∠DBC=∠DCB,∵∠ABD=∠ACD,∴∠ABD+∠DBC=∠ACD+∠DCB,∴∠ABC=∠ACB,∴AB=AC.【互动总结】(学生总结,老师点评)本题主要是通过连结BC,使AB、AC在同一个三角形中,通过证明它们所对的角相等,而证得这两条线段相等.【例2】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.【互动探索】(引发学生思考)要证△CEF是等腰三角形,需证△CEF中有两边相等.由等角的余角相等可得∠ABE=∠ACD,从而由AE是∠BAC的平分线和三角形外角的性质可得CE=CF.【证明】∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【互动总结】(学生总结,老师点评)“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【例3】如图,△ABC是等边三角形,O为△ABC内任意一点,OE∥AB,OF∥AC,分别交BC 于点E、F,△OEF是等边三角形吗?为什么?【互动探索】(引发学生思考)由OE∥AB,OF∥AC→角相等(60°)→△OEF是等边三角形.【解答】△OEF是等边三角形.理由如下:∵OE∥AB,OF∥AC,∴∠B=∠OEF,∠C=∠OFE.∵△ABC是等边三角形,∴∠B=∠C=∠OEF=∠OFE=60°,∴△OEF是等边三角形.【互动总结】(学生总结,老师点评)根据“三个角都相等的三角形是等边三角形”或“有一个角为60°的等腰三角形为等边三角形”进行判定.活动2巩固练习(学生独学)1.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是(D)A.∠C=2∠AB.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点2.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.3.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.证明:∵DE∥AC,∴∠CAD=∠ADE.∵AD平分∠BAC,∴∠CAD=∠DAE,∴∠DAE=∠ADE.∵AD⊥BD,∴∠DAE+∠B=90°,∠ADE+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.4.如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,即∠C=30°.(2)证明:∵∠B=∠C=30°,AD⊥AC,AE⊥AB,∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴△ADE是等边三角形.活动3拓展延伸(学生对学)【例4】已知平面直角坐标系中,点A的坐标为(-2,3),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.3个B.4个C.5个D.6个【互动探索】∵△AOP为等腰三角形,∴可分三种情况讨论:(1)当AO=AP时,以点A为圆心,AO长为半径画圆,可知圆与y轴交于点O和另一点P1;(2)当AO=OP时,以点O为圆心,AO长为半径画圆,可知圆与y轴交于两个点,即点P2、P4;(3)当AP=OP时,作AO的中垂线,与y轴有一个交点P3.综上所述,符合条件的点P共有4个.故选B.【答案】B【互动总结】(学生总结,老师点评)解决此题的关键:(1)利用分类讨论思想确定等腰三角形的顶点;(2)利用尺规作图和数形结合思想确定等腰三角形的个数.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!。

【数学】华师版八年级上册第13章全等三角形【教学设计】13.2.1全等三角形及其性质

【数学】华师版八年级上册第13章全等三角形【教学设计】13.2.1全等三角形及其性质

13.2.1 全等三角形及其性质教学目标【知识与技能】1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.【过程与方法】在图形变换以及操作的过程中发展学生的空间观念,培养学生的几何直觉.【情感态度】使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.【教学重点】探究全等三角形的性质.【教学难点】掌握两个全等形的对应边\,对应角.教学过程一、情境导入,初步认识问题1 观察下列图形,指出其中形状与大小相同的图形.问题2 从上面的图形中你有什么感受?在实际生活中,你能找到形状、大小相同的图形的应用的例子么?二、思考探究,获取新知让学生交流问题1,问题2的答案,并带着问题“这些图形有什么共同特征?”自学课本内容.【教学说明】变化的图形易引起学生的注意,使它们很快地投入到学习的情境中,并通过观察发现其中的共同特点,形成猜想.再结合自学课本,从而认识全等形、全等三角形的定义及记法.教师讲课前,先让学生完成“自主预习”.思考1 把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?思考2 全等三角形的对应边、对应角有什么关系?为什么?【教学说明】让两个学生在黑板上引导全体学生操作并画图,从中找到答案.这个过程利用三角形的平移、旋转、翻折的不变性,让学生通过具体操作直观感知全等三角形的概念,然后让学生通过操作和观察,猜测并验证全等三角形的性质.利用基本三角形变换出各种图形,然后观察对应边、角的变化,利于提高学生的识图能力.思考1 得到的基本图案如图:【归纳结论】1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.“全等”用“≌”表示,读作“全等于”.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫对应角.2.全等三角形的对应边相等,对应角相等.三、运用新知,深化理解【教学说明】出示下列问题,让学生通过交流\,思考寻找问题的答案,并共同讨论:全等三角形的对应顶点\,对应边之间有什么关联.1.下列每对三角形分别全等,看看它们是怎样变化而成的,并指出对应边、对应角.2.两个全等的三角形按如下位置摆放,指出它们的对应顶点,对应角,对应边.3.如图,将△ABC沿直线BC平移,得到△DEF.(1)线段AB,DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)若∠A=70°,∠B=40°,你知道其他各角的度数吗?为什么?4.如图,将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,并说明理由.5.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40°,∠B=30°,求∠ADC的大小.【教学说明】题3题4中要通过观察发现,EC是线段BC与EF的公共部分,从而有BC-EC=EF-EC即BE=CF的结论;可以挖掘更深层次的结论,提升分析问题的能力,如AB∥DE,AC∥DF,BE=CF,S四边形ABEG=S四边形FDGC等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.图(1)是△EDC由△ABC绕过C点且垂直于BD的直线翻折而成,AB的对应边ED,AC的对应边EC,BC的对应边DC,∠A的对应角∠E,∠B的对应角∠D,∠ACB的对应角为∠ECD.图(2)是△ABC延BC边平移BE长的距离得到△DEB,AC的对应边DB,AB 的对应边为DE,CB的对应边为BE,∠A的对应角为∠D,∠C的对应角为∠DBE,∠ABC的对应角为∠E.图(3)是△ABD绕BD的中点旋转180°得△CDB,AB的对应边为CD,BD对应边为DB、AD的对应边为CB,∠A的对应角∠C,∠ABD的对应角为∠CDB,∠ADB的对应角为∠CBD.2.略4.AB=DE AC=DF BC=E F∠A=∠D ∠B=∠DEF ∠ACB=∠F理由:全等三角形对应边相等,对应角相等.5.∠ADC=110°四、师生互动,课堂小结1.引导学生回忆全等三角形定义\,记法与性质.2.归纳寻找对应边\,对应角的规律:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边的夹角是对应角.(2)公共边一般是对应边;有对顶角的,对顶角一般是对应角;公共角一般是对应角等.课后作业布置作业:从教材“习题13.1”中选取.教学反思本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等”“对应”等含义的理解.对“全等三角形”的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.。

华师大版八年级上册第13章全等三角形复习课教学设计

华师大版八年级上册第13章全等三角形复习课教学设计
-邀请学生分享自己在学习全等三角形过程中的收获和感悟。
-对学生的表现进行点评,强调学习全等三角形的重要性。
2.教学目的:
-帮助学生巩固所学知识,形成知识体系。
-培养学生的归纳总结能力,提高学生的几何素养。
-激发学生学习数学的兴趣,增强学生的自信心。
五、作业布置
为了巩固学生对全等三角形知识的掌握,提高学生的应用能力和解题技巧,特布置以下作业:
1.强调作业完成的时间和质量,培养学生按时完成作业的良好习惯。
2.鼓励学生独立思考,遇到问题可以与同学讨论,培养合作学习能力。
3.注重作业反馈,教师应及时批改作业,给予评价和建议,帮助学生提高。
2.教学目的:
-激发学生的学习兴趣,引导学生关注全等三角形在实际生活中的应用。
-唤起学生对全等三角形相关知识点的回忆,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计:
-对全等三角形的定义进行复习,强调全等三角形的含义和性质。
-详细讲解全等三角形的判定方法,如SSS、SAS、ASA、AAS等,结合具体实例进行分析。
-鼓励学生在课后进行自主学习和拓展阅读,提高学生的自主学习能力,拓宽知识视野。
四、教学内与过程
(一)导入新课
1.教学活动设计:
-通过展示一些生活中常见的全等三角形图案,如风筝、自行车三角架等,引起学生对全等三角形的好奇心和兴趣。
-提问:“同学们,你们知道这些图案有什么共同特点吗?它们在几何学中有什么特别之处?”
-通过小组讨论、合作解题,培养学生的团队协作能力和交流表达能力,同时也能够在讨论中发现问题、解决问题。
4.创设问题情境,激发学生的探究欲望。
-教学中应设计具有挑战性的问题,引导学生主动探究,培养学生的创新思维和解决问题的能力。

八年级数学上册第13章全等三角形教案2新版华东师大版(1)word版本

八年级数学上册第13章全等三角形教案2新版华东师大版(1)word版本

全等三角形

学知识与技术
认识学生对所学知识的掌握和理解状况,
析解题状况,为期末复习打好基础。

学生应用知识的分

标出问题,研究议论,理解知识,运用知识,提升能力。

过程与方法
培育学生优秀的学习习惯和脚踏实地的科学态度。

感情态度与价值观
教课要点教课难点
全等三角形的知识
灵巧运用知识解决问题。

教课内容与过程教法学法设计
一 . 组织教课认识学生的列席状况
二 . 导入课题,研究知识:
为了理解同学们对这一段时间所学知识掌握的状况,本解课
我们对这部分知识进行查收
明确本节课的任务
三 . 明确要求明确要求
四 . 试题印发给学生。

要修业生仔细的进行答卷
五 . 学生笔答卷。

六 . 预习下节课的内
.
一定手写,是检查备课的重要依照。




思。

华师大版八年级数学上册教学设计:13.2全等三角形的判定(6课时)

华师大版八年级数学上册教学设计:13.2全等三角形的判定(6课时)
(四)课堂练习
1.练习题目设计:
-设计不同难度的练习题,包括基础题、提高题和综合题,以满足不同学生的学习需求。
-练习题要覆盖全等三角形的各个判定方法,让学生通过练习,加深对判定方法的理解。
2.练习过程指导:
-学生独立完成练习,教师观察学生的解题过程,了解学生的掌握情况。
-对学生解题中出现的常见错误进行分类指导,帮助学生找到错误原因,并指导正确的解题方法。
3.学习方法指导:
-教师向学生传授几何学习的方法和技巧,如如何识别关键信息、如何进行逻辑推理等。
-鼓励学生将所学知识进行内化,形成自己的知识体系,提高几何问题的解决能力。
五、作业布置
为了巩固学生对全等三角形判定方法的理解和应用,以及提高学生的几何证明能力,特此布置以下作业:
1.基础巩固题:
-完成课本第85页的练习题1、2、3,重点在于让学生通过实际操作,加深对全等三角形判定方法的理解。
-教师通过典型例题,展示各种判定方法的应用场景,引导学生进行对比分析。
-学生通过课堂讨论,归纳总结各种判定方法的特点和适用范围。
3.创设生活情境,让学生在实际问题中运用全等三角形的性质和判定方法。
-教师设计富有生活气息的问题,让学生感受到数学与生活的紧密联系。
-学生运用所学知识解决问题,提高数学应用能力。
-重点在于让学生理解每个判定方法背后的几何原理,以及如何在实际问题中灵活运用。
-难点在于学生需要能够从给定的条件中识别出合适的判定方法,并正确进行证明。
2.能够运用全等三角形的性质和判定方法解决实际问题,特别是综合性较强的几何问题。
-重点在于培养学生的问题分析能力和解题策略,使其能够将理论应用到实践中。
-难点在于学生需要具备较强的逻辑思维能力和空间想象力,以应对复杂的几何问题。

华东师大版八年级上册数学13章 《全等三角形》教案1

华东师大版八年级上册数学13章 《全等三角形》教案1

课题 边角边【学习目标】1.让学生掌握三角形全等的S .A .S .条件,能运用S .A .S .证明简单的三角形全等问题; 2.通过观察和实验获得三角形全等的条件,体会数学推理的过程,激发学生学习兴趣.【学习重点】S .A .S .定理的探究和运用; 【学习难点】通过尺规作图,让学生对S .A .S .条件与两边及其中一边所对的角对应相等的两个三角形不一定全等的理解.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:今天研究两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况.学法指导:有两边和其中一边所对的角对应相等的两个三角形不一定全等.如图:如图中的△ABC 和△ABD ,满足条件但不全等. 学法指导:用数学符号表示为:在△ABC 和△A′B′C′中, ⎩⎪⎨⎪⎧AB =A′B′,∠A =∠A′,AC =A ′C ′,温馨提示:证明的书写步骤:(1)准备条件:证全等时需要用的间接条件要先证好; (2)三角形全等书写三步骤: ①写出在哪两个三角形中; ②摆出三个条件用大括号括起来; ③写出全等结论.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.情景导小明和几位同学踢足球,不慎将一楼王大爷家的一块三角形的玻璃打碎成如图的两块,现在同学们要到玻璃店去照样配一块赔给王大爷,准备将两块都带到玻璃店去,王大爷见状笑着说:“不必都带去,带一块就行了!”同学们知道要带哪一块去吗?为什么?自学互研生成能力知识模块三角形全等的“边角边”判定方法阅读教材P62~P65,完成下面的内容:1.画一个三角形,使三角形其中两边长分别为2.5cm和3cm,一个内角为45°.试一试你能画出几个?2.在你所画的三角形中,长度为2.5cm和3cm的两边的夹角是45°的三角形有几种?45°角的一边是3cm,它所对的边长是2.5cm的三角形有几种?你从中发现了什么?答:长度2.5cm和3cm的两边夹角是45°的三角形有1种;45°角的一边是3cm,它所对的边长是2.5cm的三角形有2种.发现:知道三角形的两边及其夹角能唯一确定一个三角形.3.如果两个三角形有两边和其中一边的对角分别对应相等,这两个三角形全等吗?说明理由(或举反例说明).答:不全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章全等三角形13.1命题、定理与证明1、命题一.教学目标:1. 知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。

会区分命题的条件和结论。

知道判断一个命题是假命题的方法。

2. 过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。

3、、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。

二.教学要点:找出命题的条件(题设)和结论。

三.教学重点:找出命题的条件(题设)和结论。

四.教学难点:命题概念的理五.教学过程:一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。

根据我们已学过的图形特性,试判断下列句子是否正确。

1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。

二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4水错误的。

像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题。

教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的。

题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。

用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。

例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。

有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了。

例如,命题5可写成“如果两个角是直角,那么这两个角相等。

”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。

学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。

这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。

2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。

(1)对顶角相等;(2)如果a>b,b>c, 那么a=c;(3)菱形的四条边都相等;(4)全等三角形的面积相等。

学生小组交流后回答,学生回答后,教师给出答案。

(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题。

(2)条件:如果a>b,b>c;结论:那么a=c;这是假命题。

(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等。

这是真命题。

(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题。

(三)假命题的证明教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”。

例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可。

三、随堂练习课本P55练习第1、2题。

四、总结1、什么叫命题?什么叫真命题?什么叫假命题?2、命题都可以写成“如果.....,那么.......”的形式。

3、要判断一个命题是假命题,只要举出一个反例就行了。

五、布置作业课本习题13.1第1题、第2题。

六.教学反思:2.定理与证明一.教学目标:1. 知识与技能:了解命题、公理、定理的含义;理解证明的必要性。

2. 过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。

3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。

二.教学要点:知道什么是公理,什么是定理。

三.教学重点:知道什么是公理,什么是定理。

四.教学难点:理解证明的必要性。

五.教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了。

这节课,我们将探究怎样证明一个命题是真命题。

二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。

我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角相等。

在本书中我们将这些真命题均作为公理。

(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的。

从而说明证明的重要性。

1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1。

我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25。

2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2。

这个命题是真命题吗?[答案:不正确,因为3>-5,但3 2 <(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质。

但由前面两题我们又知道,这些方法得到的结论有时不具有一般性。

也就是说,由这些方法得到的命题可能是真命题,也可能是假命题。

教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理。

(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余。

教师板书证明过程。

教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理。

定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据。

三、随堂练习课本P58练习第1、2题。

四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理。

2、用逻辑推理的方法证明它们是正确的命题叫做定理。

五、布置作业课本习题13.1第3题。

六、教学反思:13.2全等三角形的判定(1)一.教学目标:1. 经历探索三角形全等条件的过程,体会如何探索研究问题。

培养学生合作的精神,让学生体验分类的思想;2. 使学生懂得如何提出问题,分类讨论,并为以后研究提出问题。

3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。

二.教学要点:培养学生探索问题能力;三.教学重点:培养学生探索问题能力;四.教学难点:掌握探索问题的方法。

五.教学过程:一、复习1、请一位同学叙述上一节所学的知识。

2、如图,△ABC≌△AEC,,,求出△AEC各内角的度数。

3、你是如何来识别两个三角形全等的?从学生的回答中,提出:我们能不能找到一些较为简便的方法用来识别三角形的全等呢?有没有类似于相似三角形的识别方法呢?回想一下,相似三角形有哪些识别方法?本节开始,我们就一起来研究,探讨§19.2全等三角形的识别。

二、新授要画一个三角形与老师在黑板上画的三角形ABC全等,需要几个与边或角的大小有关的条件呢?一个条件、两个条件、三个条件……1、做一做(1)只给一个条件:一条边,大家画出三角形,小组交流画的三角形全等吗?一个角,大家画出三角形,小组交流画的三角形全等吗?(2)给出两个条件画三角形时,有几种可能的情况?这两个三角形一定会全等吗?分别按照下面条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等。

①三角形的一个内角为60°,一条边为3 cm;②三角形的两个内角分别为30°和70°;③三角形的两条边分别为3 cm和5 cm你们在画图和同学比较过程中,你能得出什么结论?学生各抒己见后,教师归纳:你们一定会发现,如果只知道两个三角形有一个或两个对应相等的部分(边或角),那么这两个三角形不一定全等(甚至形状都不相同)。

2、议一议如果给出三个条件画三角形,你能说出有哪几种可能的情况?(有四种可能:三条边、三个角、两边一角和两角一边)对于按以上每一种可能画得三角形是否全等,以后我们一起分别逐个探讨研究,现在我们先一起来完成以下几个练习。

三、巩固练习1、如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180º,可以与△___________重合,这说明△AOB≌△___________.这两个三角形的对应边是AO与__________,OB与__________,BA与__________;对应角是∠AOB与________,∠OBA与_________,∠BAO与___________。

2、如图,△ABC是等腰三角形,AD是底边上的高,△ABD和△ACD全等吗?试根据等腰三角形的有关知识说明理由四、小结让学生谈收获、体会、疑惑后,教师总结:本节通过画图实践可得,对于两个三角形的三条对应边、三个对应角中,只有满足其中一个条件或两个条件相等,两个三角形不一定全等。

至于满足其中的三个条件相等的情况如何呢?五、作业 16页练习2、3题六、教学反思:13.2全等三角形的判定(2)一.教学目标:1.使学生掌握SAS的内容,会运用SAS来识别两个三角形全等;2.通过识别全等三角形的识别的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;3、经历如何总结出全等三角形识别方法,体会如何探讨、实践、总结,培养学生的合作能力。

二.教学要点:三角形全等的识别:SAS;三.教学重点:三角形全等的识别:SAS;四.教学难点:对全等三角形的识别的理解和运用。

五.教学过程一、复习1、什么叫全等图形?什么叫做全等三角形?(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形)。

2、将全等的△ABC与△DEF重合,再沿BC方向将△DEF推移如图位置,问线段AD与BE数量关系怎样?BC与EF位置关系怎样?为什么?3、已知:如图,,,,,求的大小。

二、新授1、引入;上一节课,我们已经知道两个三角形满足三个条件的三条边对应相等和三个角对应相等的情况。

情况如何呢?(三条边对应相等两个三角形;三个角对应相等的两个三角形不一定全等)如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?-------这就是本节课我们要探讨的课题。

相关文档
最新文档