耀华08届高三第二轮专题复习向量与三角
高考文科数学第二轮专题导练总复习课件 向量的运用与解三角形

则 2c a 2k sin C k sin A 2 sin C sin A ,(2分)
b
k sin B
sin B
所以 cos A 2 cos C 2 sin C sin A .
cos B
sin B
即cos A 2 cos C sin B 2 sin C sin A cos B,
2易知,BD<BC CD 4,故 29 20 cos<4,
平方解得cos>13 ;另一方面,AC<AD DC 4,
20 当A,D,C三点共线时,AC 4,
此时cos AB AC BC 37 ,
2AB AC 40
于是 13 <cos<37 .
20
40
3 S1
1 2
AB
AD sin
2
tanA tanB tan(
C) 2
1 tan C
2,
2
tan C tan C 4. tan A tan B
方法2:利用余弦定理进行角化边。
b a 6cosC 6abcosC a2 b2, ab
6ab a2 b2 c2 a2 b2,a2 b2 3c2
2ab
2
tan C tan C sin C cos B sin A sin B cos A
1 .(2011 重庆卷)若ABC的内角A、B、C所对的边
分别为a、b、c,且满足a b2 c2 4,且C 60,
则ab的值为_____ .
解析:由题意有
a a2
b2 c2 4 b2 c2 2ab
cos
60
, ab
两式相减得ab 4 . 3
2.(2010 天津卷)在ABC中,内角A,B,C的对边 分别是a,b,c,若a2 b2 3bc,sin C 2 3 sin B, 则A ____ .
天津市耀华中学08届高三第二轮专题复习(三)导数部分(文)

耀华08届高三专题复习(三)导数部分(文)11.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围.耀华08届高三专题复习(三)导数部分(文)22.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与 直线670x y --=垂直,导函数'()f x 的最小值为12-. (Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.耀华08届高三专题复习(三)导数部分(文)33.已知函数321()(2)13f x ax bx b x =-+-+. 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z =a +2b ,求z 的取值范围.4.已知函数d cx bx x x f 25)(23----=在]0,(-∞上单调递减,在[]6,0上单调递增,1=x 是方程0)(=x f 的一个实根.(Ⅰ)当4=d 时,求)(x f 的解析式; (Ⅱ)求)4(f 的取值范围.5.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又13()22f '=. (Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.6.已知a R ∈, 32()44f x x ax x a =--+.(Ⅰ)若(1)0f '-=,求函数()f x 在区间[2,2]-的最大值与最小值;(Ⅱ)若函数()f x 在区间(,2]-∞-和[2,)+∞上都是增函数,求实数a 的取值范围.耀华08届高三专题复习(三)导数(文)答案 11.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 解:(Ⅰ)23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-, 即3()1h t t t =-+-.(Ⅱ)令3()()(2)31g t h t t m t t m =--+=-+--,由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时()g t ',()g t 的变化情况如下表:t (01), 1 (12),()g t ' +-()g t递增极大值1m -递减∴在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<,所以m 的取值范围为1m >.耀华08届高三专题复习(三)导数(文)答案 22.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值. 解: (Ⅰ)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---, ∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为16, 因此,'(1)36f a b =+=-, ∴2a =,12b =-,0c =. (Ⅱ)3()212f x x x =-.2'()6126(2)(2)f x x x x =-=+-,列表如下:x(,2)-∞-2-(2,2)-2(2,)+∞'()f x+-+()f x增极大减极小增所以函数()f x 的单调增区间是(,2)-∞-和2,)+∞,∵(1)10f -=,2)82f =-(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是2)2f =-耀华08届高三专题复习(三)导数(文)答案 33.已知函数321()(2)13f x ax bx b x =-+-+. 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z =a +2b ,求z 的取值范围.解:求函数()f x 的导数2()22f x ax bx b '=-+-.(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--,当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩,化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩,此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,,所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫⎪⎝⎭,,,,,, z 在这三点的值依次为16687,,, 所以z 的取值范围为1687⎛⎫⎪⎝⎭,.耀华08届高三专题复习(三)导数(文)答案 44.已知函数d cx bx x x f 25)(23----=在]0,(-∞上单调递减,在[]6,0上单调递增,1=x 是方程0)(=x f 的一个实根;(Ⅰ)当4=d 时,求)(x f 的解析式; (Ⅱ)求)4(f 的取值范围. 解:c bx x x f 523)(2'---=,∵)(x f 在]0,(-∞上单调递减,在[]6,0上单调递增, ∴0)0('=f ,即05=-c ,∴0=c . ∴d bx x x f 2)(23---=, ∴bx x x f 23)(2'--=.(Ⅰ)当4=d 时,由,0)1(=f 得021=---d b ,9-=b , ∴89)(23-+-=x x x f .(Ⅱ)令0)('=x f ,得32,021b x x -==,ba 2 12 4O4677A ⎛⎫⎪⎝⎭, (42)C ,(22)B ,∵)(x f 在]0,(-∞上单调递减,在[]6,0上单调递增, ∴632,02≥->bx ,∴9-≤b . ∴)1(1664)4(++--=b b f =721563≥--b , ∴)4(f 的取值范围是[)+∞,72.耀华08届高三专题复习(三)导数(文)答案 55.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又13()22f '=. (Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围. 解:(Ⅰ)2()32f x ax bx c '=++,由已知(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a =⎧⎪⎨=-⎪⎩,.,∴2()33f x ax ax '=-,∴13332422a a f ⎛⎫'=-=⎪⎝⎭, ∴2a =-,∴32()23f x x x =-+.(Ⅱ)令()f x x ≤,即32230x x x -+-≤, ∴(21)(1)0x x x --≥,∴102x ≤≤或1x ≥. 又()f x x ≤在区间[]0m ,上恒成立,∴102m <≤.11 / 11耀华08届高三专题复习(三)导数(文)答案 66.已知a R ∈, 32()44f x x ax x a =--+.(Ⅰ)若(1)0f '-=,求函数()f x 在区间[2,2]-的最大值与最小值;(Ⅱ)若函数()f x 在区间(,2]-∞-和[2,)+∞上都是增函数,求实数a 的取值范围. 解:(Ⅰ) 2()324f x x ax '=--,由(1)0f '-=得12a = ,所以2()34f x x x '=--,由()0f x '=,得43x =或1x =- , x 2- (2,1)-- 1- 4(1,)3- 434(,2)3 2 ()f x '+ 0 - 0 + ()f x0 递增 92 递减 5027- 递增 0 由上表知:()f x 在区间[2,2]-上的最大值为92,最小值为5027-.(Ⅱ)2()324f x x ax '=--的图像为开口向上且过点(0,4)-的抛物线,由条件(2)0f '-≥,(2)0f '≥,即480840a a +≥⎧⎨-≥⎩得22a -≤≤.。
届数学二轮复习第二部分专题篇素养提升文理专题一三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三

第2讲三角恒等变换与解三角形(文理)JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.三角恒等变换是高考的热点内容,主要考查利用各种三角函数公式进行求值与化简,其中二倍角公式、辅助角公式是考查的重点,切化弦、角的变换是常考的内容.2.正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:(1)边、角、面积的计算;(2)有关边、角的范围问题;(3)实际应用问题.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷9、16三角恒等变换和同角间的三角函数关系求值;利用余弦定理解三角形10Ⅱ卷17解三角形求角和周长的12(文科)KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一三角恒等变换错误!错误!错误!错误!三角恒等变换与求值1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β。
(2)cos(α±β)=cos αcos β∓sin αsin β。
(3)tan(α±β)=错误!。
2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α。
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=错误!.3.辅助角公式a sin x+b cos x=错误!sin(x+φ)(其中tan φ=错误!)典错误!错误!错误!典例1(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin 10°=(A)A.错误!B.错误!C.错误!+错误!D.错误!(2)(2020·宜宾模拟)已知α∈错误!,且3sin2α-5cos2α+sin 2α=0,则sin 2α+cos 2α=(A)A.1B.-错误!C.-错误!或1D.-1(3)已知函数f(x)=错误!cos x cos错误!+sin2错误!-错误!.①求f(x)的单调递增区间;②若x∈错误!,f(x)=错误!,求cos 2x的值.【解析】(1)原式=cos240°+2sin 35°cos 35°sin 10°=cos240°+sin 70°sin 10°=12+12cos 80°+sin 70°sin 10°=错误!+错误!(cos 70°cos 10°-sin 70°sin 10°+2sin 70°sin 10°)=错误!+错误!(cos 70°cos 10°+sin 70°sin 10°)=错误!+错误!cos 60°=34。
天津市耀华中学08届高三第二轮专题复习(六)解析部分

耀华08届高三第二轮专题复习(六)解析部分1.已知圆K 过定点),0)(0,(>a a A 圆心K 在抛物线C :ax y 22=上运动,MN 为圆K 在y 轴上截得的弦.(1)求证:MN 为定值; (2)当OA 是ON OM 与的等差中项时,抛物线C 的准线与圆K 有怎样的位置关系,并说明理由.2.已知方向向量v=(1,3)的直线l 过点(0,-23)和椭圆C :22a x +22by =1 (a>b>0)的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(1) 求椭圆C 的方程;(2) 点P,Q,R 都在椭圆C 上,P Q 、PR 分别过点M 1(-1,0) 、M 2(1,0),设1PM =λQ M 1,2PM =μR M 2,当点在椭圆C 上运动时,试问λ+μ是否为定值.3.线段AB 过y 轴上一点N(0,m),AB 所在直线的斜率为k (k ≠0),两端点A 、B 到y 轴的距离之差为4k.(1)求出以y 轴为对称轴,过A 、O 、B 三点的抛物线方程;(2)过抛物线的焦点F 作动弦CD ,过C 、D 两点分别作抛物线的切线,设其交点为M ,求点M 的轨迹方程,并求出2FCFD FC ⋅的值.4.在直角坐标平面中,△ABC 的两个顶点为A (0,-1)、B (0,1)平面内两点G 、M 同时满足①0=++GC GB GA MC MB MA ==AB GM //. (1) 求顶点C 的轨迹E 的方程;(2) 设P 、Q 、R 、N 都在曲线E 上,定点F 的坐标为(2,0),已知FQ PF //,FN RF //,且0=•FQ PF ,求四边形PRQN 面积S 的最大值和最小值.5.已知直线1+-=x y 与椭圆()012222>>=+b a by a x 相交于A 、B 两点.(1)若椭圆的离心率为33,焦距为2,求线段AB 的长; (2)若向量OB OA 与向量互相垂直(其中O 为坐标原点),当椭圆的离心率⎥⎦⎤⎢⎣⎡∈22,21e 时,求椭圆长轴长的最大值.6.已知点A (-2,0),B (2,0),动点P 满足∠APB=2θ,且2sin 2=••θPB PA . (1)求动点P 的轨迹Q 的方程;(2)过点B 的直线l 与轨迹Q 交于两点MN ,试问在x 轴上是否存在定点C ,使CN CM •为常数,若存在,求出点C 的坐标;若不存在,说明理由.耀华08届高三第二轮专题复习(六) 解析答案1.已知圆K 过定点),0)(0,(>a a A 圆心K 在抛物线C :ax y 22=上运动,MN 为圆K 在y 轴上截得的弦.(1)求证:MN 为定值;(2) 当OA 是ON OM 与的等差中项时,抛物线C 的准线与圆K 有怎样的位置关系,并说明理由.解:(1)设K 点坐标为)2,2(2as as ,MN =22222)2()2()2(2as as a as -+-=42222224244442s a s a a s a s a -++- =a 2 ∴MN 为定值, (2)作KH ⊥y 轴于H∴OA OH ON OM 22==+, ∴OA OH =, ∴则可知),2(a a K ±, K 到抛物线C 的准线的距离a aa d =--=)2(2, 而圆K 的半径()d a a a a R =>-±+⎪⎭⎫ ⎝⎛-=2202,∴R d <,故圆K 与抛物线C 的准线相交.2.解:(1)由题意可得直线l:y=3x-23 ①过原点垂直l 的方程为y=-33x ② 解式①②得x=23. ∵椭圆中心O(0,0)关于直线l 的对称点在椭圆C 的右准线上,∴c a 2=2×23=3.∵直线l 过椭圆焦点,∴该焦点坐标为(2,0). ∴a 2=6c,c=2,b 2=2,故椭圆的方程为62x +22y =1.(2)设P(x 0,y 0)、Q(x Q ,y Q )、R(x R ,y R )由1PM =λQ M 1得⎪⎪⎩⎪⎪⎨⎧-=++-=⇒⎪⎪⎩⎪⎪⎨⎧++=++=-λλλλλλλ000011011y y x x y y x x Q Q QQ ∴Q (λλ01x ++-,λy -), ∵Q 在椭圆C 上, ∴2206)1(λλx +++2202λy =1.即(1+λ)2+2(1+λ)x 0+x 02+3y 02=6λ2③∵P 在椭圆C 上, ∴x 02+3y 02=6 ④ 将式④代入式③并化简得(1+λ)+2x 0=6(λ-1) ⑤ 同理,(1+μ)-2x 0=6(μ-1) ⑥ 式⑤+式⑥得μλ+=514为定值. 3.解:(1)设AB 所在直线方程为m kx y +=,抛物线方程为py x 22=, 且),(),,(2211y x B y x A , ∵由题图可知0,021<>x x . ∴k x x 421=-,即k x x 421=+.把m kx y +=代入py x 22=得0222=--pm pkx x , ∴pk x x 221=+.∴k pk 42=,∴2=p ,故所求的抛物线方程y x 42=. (2)设)41,(),41,(244233x x D x x C . 过抛物线上C 、D 两点的切点方程分别是2442334121,4121x x x y x x x y -=-=. ∴两条切线的交点M 的坐标为)4,2(4343x x x x +. 设CD 的直线方程为044nx x 4,122=--=+=得代入y x nx y 故点M 的轨迹为1y -=∵)1x 41,x (FD ),1x 41,x (FC 244233-=-= ∴2)x x (411)x x (41x 41x 41x x FD FC 24232423242343-+-=++-•+=•而2)x x (41)11()02x x (FM 242322432++=--+-+=, 12-=.4.解:(1)设C (x ,y ), ∵GO GB GA 2=+,由①知GO GC 2-= ∴G 为△ABC 的重心, ∴G (3x ,3y) 由②知M 是△ABC 的外心 ∴M 在x 轴上, 由③知M (3x,0), MC MA =, 得222)3(1)3(y x x x +-=+,化简整理得)0(1322≠=+x y x , (2)F (2,0)恰为)0(1322≠=+x y x 的右焦点,设PQ 的斜率为22k 0±≠≠且k ,则直线PQ 的方程为)2(-=x k y ,由03626)13(033)2(222222=-+-+⇒⎪⎩⎪⎨⎧=-+-=k x k x k y x x k y , 设P (x 1,y 2)、Q (x 2,y 2),则13k 36k x x 132622212221+-=+=+,k k x x , ∵R N ⊥PQ ,把k 换成k1-得223)1(32k k RN ++=, ∴10)1(382)3)(13()1(621222222++-=+++=•=kk k k k RN PQ S ,∴S kk -=++2810)1(322, ∵2122≥+kk ∴1628≥-S ∴223<≤S (当k=±1时取等号),又当k 不存在或k=0时S=2, 综上可得223<≤S , ∴S max =2,S min =23. 5.()()53,56,,,,A .0365,1.123.123,2,3,33,22,3312121221122222-==+=--⎪⎩⎪⎨⎧+-==+=+∴==∴===x x x x y x B y x x x y x y y x y x b a a c c e 则)(设得:消去联立椭圆的方程为:即解:()()()53842AB 21221221221=-+⋅=-+-=∴x x x x y y x x()()()()()()()2222212222122222222222222222221211,2,10142,012,1.1.0,2b a b a x x b a a x x b a b b a a a b a x a x b a y x y b y a x y y x x OB OA +-=+=+>+>-+--=∆=-+-+⎪⎩⎪⎨⎧+-==+=+∴⊥又整理得由得消去由 1)()1)(1(21212121++-=--=∴x x x x x x y y ,由02121=+y y x x ,得:01)(22121=++-x x x x , 012)1(22222222=++-+-∴ba ab a b a , 整理得:022222=-+b a b a . 将222222e a a c a b -=-=代入上式得221112e a -+=,)111(2122e a -+=∴..43121,2141,222122≤-≤∴≤≤∴≤≤e e e .311137,2113422≤-+≤∴≤-≤∴ee ,23672≤≤∴a ,适合条件122>+b a . 由此得62342,26642≤≤∴≤≤a a ,故长轴长的最大值为6.6.解:(1)由余弦定理得:8)(sin 42)sin 21(22cos 22222222222+-=+-+=--+=-+=PB PA PB PA PB PA PB PA PB PA PB PA PB PA PB PA AB θθθ∴8)(2=-PB PA 即 B PB PA A 422=<=- (当动点P 与两定点AB 共线时也符合上述结论), ∴动点P 的轨迹为以AB 为焦点,实轴长为22的双曲线, 所以,轨迹G 的方程为x 2-y 2=2.(2)假设存在定点C (m ,0),使CN CM •为常数,(a).当直线l 不与x 轴垂直时, 设直线l 的方程为)2(-=x k y 代入222=-y x 整理得,0)24(4)1(2222=+-+-k x k x k 由题意知1±≠k ,设),(),,(2211y x N y x M ,则142221-=+k k x x 1242221-+=•k k x x ,于是)2)(2())((21221--+--=•x x k m x m x CN CM)21(21)1(44))(2()1(2222212212m m k m m k x x m k x x k -++--=++++-+=要使CN CM •为与k 无关的常数,当且仅当m=1,此时1-=•CN CM , (b).当直线l 与x 轴垂直时,可得)2,2(),2,2(N M ,当m=1时1-=•CN CM ,故x 轴上存在定点C (1,0)使CN CM •为常数.。
高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案

第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。
耀华08届高三第二轮专题复习向量与三角

耀华08届高三第二轮专题复习(一)向量与三角班级 姓名 成绩1.(本题12分)已知A 、B 、C 是三角形ABC ∆三个内角, 向量()()1,3,cos ,sin m n A A =-=,且1m n ⋅=.(Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin B B B+=--,求tan C . 2.(本题12分)△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c , 已知a ,b ,c 依次成等比数列,且3cos 4B =. (Ⅰ)求cot cot A C +的值;(Ⅱ)设32BA BC ⋅=,a c +求的值.3.(本题12分)已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,其中ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围. 4.(本题12分)已知33(cos,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈. (I )求a b ⋅与||a b +;(Ⅱ)若()2||f x a b m a b =⋅-+的最小值为32-,求实数m 的值. 5.(本题12分)已知函数44()cos 2sin cos sin f x x x x x =--.(I )求()f x 的单调减区间;(Ⅱ)若[0,]2x π∈,求()f x 的最值;(Ⅲ)对()f x 的图像按向量(,0)a ϕ=平移,使得的函数()g x 为奇函数,求||ϕ的最小值.6.已知奇函数()f x 的定义域为R ,且在[0,)+∞上是增函数,问是否存在实数m ,使得(cos 23)(42cos )(0)f f m m f θθ-+->对所有的[0,]2πθ∈均成立?若存在,求出适合条件的实数m 的取值范围;若不存在,请说明理由.耀华08届高三第二轮专题复习(一) 三角与向量1.已知,,A B C 是三角形ABC ∆三内角,向量()()1,3,cos ,sin m n A A =-=,且1m n ⋅= (Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin B B B+=--,求tan C .解:(Ⅰ)∵1m n ⋅=, ∴(()cos ,sin 1A A -⋅=cos 1A A -=------------------------------------------------------212sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭-------------------------------4 ∵50,666A A ππππ<<-<-< ∴66A ππ-= ∴3A π=---------------------------------------------------6(Ⅱ)由题知2212sin cos 3cos sin B B B B+=--, 整理得22sin sin cos 2cos 0B B B B --=∴cos 0B ≠ ∴2tan tan 20B B --=-------------------------8∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去∴tan 2B =--------------------------------------------------9∴()tan tan C A B π=-+⎡⎤⎣⎦()tan A B =-+,tan tan 1tan tan A B A B +=--==,即tan C =.-----------------------------------------12 2.△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,3cos 4B =. (Ⅰ)求cot cot A C +的值;(Ⅱ)设c a +=⋅求,23的值.解:(Ⅰ)由3cos 4B =,得sin B =------------------------------2 由2b ac =及正弦定理得 2sin sin sin B A C =------------------------------------3∴11cos cos cot cot tan tan sin sin A C A C A C A C+=+=+2sin cos cos sin sin()sin sin sin C A C A A C A C B++==2sin 1sin sin B B B ===即cot cot A C +=(Ⅱ)由32BA BC ⋅=,得3cos 2ca B ⋅= ∵3cos 4B =,∴2ca =,22b =即-------------------------------------10 由余弦定理 2222cos b a c ac B =+-,得225a c +=,222()2549a c a c ac +=++=+=,∴3a c +=.--------------------------------------------------------------------123.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭. ------------------------------------------------5 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,----------------------------------------------6 即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤, max min ()3()2f x f x ==,∴.-------------------------------------------------------------8 (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,------------------------------------------------1014m <<∴,即m 的取值范围是(14),.------------------------------------------------124.已知33(cos ,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈. (Ⅰ)求a b ⋅与||a b +;(Ⅱ)若()2||f x a b m a b =⋅-+的最小值为32-,求实数m 的值. 解:(Ⅰ)33cos cos sin sin 2222x x a b x x ⋅=-cos 2x =,------------------------------2 ||22cos22|cos |a b x +=+,∵[0,]2x π∈,∴||2cos a b x +=;-----------------------------------------------------------4(Ⅱ)22()2||2(cos )21f x a b m a b x m m =⋅-+=---,-----------------------------5∵[0,]2x π∈,∴cos [0,1]x ∈,-----------------------------------------------------------------6 (1)当0m <时,当且仅当cos 0x =,()f x 取得最小值1-,与已知矛盾;--------8(2)当01m ≤≤时,当且仅当cos x m =,()f x 取得最小值212m --,∴23112[0,1]22m m --=-⇒=∈;---------------------------------------------------------10 (3)当1m >时,当且仅当cos 1x =,()f x 取得最小值14m -,∴351428m m -=-⇒=,与1m >矛盾; 综上所述,实数m 的值为12.-------------------------------------------------------------------12 5.已知函数44()cos 2sin cos sin f x x x x x =--;(Ⅰ)求()f x 的单调渐区间;(Ⅱ)若[0,]2x π∈,求()f x 的最值;(Ⅲ)对()f x 的图像进行适当的平移,使得的函数()g x 为则平移的最小单位是多少?解:(Ⅰ)())4f x x π=+,-----------------------------------------------------2由2224k x k ππππ≤+≤+,得3,88k x k k Z ππππ-≤≤+∈, 故函数()f x 的单调减区间为3[,]88k k ππππ-+,k Z ∈;--------------------------4 (Ⅱ)52[,]444x πππ+∈,当4x π=时,()f x 的最大值为1,----------------------6当x π=时,()f x 的最小值为------------------------------------------------------8(Ⅲ)设())]4g x x πϕ=++,是奇函数, (0)0cos(2)0244228k g k ππππϕϕπϕπ=⇒+=⇒+=+⇒=+,--------------10 ∴min ||8πϕ=.------------------------------------------------------------------------------------126.已知奇函数()f x 的定义域为R ,且在[0,)+∞上是增函数,问是否存在实数m ,使得(cos 23)(42cos )(0)f f m m f θθ-+->对所有的[0,]2πθ∈均成立?若存在,求出适合条件的实数m 的取值范围;若不存在,请说明理由.解:∵()f x 是定义域为R 的奇函数,∴(0)0f =------------------------------1∵(cos 23)(42cos )(0)f f m m f θθ-+->,∴(cos 23)(2cos 4)f f m m θθ->------2∵()f x 在[0,)+∞上是增函数,∴()f x 在R 上是增函数.-------------------------------3∴cos 232cos 4m m θθ->-,即2cos cos 220m m θθ-+->,----------------------4 ∵[0,]2πθ∈,∴cos [0,1]θ∈,令cos t θ=,则不等式2220t mt m -+->对于任意[0,1]t ∈均成立,--------------------------------5设2()22g t t mt m =-+-,则02(0)0m g ⎧<⎪⎨⎪>⎩,或012()02m m g ⎧≤≤⎪⎪⎨⎪>⎪⎩,或12(1)0m g ⎧>⎪⎨⎪>⎩,解得4m >-故实数m取值范围是(4)-+∞.-------------------------------------------------------12注:也可用其它解法,参照以上评分标准给分.。
高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高三数学第二轮复习资料 专题三: 三角函数、三角变换、解三角形、平面向量

专题三 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tanα=y x .(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 23. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x 值、y值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝⎛⎭⎫2x -π3+3, ∴T =π.2. (·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝⎛⎭⎫x +φ2+π8=sin ⎝⎛⎭⎫2x +φ+π4为偶函数,则φ=π4. 3. (·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝⎛⎭⎫-π3,T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π3,选A. 4. (·课标全国)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝⎛⎭⎫54x +π4,其减区间为⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z , 显然⎝⎛⎭⎫π2,π⊆⎣⎡⎦⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4, 其减区间为⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z , 显然⎝⎛⎭⎫π2,π⎣⎡⎦⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且 f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( ) A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π,k π+π2(k ∈Z ) C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f (x )取最值,∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1, ∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝⎛⎭⎫π2>f (π),∴sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β). 审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝⎛⎭⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝⎛⎭⎫π6,2,所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝⎛⎭⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和.变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4 B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫12x -π4 D .f (x )=2sin ⎝⎛⎭⎫12x -3π4 答案 B解析 由图象可知A =2,T 2=3π2-⎝⎛⎭⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝⎛⎭⎫12x +φ.又f ⎝⎛⎭⎫-π2=2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2,即sin ⎝⎛⎭⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝⎛⎭⎫12x +3π4,选B. 题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎫ωx +π3+3(ω>0)的最小正周期为π. (1)求f (x )的解析式;(2)求f (x )在区间⎣⎡⎦⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝⎛⎭⎫cos ωx cos π3-sin ωx sin π3+ 3 =2sin ωx cos ωx -23sin 2ωx + 3 =sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b 2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sin t +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是( )A.⎣⎡⎦⎤0,π3 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤π3,5π6D.⎣⎡⎦⎤5π6,π答案 C解析 因为y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎡⎦⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎡⎦⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎫|φ|<π2,且其图象关于直线x =0对称,则( ) A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为增函数 B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎫0,π4上为增函数 D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎫0,π4上为减函数 答案 B解析 f (x )=2sin ⎝⎛⎭⎫2x +π3+φ,其图象关于直线x =0对称, ∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x .∴y =f (x )的最小正周期为π,且在⎝⎛⎭⎫0,π2上为减函数. 题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎡⎦⎤-π6,5π6上有且只有一个交点.如图, 由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y =-k在⎣⎡⎦⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎡⎦⎤0,π2上的单调区间. 解 g (x )=sin ⎝⎛⎭⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎡⎦⎤0,π3. 令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎡⎦⎤π3,π2.变式训练4 (·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝⎛⎭⎫2π3,0对称;③函数f (x )在区间⎝⎛⎭⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝⎛⎭⎫11π12=sin ⎝⎛⎭⎫2×11π12-π3=sin ⎝⎛⎭⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝⎛⎭⎫2π3=sin ⎝⎛⎭⎫2×2π3-π3=sin π=0,图象C 关于点⎝⎛⎭⎫2π3,0对称,所以②正确;当-π12≤x ≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin2⎝⎛⎭⎫x -π3=sin ⎝⎛⎭⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎫π2+φ(0<φ<π),其图象过点⎝⎛⎭⎫π6,12. (1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎡⎦⎤0,π4上的最大值和最小值. 规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分] 又∵f (x )过点⎝⎛⎭⎫π6,12,∴12=12cos ⎝⎛⎭⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3. [5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎫2x -π3.[7分] 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14. [12分]评分细则 (1)将点⎝⎛⎭⎫π6,12代入解析式给1分;从cos ⎝⎛⎭⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分.阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (·江苏)函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1, ∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34 B.34 C.43 D .-43答案 D解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x ) ( )A .在区间⎣⎡⎦⎤-π,-π2上是减函数 B .在区间⎣⎡⎦⎤2π3,7π6上是增函数C .在区间⎣⎡⎦⎤π8,π4上是增函数D .在区间⎣⎡⎦⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y =sin ⎝⎛⎭⎫x +π3单调递减,所以y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3在区间⎣⎡⎦⎤2π3,7π6上是增函数,选B. 5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎫5π4-π4=2π, ∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+φ=±1,∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin 3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎫5π12-π4=2π3,ω=3,所以sin ⎝⎛⎭⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫3x +π4=sin ⎣⎡⎦⎤3⎝⎛⎭⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A.3. 函数y =log 2sin x 在x ∈⎣⎡⎦⎤π6,π4时的值域为( )A .[-1,0] B.⎣⎡⎦⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎡⎦⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于 ( )A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为 ( )A.π8B.38πC.34πD.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝⎛⎭⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13 B .3 C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ) 得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是__________. 答案 ⎣⎡⎦⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同, ∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎫2x -π6. ∵x ∈⎣⎡⎦⎤0,π2,∴2x -π6∈⎣⎡⎦⎤-π6,5π6, sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, ∴f (x )∈⎣⎡⎦⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝⎛⎭⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4, 得T =2π2=π,故①对;f ⎝⎛⎭⎫π4=2sin π4≠±2,故②错; f ⎝⎛⎭⎫π8=2sin 0=0,故③对;y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4-π4=2sin ⎝⎛⎭⎫2x +π4, 故④错.故填①③. 三、解答题13.(·湖南)已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎡⎦⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1. 第二讲 三角变换与解三角形1. 两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β.2. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α.3. 三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧. “化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”. (2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β)等. 4. 正弦定理a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 5. 余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab .6. 面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .7. 三角形中的常用结论(1)三角形内角和定理:A +B +C =π. (2)A >B >C ⇔a >b >c ⇔sin A >sin B >sin C . (3)a =b cos C +c cos B .1. (·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( )A.43B.34C .-34D .-43答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得:4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.故选C.2. (·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B 的大小为 ( ) A.π6 B.π3 C.2π3 D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,由正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.3. (·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. (·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于 ( )A .4 3B .2 3 C. 3 D.32答案 B解析 利用正弦定理解三角形.在△ABC 中,AC sin B =BCsin A,∴AC =BC ·sin Bsin A =32×2232=2 3.5. (·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.答案 2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a ,则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.题型一 三角恒等变换例1 (1)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( ) A.22 B.33C. 2D. 3 (2)已知α,β ∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 审题破题 (1)利用同角三角函数关系式先求sin α或cos α,再求tan α;(2)注意角之间的关系⎝⎛⎭⎫α+π4=(α+β)-⎝⎛⎭⎫β-π4. 答案 (1)D (2)-5665解析 (1)∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.(2)因为α,β∈⎝⎛⎭⎫3π4,π,所以α+β=⎝⎛⎭⎫3π2,2π,所以cos(α+β)>0.易得cos(α+β)=45. 又π2<β-π4<3π4,所以cos ⎝⎛⎭⎫β-π4<0, 易得cos ⎝⎛⎫β-π4=-513. 故cos ⎝⎛⎭⎫α+π4=cos[(α+β)-(β-π4)] =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4=45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665.反思归纳 (1)公式应用技巧:①直接应用公式,包括公式的正用、逆用和变形用;②常用切化弦、异名化同名、异角化同角等.(2)化简常用技巧:①注意特殊角的三角函数与特殊值的互化;②注意利用角与角之间的隐含关系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等变形,如tan 45°=1,sin 2α+cos 2α=1等.变式训练1 (1)若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2等于( ) A.33 B .-33 C.539 D .-69答案 C解析 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2, ∴sin ⎝⎛⎭⎫π4+α=223.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63, ∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2 =13×33+223×63=539. (2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α-π4的值为________. 答案 -142解析 cos 2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=(cos α+sin α)(cos α-sin α)22(sin α-cos α)=-2(cos α+sin α).∵sin α=12+cos α,∴cos α-sin α=-12,两边平方得1-2sin αcos α=14,∴2sin αcos α=34.∵α∈⎝⎛⎭⎫0,π2, ∴cos α+sin α=(cos α+sin α)2= 1+34=72,∴cos 2αsin ⎝⎛⎭⎫α-π4=-142.题型二 解三角形例2 △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .审题破题 (1)利用正弦定理,化去角B 的三角函数,再化简求值;(2)由条件结构特征,联想到余弦定理,求cos B 的值,进而求出角B . 解 (1)由正弦定理,得a sin B =b sin A , 又a sin A sin B +b cos 2A =2a ,所以b sin 2A +b cos 2A =2a ,即b =2a .所以ba = 2.(2)由余弦定理和c 2=b 2+3a 2,又0°<B <180°,得cos B =(1+3)a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12.又cos B >0,故cos B =22,又0°<B <180°,所以B =45°.反思归纳 关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.变式训练2 (·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解 (1)由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9得a =c =3. (2)在△ABC 中,cos B =79,∴sin B =1-cos 2B = 1-⎝⎛⎭⎫792=429.由正弦定理得:a sin A =bsin B,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.题型三 解三角形的实际应用例3 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =14,BC =10,AC =16,∠C =∠D .(1)求AB 的长度;(2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用较低,请说明理由.审题破题 首先借助余弦定理列式,通过等量关系求出角C 的大小,进而求AB 的长度;然后借助正弦定理比较三角形的面积大小,并作出判断. 解 (1)在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos C =162+102-2×16×10cos C .①在△ABD 中,由余弦定理及∠C =∠D 整理得, AB 2=AD 2+BD 2-2AD ·BD cos D =142+142-2×142cos C .② 由①②得:142+142-2×142cos C =162+102-2×16×10cos C ,整理可得cos C =12,又∠C 为三角形的内角,所以∠C =60°.又∠C =∠D ,AD =BD ,所以△ABD 是等边三角形, 即AB 的长度是14.(2)小李的设计符合要求.理由如下:S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,∠C =∠D ,所以S △ABD >S △ABC .又已知建造费用与用地面积成正比,故选择△ABC 建造环境标志费用较低. 即小李的设计使建造费用较低.反思归纳 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.变式训练3 (·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.典例 (12分)已知向量a =(cos ωx ,sin ωx ),b =(cos ωx ,3cos ωx ),其中0<ω<2.函数f (x )=a ·b -12,其图象的一条对称轴为x =π6.(1)求函数f (x )的表达式及单调递增区间;(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,S 为其面积,若f ⎝⎛⎭⎫A 2=1,b =1,S △ABC=3,求a 的值. 规范解答解 (1)f (x )=a ·b -12=cos 2ωx +3sin ωx cos ωx -12=1+cos 2ωx 2+32sin 2ωx -12=sin ⎝⎛⎭⎫2ωx +π6.[3分] 当x =π6时,sin ⎝⎛⎭⎫ωπ3+π6=±1, 即ωπ3+π6=k π+π2,k ∈Z . ∵0<ω<2,∴ω=1.[5分]∴f (x )=sin ⎝⎛⎭⎫2x +π6. 令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,∴k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为[k π-π3,k π+π6],k ∈Z .[7分](2)f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6=1, 在△ABC 中,0<A <π,π6<A +π6<76π,∴A +π6=π2,A =π3.由S △ABC =12bc sin A =3,b =1,得c =4.[9分]由余弦定理得a 2=42+12-2×4×1×cos π3=13,故a =13.[12分]评分细则 (1)f (x )没有化成sin ⎝⎛⎭⎫2ωx +π6的得1分;(2)k ∈Z 没写的扣1分;(3)得出A =π3的给1分.阅卷老师提醒 (1)三角形和三角函数的结合是高考命题的热点,灵活考查分析、解决问题的能力.(2)此类问题的一般解法是先将三角函数化成y =A sin(ωx +φ)的形式,利用三角函数求值确定三角形的一个角,然后和正、余弦定理相结合解题. (3)解题中要充分注意在三角形中这个条件,重视角的范围.1. 已知cos (π-2α)sin (α-π4)=-22,则sin α+cos α等于( )A .-72 B.72 C.12D .-12答案 D解析 cos (π-2α)sin (α-π4)=-cos 2αsin (α-π4)=sin (2α-π2)sin (α-π4)=2cos(α-π4)=2cos α+2sin α=-22,∴sin α+cos α=-12,故选D.2. (·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则 ( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解.由题意知f (x )=sin 2⎝⎛⎭⎫x +π4=1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2, 令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 3. (·天津)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010B.105C.31010D.55答案 C解析 在△ABC 中,由余弦定理得AC 2=BA 2+BC 2-2BA ·BC cos ∠ABC =(2)2+32-2×2×3cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC得sin ∠BAC =BC ·sin ∠ABCAC =3×sin π45=3×225=31010.4. 设α、β均为锐角,且cos(α+β)=sin(α-β),则tan α的值为( )A .2 B. 3 C .1 D.33答案 C解析 由已知得cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cos α(cos β+sin β)=sin α(sin β+cos β),∵β为锐角,∴cos β+sin β≠0,因此有cos α=sin α, 从而tan α=1.5. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B的值为( )A.π6 B.π3C.π6或5π6D.π3或2π3答案 D解析 由(a 2+c 2-b 2)tan B =3ac , 得a 2+c 2-b 22ac =32·cos B sin B ,即cos B =32·cos B sin B,∴sin B =32.又∵0<B <π,∴角B 为π3或2π3.故选D.6. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足c sin A =a cos C .当3sin A -cos ⎝⎛⎭⎫B +π4取最大值时,A 的大小为 ( ) A.π3 B.π4 C.π6 D.2π3答案 A解析 由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0,从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4,所以B =3π4-A .于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A ) =3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. ∵0<A <3π4,∴π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2.故选A.专题限时规范训练一、选择题1. 已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45 D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 2. (·四川改编)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是( )A. 3 B .2 3 C.32 D.12答案 A解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈⎝⎛⎭⎫π2,π,∴sin α≠0,2cos α+1=0即cos α=-12,sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 3. 已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( )A .75°B .60°C .45°D .30°答案 B解析 由题意知,12×4×3×sin C =33,∴sin C =32.又0°<C <90°,∴C =60°.4. 在△ABC 中,若0<tan A ·tan B <1,那么△ABC 一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定答案 B解析 由0<tan A ·tan B <1,可知tan A >0,tan B >0,即A ,B 为锐角,tan(A +B )=tan A +tan B1-tan A tan B>0,即tan(π-C )=-tan C >0,所以tan C <0,所以C 为钝角,所以△ABC为钝角三角形,选B.5. 已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4等于 ( )A .-255B .-3510C .-31010D .255答案 A解析 由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0,可得sin α=-1010.故2sin 2α+sin 2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.6. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知C =2A ,cos A =34,b =5,则△ABC 的面积为( )A.1574B.1572C.574D.572答案 A解析 cos A =34,cos C =2cos 2A -1=18,sin C =378,tan C =37,如图,设AD =3x ,AB =4x ,CD =5-3x ,BD =7x .在Rt △DBC 中,tan C =BD CD =7x5-3x =37,解之得:BD =7x =327,S △ABC =12BD ·AC =1574.7. 函数f (x )=sin 2x -4sin 3x cos x (x ∈R )的最小正周期为( )A.π8B.π4C.π2D .π答案 C解析 f (x )=sin 2x -2sin 2x sin 2x =sin 2x (1-2sin 2x )=sin 2x cos 2x =12sin 4x ,所以函数的周期为T =2πω=2π4=π2,选C.8. 在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
耀华08届高三第二轮专题复习(一)向量与三角班级 姓名 成绩1.(本题12分)已知A 、B 、C 是三角形ABC ∆三个内角, 向量()()1,3,cos ,sin m n A A =-=,且1m n ⋅=.(Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin B B B+=--,求tan C . 2.(本题12分)△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c , 已知a ,b ,c 依次成等比数列,且3cos 4B =. (Ⅰ)求cot cot A C +的值;(Ⅱ)设32BA BC ⋅=,a c +求的值.3.(本题12分)已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,其中ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围. 4.(本题12分)已知33(cos,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈. (I )求a b ⋅与||a b +;(Ⅱ)若()2||f x a b m a b =⋅-+的最小值为32-,求实数m 的值. 5.(本题12分)已知函数44()cos 2sin cos sin f x x x x x =--.(I )求()f x 的单调减区间;(Ⅱ)若[0,]2x π∈,求()f x 的最值;(Ⅲ)对()f x 的图像按向量(,0)a ϕ=平移,使得的函数()g x 为奇函数,求||ϕ的最小值.6.已知奇函数()f x 的定义域为R ,且在[0,)+∞上是增函数,问是否存在实数m ,使得(cos 23)(42cos )(0)f f m m f θθ-+->对所有的[0,]2πθ∈均成立?若存在,求出适合条件的实数m 的取值范围;若不存在,请说明理由.耀华08届高三第二轮专题复习(一) 三角与向量1.已知,,A B C 是三角形ABC ∆三内角,向量()()1,3,cos ,sin m n A A =-=,且1m n ⋅= (Ⅰ)求角A ;(Ⅱ)若221sin 23cos sin B B B+=--,求tan C .解:(Ⅰ)∵1m n ⋅=, ∴(()cos ,sin 1A A -⋅=cos 1A A -=------------------------------------------------------212sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭-------------------------------4 ∵50,666A A ππππ<<-<-< ∴66A ππ-= ∴3A π=---------------------------------------------------6(Ⅱ)由题知2212sin cos 3cos sin B B B B+=--, 整理得22sin sin cos 2cos 0B B B B --=∴cos 0B ≠ ∴2tan tan 20B B --=-------------------------8∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去∴tan 2B =--------------------------------------------------9∴()tan tan C A B π=-+⎡⎤⎣⎦()tan A B =-+,tan tan 1tan tan A B A B +=--=811+=,即tan C =.-----------------------------------------12 2.△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,3cos 4B =. (Ⅰ)求cot cot A C +的值;(Ⅱ)设c a +=⋅求,23的值.解:(Ⅰ)由3cos 4B =,得sin B =------------------------------2 由2b ac =及正弦定理得 2sin sin sin B A C =------------------------------------3∴11cos cos cot cot tan tan sin sin A C A C A C A C+=+=+2sin cos cos sin sin()sin sin sin C A C A A C A C B++==2sin 1sin sin B B B ===即cot cot A C +=(Ⅱ)由32BA BC ⋅=,得3cos 2ca B ⋅= ∵3cos 4B =,∴2ca =,22b =即-------------------------------------10 由余弦定理 2222cos b a c ac B =+-,得225a c +=,222()2549a c a c ac +=++=+=,∴3a c +=.--------------------------------------------------------------------123.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭. ------------------------------------------------5 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,----------------------------------------------6 即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤, max min ()3()2f x f x ==,∴.-------------------------------------------------------------8 (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,------------------------------------------------1014m <<∴,即m 的取值范围是(14),.------------------------------------------------124.已知33(cos ,sin )22a x x =,(cos ,sin )22x x b =-,且[0,]2x π∈. (Ⅰ)求a b ⋅与||a b +;(Ⅱ)若()2||f x a b m a b =⋅-+的最小值为32-,求实数m 的值. 解:(Ⅰ)33cos cos sin sin 2222x x a b x x ⋅=-cos 2x =,------------------------------2 ||22cos22|cos |a b x +=+,∵[0,]2x π∈,∴||2cos a b x +=;-----------------------------------------------------------4(Ⅱ)22()2||2(cos )21f x a b m a b x m m =⋅-+=---,-----------------------------5∵[0,]2x π∈,∴cos [0,1]x ∈,-----------------------------------------------------------------6 (1)当0m <时,当且仅当cos 0x =,()f x 取得最小值1-,与已知矛盾;--------8(2)当01m ≤≤时,当且仅当cos x m =,()f x 取得最小值212m --,∴23112[0,1]22m m --=-⇒=∈;---------------------------------------------------------10 (3)当1m >时,当且仅当cos 1x =,()f x 取得最小值14m -,∴351428m m -=-⇒=,与1m >矛盾; 综上所述,实数m 的值为12.-------------------------------------------------------------------12 5.已知函数44()cos 2sin cos sin f x x x x x =--;(Ⅰ)求()f x 的单调渐区间;(Ⅱ)若[0,]2x π∈,求()f x 的最值;(Ⅲ)对()f x 的图像进行适当的平移,使得的函数()g x 为则平移的最小单位是多少?解:(Ⅰ)())4f x x π=+,-----------------------------------------------------2由2224k x k ππππ≤+≤+,得3,88k x k k Z ππππ-≤≤+∈, 故函数()f x 的单调减区间为3[,]88k k ππππ-+,k Z ∈;--------------------------4 (Ⅱ)52[,]444x πππ+∈,当4x π=时,()f x 的最大值为1,----------------------6当x π=时,()f x 的最小值为;------------------------------------------------------8(Ⅲ)设())]4g x x πϕ=++,是奇函数, (0)0cos(2)0244228k g k ππππϕϕπϕπ=⇒+=⇒+=+⇒=+,--------------10 ∴min ||8πϕ=.------------------------------------------------------------------------------------126.已知奇函数()f x 的定义域为R ,且在[0,)+∞上是增函数,问是否存在实数m ,使得(cos 23)(42cos )(0)f f m m f θθ-+->对所有的[0,]2πθ∈均成立?若存在,求出适合条件的实数m 的取值范围;若不存在,请说明理由.解:∵()f x 是定义域为R 的奇函数,∴(0)0f =------------------------------1∵(cos 23)(42cos )(0)f f m m f θθ-+->,∴(cos 23)(2cos 4)f f m m θθ->------2∵()f x 在[0,)+∞上是增函数,∴()f x 在R 上是增函数.-------------------------------3∴cos 232cos 4m m θθ->-,即2cos cos 220m m θθ-+->,----------------------4 ∵[0,]2πθ∈,∴cos [0,1]θ∈,令cos t θ=,则不等式2220t mt m -+->对于任意[0,1]t ∈均成立,--------------------------------5设2()22g t t mt m =-+-,则02(0)0m g ⎧<⎪⎨⎪>⎩,或012()02m m g ⎧≤≤⎪⎪⎨⎪>⎪⎩,或12(1)0m g ⎧>⎪⎨⎪>⎩,解得4m >-故实数m取值范围是(4)-+∞.-------------------------------------------------------12注:也可用其它解法,参照以上评分标准给分.。