【精品】九年级数学上册第一章反比例函数 教案
沪科版九年级数学上册 反比例函数全章教案

相关资料反比例函数第一课时 反比例函数的意义一、教学目标1. 使学生理解并掌握反比例函数的概念2. 能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3. 能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1. 重点:理解反比例函数的概念,能根据已知条件写出函数解析式2. 难点:理解反比例函数的概念3. 难点的突破方法:(1) 在引入反比例函数的概念时,可适当复习一下第 11 章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解k(2) 注意引导学生对反比例函数概念的理解,看形式 y =,等号左边是函数 y ,等x号右边是一个分式,自变量 x 在分母上,且 x 的指数是 1,分子是不为 0 的常数 k ;看自变量 x 的取值范围,由于 x 在分母上,故取 x ≠0 的一切实数;看函数 y 的取值范围,因为 k ≠ 0,且 x ≠0,所以函数值 y 也不可能为 0。
讲解时可对照正比例函数 y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)y = k(k ≠0)还可以写成 y = kx -1 (k ≠0)或 xy =k (k ≠0)的形式x三、例题的意图分析教材第 46 页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第 47 页的例 1 是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例 1、例 2 都是常见的题型,能帮助学生更好地理解反比例函数的概念。
补充例 3 是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
新人教版九年级数学《反比例函数》教案

课题:反比例函数一、教学内容分析反比例函数是九年级上册教学内容,《课标》中要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式,并能用反比例函数解决简单的实际问题。
分析近几年宁夏中考试题,会发现反比例函数是中考命题的热点,常通过填空题或选择题考查学生对函数图象及其性质的理解,或与一次函数、几何图形相结合,考查学生运用反比例函数分析、解决综合问题的能力.二、学情分析鉴于反比例函数是九(上)学生所学内容,学生对反比例函数的图象及其性质还有较深的印象,这便于知识的归纳与梳理,且学生能运用其图象、性质解决简单的问题,但在具体情境中,如反比例函数与一次函数、几何图形相结合,进而分析、解决问题并进行方法的提炼,且能严谨、规范的进行解答,对学生要求较高,学习时较为困难,教学中成为课时顺利完成的不稳定因素.三、教学战略本节课主要采用学案教学法,充分考虑学生已有经验和知识背景,通过“基础热身——知识梳理——能力检测——典例分析”等环节,环环相扣,步步为营展开教学,选择具有代表性的中考真题,并进行适当的拓展、变式,以期达到触类旁通的效果;通过独立思考、小组合作、个人展示等形式,调动学生积极参与课堂教学,教师侧重学法指导与归纳,对学生在活动中合作、探究的过程予以评价,并关注学生解答过程的合理性与完整性.四、教学目标及重、难点教学目标:在具体情境中,会利用反比例函数的图象、性质解决问题; 重点:运用反比例函数的图象、解决综合问题; 难点:反比例函数在具体问题中的运用五、课前准备:多媒体(无线网络)、希沃教学软件(Windows7环境下)、学案 六、教学过程: 【基础热身】 1、下列函数中:①x y 2=,②x 5y =-,③2xy =④k y x =⑤13x y -= 其中是y 关于x 的反比例函数有: ;(填写序号) 2、反比例函数y=-2x的图象位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3、已知反比例函数ky x =的图象经过点(36)A --,,则这个反比例函数的表达式是 .4、在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是() A .k >3 B .k >0 C .k <3 D . k <0设计意图:通过基础练习,帮助学生回顾反比例函数知识,为后面的知识梳理奠定基础。
九年级数学上册 第1章 反比例函数 1.1 反比例函数教案 (新版)湘教版

第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数表达式.【教学难点】能根据实际问题中的条件确定反比例函数的表达式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间的变化,平均速度发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数表达式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t >0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是a cm ,这边上的高是h cm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y (吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的表达式经过整理后是否符合y =(k 是常数,k ≠0).所以此题必须先写出函数表达式,后解答.解:(1)a =12h,是反比例函数;(2)F =pS ,是正比例函数; (3)F =W s ,是反比例函数; (4)y =m x,是反比例函数. 3.当m 为何值时,函数y =4x2m -2是反比例函数,并求出其函数表达式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m =32.所以反比例函数的表达式为y =4x .4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V =5m 3时,ρ=1.98kg/m 3(1)求p 与V 的函数关系式,并指出自变量的取值范围.(2)求V =9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y 1与x 成正比例,则y 1=k 1x ,y 2与x 2成反比例,则y 2=k 2x2,又由y =y 1+y 2,可知,y =k 1x +k 2x2,只要求出k 1和k 2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例, 所以y 2=k 2x2,而y =y 1+y 2,所以y =k 1x +k 2x2, 当x =2与x =3时,y 的值都等于19.所以⎩⎪⎨⎪⎧19=2k 1+k2419=3k 1+k29.解得⎩⎪⎨⎪⎧k 1=5k 2=36所以y =5x +36x2.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的表达式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:教材“习题1.1”中第1、3、5题. 教学反思学生对于反比例函数的概念理解的都很好,但在求函数表达式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.。
九年级数学上册第一章反比例函数-教案

教学内容:1.1反比例函数教学目标:1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体 会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点. 教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比 启发教学辅助:多媒体 投影片 教学过程:一、 创设情景 探究问题(3)速度v 是时间t 的函数吗?为什么? [备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s =vt ,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述. 3)结合函数的概念,特别强调唯一性,引导讨论问题(3). 情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m 2的长方形的长a (m )随宽b (m )的变化而变化; (2)实数m 与n 的积为-200,m 随n 的变化而变化. 问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同? (2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.[备注]这个情境先引导学生审题列出函数关系式,使随着速度的变化,全程所用时间发生怎样的变化? 情境1: 当路程一定时,速度与时间成什么关系?(s =vt ) 当一个长方形面积一定时,长与宽成什么关系? [备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。
九年级数学上册《反比例函数的应用》教案、教学设计

6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。
最新北师大版九年级数学上册《反比例函数》教案(优质课一等奖教学设计).doc

《1 反比例函数》教案
教学目标:
1、从现实情境和已有的知识经验出发,讨论两个变量之间的函数关系,加深对函数概念的理解.
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点:
理解和领会反比例函数的概念.
教学难点:
从现实环境和所学知识人手,探索两个变量之间的函数关系.
教学过程:
一、问题提出
电流I、电阻R、电压U之间满足关系式U=IR,当U=220
V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成表格(见可悲吧):当R越来越大时,I怎样变化?当R 越来越小呢?(3)变量I是R的函数吗?为什么?
根据提供的信息,对多对关系式的分析,可以得出:当电阻R越来越大时,电流I越来越小,当R越来越小时,I越来越大.当给定一个R的值时,相应地就确定了一个I值,因此,I是R的函数.
二、做一做
1、一个矩形的面积为20cm2,相邻的两条边长分别为x cm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人数数量n每年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的
函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,表格(见课本)给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成表格.
三、课堂小结
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意概念中变量的相依关系及变化规律,逐步加深理解.通过举例、说理、讨论等活动,用数学眼光审视某些实际现象.。
湘教版数学九年级上册1.1《反比例函数》教学设计

湘教版数学九年级上册1.1《反比例函数》教学设计一. 教材分析湘教版数学九年级上册1.1《反比例函数》是本册教材的第一节新课,主要介绍了反比例函数的定义、性质及图象。
本节内容是初中学段数学知识的重要组成部分,对于学生来说,掌握反比例函数的知识,对于提高他们的数学素养,培养他们的逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、图象和性质有一定的了解。
但反比例函数作为一种新的函数形式,其定义、性质及图象与正比例函数和二次函数有很大的不同,需要学生进行一定的消化和理解。
同时,学生对于实际问题中反比例函数的运用还不够熟练,需要在教学中加强训练。
三. 教学目标1.理解反比例函数的定义,掌握反比例函数的性质。
2.能够绘制反比例函数的图象,并能对反比例函数图象进行分析。
3.能够运用反比例函数解决实际问题,提高解决问题的能力。
四. 教学重难点1.反比例函数的定义及其性质。
2.反比例函数图象的特点及分析方法。
3.反比例函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来获取知识。
2.利用多媒体教学手段,展示反比例函数的图象和实际应用问题,增强学生的直观感受。
3.采用案例分析法,对实际问题进行深入剖析,提高学生的应用能力。
六. 教学准备1.多媒体教学课件。
2.反比例函数的相关案例资料。
3.反比例函数的练习题。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾正比例函数和二次函数的相关知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件呈现反比例函数的定义和性质,让学生初步感知反比例函数的概念。
3.操练(15分钟)教师引导学生通过自主探究、合作交流的方式,探讨反比例函数的性质,并通过多媒体课件展示反比例函数的图象,让学生加深对反比例函数的理解。
4.巩固(10分钟)教师通过出示一些实际问题,让学生运用反比例函数的知识进行分析,巩固所学内容。
北师大版数学九年级上册《反比例函数的性质》教学设计

北师大版数学九年级上册《反比例函数的性质》教学设计一. 教材分析《反比例函数的性质》是北师大版数学九年级上册的一章内容。
本章主要让学生理解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
本节课的教学内容主要包括反比例函数的定义、图像特点、性质及其应用。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的性质,对函数有一定的认识。
但是,对于反比例函数的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和积极性需要通过丰富的教学手段和实际问题来激发。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的概念。
2.掌握反比例函数的图像特点和性质。
3.能够运用反比例函数解决实际问题。
4.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.反比例函数的定义和性质的理解。
2.反比例函数图像的特点和描绘。
3.反比例函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究来发现反比例函数的性质。
2.使用多媒体辅助教学,通过图像和动画展示反比例函数的性质,增强学生的直观感受。
3.结合实际例子,让学生通过动手操作和计算来解决实际问题,提高学生的应用能力。
4.采用小组讨论和合作学习的方式,培养学生的团队合作和沟通能力。
六. 教学准备1.多媒体教学设备。
2.反比例函数的图像和动画资料。
3.实际问题的案例和数据。
4.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如速度和时间的关系,引导学生思考如何用数学来描述这种关系。
然后,引出反比例函数的概念。
2.呈现(15分钟)展示反比例函数的图像和性质,让学生观察和描述图像的特点。
通过动画展示反比例函数的性质,如随着自变量的增加,因变量的值是如何变化的。
3.操练(15分钟)让学生动手操作,通过计算和作图来验证反比例函数的性质。
可以给出一些实际问题,让学生运用反比例函数来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word 格式,下载后您可任意编辑修改!)教学内容:1.1反比例函数教学目标:1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体 会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点. 教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比 启发教学辅助:多媒体 投影片 教学过程:一、 创设情景 探究问题汽车从南京出发开往上海(全程约300km ),全程所用时间t ()求这个函数的解析式和n 的值。
(3)y 与x+1成反比例,当x =2时,y =-1,求函数解析式和自变量x 的取值范围。
(4) 已知y 与x-2成反比例,并且当x =3时,y =2.求x =1.5时y 的值. (5)如果是的反比例函数,是的反比例函数,那么是的( )A .反比例函数B .正比例函数C .一次函数D .反比例或正比例函数 三、练习:P21 1——4 四、小结五、布置作业:另见练习卷板书设计:例1 例2 例2解: 解: 解练习 练习随着速度的变化,全程所用时间发生怎样的变化? 情境1: 当路程一定时,速度与时间成什么关系?(s =vt ) 当一个长方形面积一定时,长与宽成什么关系? [备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:1.3反比例函数的应用(1)教学目标:1、经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想。
2、会综合运用反比例函数的解析式,函数的图像以及性质解决实际问题。
3、体验数形结合的思想。
教学重点、难点:运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。
教学方法:讲练法教学辅助:投影片教学过程:一、忆一忆1、什么是反比例函数?它的图像是什么?具有哪些性质?2、小明家离学校3600米,他骑自行车的速度是x(米分)与时间y(分)之间的关系式是,若他每分钟骑450米,需分钟到达学校。
二、想一想例1、设△ABC中BC的边长为x(cm) ,BC 边上的高AD为y(cm),△ABC的面积为常数。
已知y关于x 的函数图像过点(3,4)。
(1)求y关于x的函数解析式和△ABC的面积。
(2)画出函数的图像,并利用图像,求当时y 的值。
小结:1、根据实际问题中变量之间的数量关系建立函数解析式。
2、根据给定的自变量的值或范围求函数的值或范围,可以应用函数的性质,也可以应用函数的图像;根据已知函数的值或范围求相应的自变量的值或范围,可以应用函数的性质和图像,也可以把问题转化为解方程或不等式。
三、练一练设每名工人一天能做某种型号的工艺品x 个。
若某工艺厂每天要生产这种工艺品60个,则需工人y名。
(1)求y关于x的函数解析式。
(2)若一名工人每天能做的工艺品个数最少6个,最多8个,估计该工艺品厂每天需要做这种工艺品的工人多少人?四、说一说:请你说一说本节课自己的收获并对自己参与学习的程度做出简单的评价.五、作业:见作业本板书设计:例1解:练习教学反思:本节课学生对增减性质掌握很好。
学生对函数值的取值掌握很好。
表达格式较好。
1.3反比例函数的应用(2)教学目标:1、经历分析实际问题中变量之间的关系建立反比例函数模型,进而解决实际问题的过程2、体会数学与现实生活的紧密性,培养学生的情感、态度,增强应用意识,体会数形结合的数学思想。
3、培养学生自由学习、运用代数方法解决实际问题的能力。
教学重难点:重点是运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。
难点是例2中变量的反比例函数关系的确定建立在对实验数据进行有效的分析、整合的基础之上,过程较为复杂。
教学方法:启发法教学辅助:投影片教学过程:一、创设情境、引入新课例2、在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积和气体对气缸壁所产生的压强。
(1)请根据表中的数据求出压强p(kpa)关于体积V(ml)函数解析式。
(2)当压力表读出的压强为72 kpa时,气缸内的气体压缩到多少ml?分析:(1)对于表中的实验数据你将作怎样的分析、处理?(2)能否用图像描述体积V与压强p的对应值?(3)猜想压强p 与体积V之间的函数类别?师生一起解答此题。
并引导学生归纳此种数学建模的方法与步骤:(1)由实验获得数据(2)用描点法画出图像(3)根据图像和数据判断或估计函数的类别(4)用待定系数法求出函数解析式(5)用实验数据验证指出:由于测量数据不完全准确等原因,这样求得的反比例函数的解析式可能只是近似地刻画了两个变量之间的关系。
二、巩固练习课本第20页第5题三、说一说:请你说一说本节课自己的收获四、作业板书设计:例2解:练习教学反思:本节课学生对建模思想不是掌握很好,有待于今后教学多给予渗透。
第一章反比例函数复习(复习课)教学目标:1、通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律2、结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题3、让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力。
教学重点:反比例函数的图像和性质在实际问题中的运用。
教学难点:运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法。
教学方法:讲练法教学辅助:投影片教学过程:一、知识回顾1、什么是反比例函数?2、你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流。
二、练一练1 、反比例函数y=-的图象是,分布在第象限,在每个象限内,y都随x的增大而;若p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x1<x2 , 则y1y2。
3、已知反比例函数,若X1 <x2 ,其对应值y1,y2 的大小关系是4、如图在坐标系中,直线y=x+ k与双曲线在第一象限交与点A,与x轴交于点C,AB 垂直x轴,垂足为B,且S△AOB=11)求两个函数解析式2)求△ABC的面积6、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数的图象与x轴的交点坐标。
三、小结:1、本节复习课主要复习本章学生应知应会的概念、图像、性质、应用等内容,夯实基础提高应用。
2、充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.四、作业:另发试卷板书设计:练习练习解:解:教学反思:本节课教学目标都能落实,但解题速度不快,今后应多加练习。
第一章反比例函数测试卷基础达标验收卷一、选择题:1.已知反比例函数的图象经过点,则函数可确定为()A. B. C. D.2.如果反比例函数的图象经过点,那么下列各点在此函数图象上的是()A. B. C. D.3.如右图,某个反比例函数的图象经过点P,则它的解析式为()A. B.C. D.4.如右图是三个反比例函数,,在x轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.5.已知反比例函数的图象上有两点、且,那么下列结论正确的是()A. B. C. D与之间的大小关系不能确定6、已知反比例函数的图象如右图,则函数的图象是下图中的()7、已知关于x的函数和(k≠0),它们在同一坐标系内的图象大致是()8、如图,点A是反比例函数图象上一点,AB⊥y轴于点B,则△AOB的面积是()A. 1B. 2C. 3D. 49、某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例. 右图表示的是该电路中电流I与电阻R之间的图象,则用电阻R表示电流I的函数解析式为()A. B.C. D.二、填空题:1.我们学习过反比例函数. 例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为(S为常数,S≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:_________________________________________________;函数关系式:___________________________________________.2.右图是反比例函数的图象,那么k与0的大小关系是.3.点在双曲线上,则k=______________.4.近视眼镜的度数y(度)与镜片焦距x(米)成反比例. 已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是_____________.5.已知反比例函数的图象经过点,则a=__________.三、解答题:1.已知一次函数的图象与反比例函数的图象在第一象限交于点,求k,n的值.2.已知反比例函数的图象与一次函数的图象相交于点.(1)分别求这两个函数的解析式.(2)试判断点关于x轴的对称点是否在一次函数的图象上.3.反比例函数的图象经过点.(1)求这个函数的解析式;(2)请判断点是否在这个反比例函数的图象上,并说明理由.4.在压力不变的情况下,某物承受的压强P(Pa)是它的受力面积S(m2)的反比例函数,其图象如右图所示.(1)求P与S之间的函数关系式;(2)求当S=0.5m2时物体所受的压强P.5.如图,反比例函数与一次函数的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.能力提高练习一、学科内综合题1.如右图,△OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是_____________.2.已知反比例函数和一次函数.(1)若一函数和反比例函数的图象交于点,求m和k的值.(2)当k满足什么条件时,这两个函数的图象有两个不同的交点?(3)当时,设(2)中的两个函数图象的交点分别为A、B,试判断A、B两点分别在第几象限?∠AOB是锐角还是钝角(只要求直接写出结论)?二、学科间综合题3.若一个圆锥的侧面积为20,则下图中表示这个圆锥母线长l与底面半径r之间函数关系的是()三、实际应用题4.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元平方米,新建(含装修)墙壁的费用为80元平方米. 设健身房的高为3米,一面旧墙壁AB的长为x米,修建健身房的总投入为y元.(1)求y与x的函数关系式;(2)为了合理利用大厅,要求自变量x必须满足8≤x≤12. 当投入资金为4800元时,问利用旧墙壁的总长度为多少米?5、为了预防“非典”,某学校对教室采用药熏消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示). 现测得药物8分钟燃毕,此时室内空气中每立方米含药量为6毫克. 请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为:___________________,自变量x的取值范围是:______________;药物燃烧后y关于x的函数关系式为:___________________;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?。