2020高考数学《平面向量》复习专题

合集下载

高考数学专题复习题:平面向量

高考数学专题复习题:平面向量

高考数学专题复习题:平面向量一、单项选择题(共8小题)1.已知向量(1,)x =a ,(1,3)=−b .若向量2+a b 与向量b 垂直,则x 的值为( ) 33||||4AC CB =.若AB BC λ=,则λ34 C.74 3.已知向量a ,b 不共线,设k =+u a b ,2=−v a b ,若//u v ,则实数k 的值为( )A.4.如图所示,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近点C 的三等分点,点F 为线段BC 的中点,则FE =( )A.1151818AB AC −+B.1111189AB AC −+C.114189AB AC −+D.1526AB AC −+第4题图 第5题图 第6题图5.如图,在等边三角形ABC 中,如果3BD DC =,那么向量AB 在向量AD 上的投影向量为( )AD AD AD AD 6.如图,在ABC △中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,如果AM AB λ=,(0,0)AN AC μλμ=>>,那么μ值是( )7−7.单位向量a ,b ,c 满足22−+=0a b c ,则cos ,2〈−〉=a b c ( )8.若AB AC ⊥,||AB t =,1||AC =,ABC 平面内一点,2||||AB AC AP AB AC =+,则的最大值为( )A.13B.二、多项选择题(共2小题)9.已知向量,,其中,则下列说法中正确的是( )A.若,则B.若a 与b 的夹角为锐角,则C.若1x =,则a 在b 上的投影向量为bD.若,则10.在ABC △中,90A ∠=︒,3AB =,4AC =,点D 为线段AB 上靠近A 点的三等分点,E 为CD 的中点,则下列结论正确的是( )A.16AE AB AC = AE 与EB 的夹角的余弦值为 C.AE CD ⋅=三、填空题(共5小题)11.图1是某晶体的阴阳离子单层排列的平面示意图,其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,如果A ,B ,C ,D 是其中四个圆的圆心,那么AB CD ⋅=________.12.已知向量(2,5)=a ,(,4)λ=b ,若//a b ,则λ=________.13.平面向量(1,2)=a ,(4,2)=b ,()m m =+∈R c a b ,且c 与a 的夹角等于c 与b 的夹PB PC ⋅5−−+(1,3)=a (2,2)x x =−b x ∈R ⊥a b 6x =6x <||||||+=+a b a b 27x =角,则m =________.14.在ABC △中,2AB =,3AC =,A =3255AD AB AC =+,则AB 与AD 夹角的大小为________.15.如图,在平行四边形ABCD 中,已知M 是BC 中点,DE AM ⊥于E ,2AB AD =,cos DAB ∠=AB =a ,,以,为基底表示EC ,则EC =________.AD =b a b。

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量(解析版)

在 △ ABC 中, AC= 1,∠ ABC= 60°.
根据圆的性质:同弧所对的圆周角相等.
作 △ ABC 的外接圆,当 BC 为圆的直径时, |a|最大,
8
此时 |a|=BC = 1 =2 3 ; sin 60 ° 3
当 B, C 无限接近时, |a|= BC→0.
故 |a|的取值范围是
23 0,
3
A.9
B.3
C. 109
D. 3 10
【解析】 向量 a= (2,- 4), b= (- 3, x), c= (1,- 1),∴ 2a+b= (1, x- 8),
由 (2a+ b)⊥ c,可得 1+8- x= 0,解得 x=9.则 |b|= - 3 2+ 92= 3 10.故选 D.
【答案】 B
如图,设 M (- 1, 3),则 O→A+ O→B=O→M ,取 N(1,- 3),
∴ O→M=- O→N.由 |C→D |= 1,可知点 D 在以 C 为圆心,半径 r = 1 的圆上, ∴ O→A+ O→B+O→D = O→D -O→N= N→D ,
∴ |O→A+
O→B+
O→D
|=
→ |ND
|,∴
D. [ 7- 1, 7+ 1]
【解析】 法一:设出点 D 的坐标,利用向量的坐标运算公式及向量模的运算公式求
7
解.
设 D(x, y),则由 |C→D |=1, C(3,0),得 (x- 3)2+ y2= 1.
又∵ O→A+ O→B+ O→D = (x- 1,y+ 3) ,
∴ |O→A+ O→B+ O→D |= x- 1 2+ y+ 3 2.
B.2 3
C.2
D.- 3
( ) 【解析】

高考数学(文)《平面向量》专题复习

高考数学(文)《平面向量》专题复习
专题5 平面向量
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

2020年高考数学(理)之平面向量 专题03 平面向量的数量积及应用(解析版)

2020年高考数学(理)之平面向量 专题03  平面向量的数量积及应用(解析版)

平面向量03 平面向量的数量积及应用一、具本目标:1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 考纲解读:1.以考查向量的数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.与三角函数、解析几何等相结合,以工具的形式进行考查,中等难度,但是解决以上问题的桥梁.3.备考重点:(1) 理解数量积的概念是基础,掌握数量积的两种运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,注意运用数形结合的数学思想,通过建立平面直角坐标系,利用坐标运算解题. 二、知识概述: 一)主要公式:1.向量的数量积:已知两个非零向量a r 、b r ,它们的夹角为θ,则r a ·b rθcos . 若a r =(1x ,1y ),b r =(2x ,2y ),则a r ·b r=2121y y x x +.2.向量的模:若a r =(,)x y ,则|a r.3.两向量的夹角余弦值:>=<=,cos cos θa ba b×r r r r.【考点讲解】4.向量垂直的等价条件:a r ⊥b r ⇔0r r a b?⇔02121=+y y x x .二)主要知识点: 1.两个向量的夹角(1)定义:已知两个非零向量和,作OA u u u r =,OB u u u r=,则∠AOB =θ 叫做向量与的夹角.(2)夹角范围:向量夹角θ的范围是0°≤θ≤180°与同向时,夹角θ=0°;与反向时,夹角θ=180°.(3)向量垂直:如果向量与的夹角是90°,则与垂直,记作⊥. 2.平面向量数量积:(1)已知两个非零向量与θ⋅叫做与的数量积,记作⋅,即⋅θcos ,其中θ是与的夹角.规定00=⋅a.当⊥时,θ=90°,这时0r ra b?.(2)⋅的几何意义:数量积⋅等于与在θcos 的乘积.3.向量数量积的性质:(1)=⋅=(2)>=<=,cos cos θa ba b×r r r r (θ为与的夹角). (3≤⋅4.数量积的运算律(1)交换律:⋅=⋅. (2)分配律:()⋅+⋅=⋅+(3)对()()()R λλλλ⋅=⋅=⋅∈,.5.数量积的坐标运算:设()()2211,,,y x b y x a ==,有下面的结论:(1)2121y y x x +=⋅.(2)a r ⊥b r ⇔0r r a b?⇔02121=+y y x x .(3.2121y x +=(4)>=<=b a ,cos cosθr r r r a ba b×=(θ为与的夹角).1.【2019年高考全国I 卷】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【解析】本题考查的是向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【答案】B2.【2019年高考全国II 卷】已知AB u u u r =(2,3),AC u u u r =(3,t ),BC uuu r =1,则AB BC ⋅u u u r u u u r=( ) A .−3 B .−2 C .2 D .3【解析】本题考点为平面向量的数量积.由(1,3)BC AC AB t =-=-u u u r u u u r u u u r,1BC ==u u u r ,得3t =,则(1,0)BC =u u u r ,(2,3)(1,0)21302AB BC ==⨯+⨯=u u u r u u u rg g .故选C .【答案】C3.【2018年高考全国II 卷】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ) A .4 B .3 C .2 D .0【解析】本题主要考查平面向量的数量积.因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a ,所以选B.【真题分析】4.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是( )A 1BC .2D .2【解析】本题主要考查平面向量的夹角、数量积、模及最值问题.设a =(x,y),e =(1,0),b =(m,n), 则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x ,由b 2−4e ·b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1,因此|a −b |的最小值为圆心(2,0)到直线y =±√3x的距离21,为√3−1.选A. 【答案】A5.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB u u u r 与AC u u ur 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积.AB u u u r 与AC u u u r的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22||||AB AC AC AB +>-u u u r u u u r u u u r u u u r ,因为AC AB BC -=u u u r u u u r u u u r ,所以|AB u u u r +AC u u u r |>|BC uuu r|;当|AB u u u r +AC u u u r |>|BC uuu r |成立时,|AB u u u r +AC u u u r |2>|AB u u u r -AC u u u r |2AB ⇒u u u r •AC u u u r >0,又因为点A ,B ,C 不共线,所以ABu u u r与AC u u u r 的夹角为锐角.故“AB u u u r 与AC uuu r 的夹角为锐角”是“|AB u u u r +AC uuur |>|BC u u u r |”的充分必要条件,故选C .【答案】C6.【2018年高考北京卷理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】222222699+63333-=+-=⇔⇔-++⋅=⋅+a a b a b a b a b a b b a a b b ,因为a ,b 均为单位向量,所以2222699+6=0-⋅+=⋅+⇔⋅⇔a a b b a a b b a b a ⊥b ,即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.7.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u r u u u r u u u r u u u r则·BC OM u u u r u u u u r 的值为( )A .15-B .9-C .6-D .0【解析】如图所示,连结MN ,由BM ⃑⃑⃑⃑⃑⃑ =2MA ⃑⃑⃑⃑⃑⃑ ,CN ⃑⃑⃑⃑⃑ =2NA ⃑⃑⃑⃑⃑⃑ 可知点M,N 分别为线段AB,AC 上靠近点A 的三等分点,则BC⃑⃑⃑⃑⃑ =3MN ⃑⃑⃑⃑⃑⃑⃑ =3(ON ⃑⃑⃑⃑⃑⃑ −OM ⃑⃑⃑⃑⃑⃑ ), 由题意可知:OM⃑⃑⃑⃑⃑⃑ 2=12=1,OM ⃑⃑⃑⃑⃑⃑ ⋅ON ⃑⃑⃑⃑⃑⃑ =1×2×cos120∘=−1, 结合数量积的运算法则可得:BC ⃑⃑⃑⃑⃑ ⋅OM ⃑⃑⃑⃑⃑⃑ =3(ON ⃑⃑⃑⃑⃑⃑ −OM ⃑⃑⃑⃑⃑⃑ )⋅OM ⃑⃑⃑⃑⃑⃑ =3ON ⃑⃑⃑⃑⃑⃑ ⋅OM ⃑⃑⃑⃑⃑⃑ −3OM ⃑⃑⃑⃑⃑⃑ 2=−3−3=−6. 本题选择C 选项.【答案】C8.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________. 【解析】向量(4,3),(6,)m =-=⊥,,a b a b 则046308m m ⋅=-⨯+==,,a b . 【答案】89.【2019年高考全国III 卷】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________.【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c22133⋅==⨯⋅a c a c . 【答案】2310.【2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=u u u r u u u r___________.【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则0)B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒,因为AE BE =,所以30BAE ∠=︒, 所以直线BEy x =-, 直线AE的斜率为-y x =.由(3y x y ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以5(,)1)122BD AE =-=-u u u r u u u r g g .【答案】1-11.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则ABAC的值是___________.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r g g g ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r u u u r g g g 22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g , 得2213,22AB AC =u u u r u u u r即,AB =u u u r u u r故ABAC=.12.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r ;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r ; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-313.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】14.【2017年高考山东卷理数】已知12,e e与的夹角为60︒,则实数的值是___________.【解析】∵221212112122)()λλλλ-⋅+=⋅-⋅-=e e e e e e e,12|2-===e,12||λ+===e ecos60λ=︒3λ=.1.已知向量(1,2)a=r,(1,1)b=-r,则()(2)a b a b+•-=r r r r()A.2 B.-2 C.-3 D.4【解析】因)4,1(2),1,2(-=-=+baba,故224412)1()2()(=-=⨯+⨯-=-⋅+baba,应选A. 【答案】A2.已知非零向量m,n满足4│m│=3│n│,cos<m,n>=13.若n⊥(t m+n),则实数t的值为()A.4B.–4C.94D.–94【解析】由43m n=u r r,可设3,4(0)m k n k k==>u r r,又()n tm n⊥+r u r r,所以22221()cos,34(4)41603n tm n n tm n n t m n m n n t k k k tk k⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+=r u r r r u r r r u r r u r r r.所以4t=-,故选B.【答案】B12-e12λ+e eλ∴【模拟考场】3.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( )A.85-B.81 C.41 D.811【解析】设BA a =u u u r r ,BC b =u u u r r ,∴11()22DE AC b a ==-u u u r u u u r r r ,33()24DF DE b a ==-u u u r u u u r r r,1353()2444AF AD DF a b a a b =+=-+-=-+u u u r u u u r u u u r r r r r r ,∴25353144848AF BC a b b ⋅=-⋅+=-+=u u u r u u u r r r r ,故选B.【答案】B4.已知向量a r 与b r 的夹角为60°,||2a =r ,||5b =r,则2a b -r r 在a r 方向上的投影为( )A .23 B .2 C .52 D .3【解析】由已知条件可知,2a b -r r 在a ra b a 2,其中()360cos 2=⋅-=⋅-=⋅-ο.23=.【答案】A5. 在ABC ∆中,已知tan AB AC A ⋅=u u u r u u u r ,当6A π=时,ABC ∆的面积为________.【解析】本题考点是平面向量的数量积、三角函数同角关系、三角形的面积公式的应用.由题意可知tan AB AC A ⋅=u u u r u u u r 得,⋅=u u u r u u u rAB AC tantan 26||||cos tan ,||||cos 3cos 6A AB AC A A AB AC A ππ⋅=⋅===u u u r u u u r u u u r u u u r , 所以,11221||||sin sin 223636ABC S AB AC A π∆=⋅=⨯⨯==u u u r u u u r .【答案】166.已知向量,,21==,若对任意单位向量,均有6≤⋅+⋅ ,则⋅的最大值是 .【解析】本题考点是平面向量的数量积及不等式的性质的具体应用.由题意可知221|(a b)||a ||b ||a b ||a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅+≤++⋅≤⇒⋅≤r r r r r r r r r r r r r r r ,即最大值为12.【答案】127.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r则AE AF ⋅u u u r u u u r 的值为 .【解析】本题考点是平面向量的数量积及向量的线性运算, 在等腰梯形ABCD 中,由AB ∥DC ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r ,12DC AB =u u u r u u u r,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r =⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+12132 221131218=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u rAB AD BC AD AB BC AB111291331818=++-=【答案】29188.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】本题考点是平面向量的线性运算及数量积的运算,由题意可设==,,则()()433=-=+-⋅+=⋅b a b a CABA ,()()1-=-=+-⋅+=⋅,.85813==则()().8722=-=+-⋅+=⋅【答案】789.设向量()2log 3,a m =r,()3log 4,1b =-r ,且a b ⊥r r ,则m 的值为__________.【解析】因为a b ⊥rr ,所以有0r r a b?,可以得到23log 3log 40m -=,则23lg3lg4log 3log 42lg2lg3m ==⨯=,应填答案2. 【答案】210.在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r ,且4AD AE ⋅=-u u u r u u u r,则λ的值为___________.【解析】由题意可知:360cos ==⋅ο,()32313232+=-+=+=,()-⋅⎪⎭⎫⎝⎛+=⋅λ3231=433293143233-=⨯-⨯-⨯+⨯λλ, 所以可得113=λ. 【答案】11311.已知3a =r , 4b =r , 0a b ⋅=r r ,若向量c r 满足()()0a c b c -⋅-=r r r r,则c r 的取值范围是__________.【解析】易知5a b +=r r ,由()()0a c b c -⋅-=r r r r,且0a b ⋅=r r ,可得:()2cos ,5cos ,=+=+⋅+=+r r r r r r r r r r r r r r c a b c a b c a b c c a b c .所以0c =r 或5cos ,c a b c =+r r rr,由此可得c r的取值范围是[]0,5. 【答案】[]0,512.已知两个不共线的向量b a ,,它们的夹角为θ13==,x 为正实数.(1)若b a 2+与b a 4-垂直,求tan θ;(2)若θ=π6,求x -的最小值及对应的x 的值,并判断此时向量与x -是否垂直.【解析】(1)因为2+与4-垂直,所以()()042=-⋅+.所以08222=-⋅-b b a a ,所以32-2×3×1×cos θ-8×12=0, 所以cos θ=16,又θ∈(0,π),sin θ=1-cos 2θ=356,所以tan θ=sin θcos θ=35.。

2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)

2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)

5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。

2020年高考理科数学一轮复习题型归纳与变式演练专题05《平面向量》

2020年高考理科数学一轮复习题型归纳与变式演练专题05《平面向量》

【变式 1】已知平面内有一点 P 及一个 △ABC ,若 PA PB PC AB ,则
5
() A .点 P 在 △ABC 外部 C.点 P 在线段 BC 上
【答案】 D
B.点 P 在线段 AB 上 D.点 P 在线段 AC 上
【 解 析 】 ∵ PA PB PC AB , ∴ PA PB PC AB 0 , 即
【变式 3】如图,在△ABC 中,AD ⊥ AB ,BC 3BD ,| AD | 1,
则 AC AD ________.
【答案】 3
【解析】 建系如图所示 : 令 B( xB,0),C(xC, yC),D(0,1),
∴ BC ( xC xB, yC ) , BD ( xB,1) , BC 3BD ,
①直线 OC 与直线 BA 平行;② AB BC CA ;③ OA OC OB ;④
AC OB 2OA .
其中正确结论的个数是(

A.1 B.2 【答案】 C
C.3
D.4
2
【解析】 kOC 1 2
1 , kBA 2 1
2
02
∵ AB BC AC ,∴②错误;
1 ,∴ OC∥ AB ,①正确; 2
∵ OA OC (0, 2) OB ,∴③正确;
2020 年高考理科数学一轮复习题型归纳与变式演练专题 【题型一】平面向量的相关概念 【题型二】平面向量的加减及其线性运算 【题型三】平面向量的基本定理、坐标表示及综合应用 【题型四】数量积的概念 【题型五】数量积的综合应用 【题型一】、平面向量的相关概念
例 1. 下列说法中正确的是
05《平面向量》
AB , BD 共线, 又 它们有公共点 B , A , B , D 三点共线 . (2) ka + b 和 a + kb 共线, 存在实数 ,使 k a + b (a + k b) ,

2020届高考数学(理)一轮必刷题 专题25 平面向量基本定理及坐标表示(解析版)

2020届高考数学(理)一轮必刷题 专题25 平面向量基本定理及坐标表示(解析版)

考点25 平面向量基本定理及坐标表示1、已知向量a =(3,-4),b =(x ,y ).若a ∥b ,则( ) A .3x -4y =0 B .3x +4y =0 C .4x +3y =0 D .4x -3y =0【答案】C【解析】∵a ∥b ,∴3y +4x =0.故选C.2、已知向量a =(5,2),b =(-4,-3),c =(x ,y ).若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0) D .(-7,0)【答案】A【解析】由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x ,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3、若AC 为平行四边形ABCD 的一条对角线,AB →=(3,5),AC →=(2,4),则AD →=( ) A .(-1,-1) B .(5,9) C .(1,1) D .(3,5)【答案】A【解析】由题意可得AD →=BC →=AC →-AB →=(2,4)-(3,5)=(-1,-1). 4、已知平面向量a =(1,-2),b =(2,m ).若a ∥b ,则3a +2b =( ) A .(7,2) B .(7,-14) C .(7,-4) D .(7,-8)【答案】B【解析】∵a ∥b ,∴m +4=0,∴m =-4,∴b =(2,-4),∴3a +2b =3(1,-2)+2(2,-4)=(7,-14). 5、设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .0【答案】B【解析】因为a 与b 方向相反,故可设b =m a ,m <0,则有(4,x )=m (x,1),所以⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,所以m =-2,x =m =-2.6、设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6)【答案】D【解析】设d =(x ,y ),由题意知4a =4(1,-3)=(4,-12),4b -2c =4(-2,4)-2(-1,-2)=(-6,20),2(a -c )=2[(1,-3)-(-1,-2)]=(4,-2).又4a +(4b -2c )+2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).7、已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( ) A.⎝⎛⎭⎫-12,5 B .⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5 D .⎝⎛⎭⎫-12,-5 【答案】D【解析】AC →=AB →+AD →=(-2,3)+(3,7)=(1,10).∴OC →=12AC →=⎝⎛⎭⎫12,5.∴CO →=⎝⎛⎭⎫-12,-5. 8、在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC →|=2.若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2B . 2C .2D .42【答案】A【解析】因为|OC →|=2,∠AOC =π4,所以点C 的坐标为(2,2).又OC →=λOA +μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=22.9、已知向量()sin ,2x =a ,()cos ,1x =b ,满足∥a b ,则.【答案】【解析】因为向量()sin ,2x =a ,()cos ,1x =b ,∥a b ,sin 2cos 0x x ∴-=,tan 2x =,10、若A (1,-5),B (a ,-2),C (-2,-1)三点共线,则实数a 的值为________. 【答案】-54【解析】AB →=(a -1,3),AC →=(-3,4),由题意知AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.11、已知向量()12,=-m ,(),4x =n ,若⊥m n ,则2+=m n __________. 【答案】10【解析】由题意可得:240x ⋅=-+⨯=m n ,8x ∴=, 即()1,2=-m ,()8,4=n ,则()()()22,48,46,8+=-+=m n , 据此可知:210+=m n .12、在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点.若 P A →=(4,3),PQ →=(1,5),则BC →=________. 【答案】(-6,21)【解析】∵AQ →=PQ →-P A →=(1,5)-(4,3)=(-3,2),∴AC →=2AQ →=2(-3,2)=(-6,4).又PC →=P A →+AC →=(4,3)+(-6,4)=(-2,7),∴BC →=3PC →=3(-2,7)=(-6,21).11.(2018青海西宁质检)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示.若AC →=λAB →+μAD →,则λμ=________. 【答案】-3【解析】建立如题图所示的平面直角坐标系xAy ,则AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧ 2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.13、P ={a|a =(-1,1)+m (1,2),m ∈R },Q ={b|b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =________. 【答案】{(-13,-23)}【解析】集合P 中,a =(-1+m,1+2m ),集合Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23).14、已知点()4,1A ,()1,5B ,则与向量AB 方向相同的单位向量为________. 【答案】34,55⎛⎫- ⎪⎝⎭【解析】()()()154134AB =-=-,,,,5AB =,∴与向量AB 方向相同的单位向量为34,55⎛⎫- ⎪⎝⎭. 16.已知()2,3A ,()4,3B -,点P 在线段AB 的延长线上,3AP PB =,则点P 的坐标是____________. 【答案】()8,15-【解析】因为P 在AB 的延长线上,故AP ,PB 共线反向,故3AP PB =-,设(),P x y , ,解得815x y ==-⎧⎨⎩,P 的坐标为()8,15-,故填()8,15-.15、给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB →上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.【解】以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则点A 的坐标为(1,0),点B 的坐标为⎝⎛⎭⎫-12,32,设∠AOC =α⎝⎛⎭⎫α∈⎝⎛⎭⎫0,2π3,则点C 的坐标为(cos α,sin α), 由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =2 33sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6, 又α∈⎣⎡⎦⎤0,2π3,则α+π6∈⎣⎡⎦⎤π6,5π6. 所以当α+π6=π2,即α=π3时,x +y 取得最大值2.16、已知向量()1,3=a ,()2,2=-b , (1)设2=+c a b ,求()⋅b a c ; (2)求向量a 在b 方向上的投影.【答案】(1)()16,16--;(2) 【解析】(1)()()()2,62,24,4=+-=c ,()()26416,16⋅=-=-⇒⋅=--b a b a c .(2)向量a 在b 方向的投影17,()sin ,cos x x =n , (1)若⊥m n ,求tan x 的值;(2)若向量m ,n【答案】(1)tan 1x =;(2)12.【解析】(1)由⊥m n 可得0⋅=m n ,即sin cos 022x x -=, 化简可得sin cos x x =,则tan 1x =.(2而由m ,n )1sin cos 2x x -=,18、如图,在OAB △中,点P 为直线AB 上的一个动点,且满足AP AB λ=. (1)若13λ=,用向量OA ,OB 表示OP ; (2)若4OA =,3OB =,且60AOB ∠=︒,请问λ取何值时使得OP AB ⊥?)213OP OA OB =+;213)由题意得1AP AB =,∴()1OP OA OB OA -=-,∴21OP OA OB =+.(2)由题意知43cos606OA OB ⋅=⨯⨯︒=.∵AP AB λ=, ∴()OP OA OB OA λ-=-,∴()1OP OA OB λλ=-+.∵OP AB ⊥,∴()()10OP AB OA OB OB OA λλ⎡⎤⋅=-+⋅-=⎣⎦,∴()()()()2212161216190OA OB OA OB λλλλλλ+-⋅--=---+=,。

2020年高考数学23道题必考考点各个击破精讲主题12 平面向量(含详细答案解析)

2020年高考数学23道题必考考点各个击破精讲主题12 平面向量(含详细答案解析)

2020年新课标高考数学23道题必考考点各个击破(按题号与考点编排)主题12 平面向量【主题考法】本热点考查形式为择题或填空题,主要考查平面向量的概念与向量的线性运算、平面向量 基本定理与平面向量的数量积的概念、运算法则及性质,考查利用平面向量的知识计算向量的夹角、长度及最值或范围问题,考查分运算求解能力、数形结合思想,以向量为工具和载体与其他知识交汇命题的也是命题的一个方向,难度为基础题或中档题,分值为5分.【主题考前回扣】 1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 2.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 3.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 4.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=x 2-x 12+y 2-y 12.学-科网5.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 6.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A . (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0. 7.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP →=12(OA →+OB →).(3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3. 【易错点提醒】1.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.2.a·b >0是〈a ,b 〉为锐角的必要不充分条件; a·b <0是〈a ,b 〉为钝角的必要不充分条件. 3.注意向量的数量积不满足消去率和结合律4.用向量夹角处理夹角问题时,要注意所求角与向量夹角的关系. 【主题考向】考向一 平面向量的概念与线性运算【解决法宝】1.对平面向量的线性运算问题,若已知向量的坐标或易建立坐标系,常用坐标法,否则利用三角形法则和平行四边形法则处理向量的线性运算,一般地,共起点的向量利用平行四边形法则,差用三角形法则.当M 是BC 的中点,AM =)(21AC AB +应作为公式记住.2.对向量共线问题,要熟记平面向量共线的充要条件,①b a //(0≠a )⇔存在唯一实数λ,使得a b λ=;②已知),(11y x a =,),(22y x b =,则b a //⇔01221=-y x y x ,处理选择合适的方法.例1已知向量()2,1a =, (),1b x =,若a b +与a b -共线,则实数x 的值是( ) A. 2- B. 2 C. 2± D. 4【分析】求出向量a b +与a b -的坐标,利用向量共线的充要条件的坐标形式列出关于x 的方程,即可求出x 的值.【解析】由()2,1a =, (),1b x =,则()2,2a b x +=+, ()2,0a b x -=-, 因为a b +与a b -共线,所以()()2022x x +⨯=-,解得2x =,故选B . 考向二 平面向量基本定理【解决法宝】平面向量的线性表示,常选择已知不共线的向量为基底,常从未知向量开始,逐步构造三角形,最终用已知向量表示出来,即直接法;也可用待定系数法,即所要表示的向量用基底表示出来,用两种不同逐步构造三角形的方法所要表示的向量表示出来,再利用平面向量基本定理即可列出关于参数的方程,解出参数,即可所要表示向量的表示形式,其中回路法是解题的常用方法,回路即向量从一点出发,通过一个的图形又回到起点的那个通路,构成一个回路.回路法的关键是利用条件,将我们关心的两个向量列成比例式,关联题设条件,最后将向量分解成共线形式,问题迎刃而解.例2 已知AB u u u v 与AC u u u v 的夹角为90°,()2,1,,AB AC AM AB AC R λμλμ===+∈u u u r u u u r u u u v u u u v u u u u v,且0AM BC =u u u u r u u u r g ,则λμ的值为 .【分析】建立直角坐标系,用坐标法及0AM BC =u u u u r u u u rg 列出关于μλ,的方程,解出μλ,的值,即可求出λμ的值.例3已知在△ABC中,D为边BC上的点,且BD=3DC,点E为AD的中点,,则=_________.【答分析】通过构造三角形,利用向量加法的三角形法则逐步将未知向量用已知向量表示出来.【解析】如图:.又,所以,所以.又因为与不共线,所以,,所以.考向三平面向量的数量积【解决法宝】1.在解决与平面几何有关的数量积问题时,充分利用向量的线性运算,将所求向量用共同的基底表示出来,在利用平面向量的数量积数量积运算法则求解.2.计算向量b在向量a方向上的投影有两种思路:思路1,用|b|cosθ计算;思路2,利用•a b |a|计算.3.在计算向量数量积时,若一个向量在另一个向量上的投影已计算,可以利用向量数量积的几何意义计算.4.利用向量数量积研究垂直问题时注意给出的形式:可以用定义式,也可以用坐标式.5.对于长度问题,可以用向量的模来处理,若向量a 是非坐标形式,用==•22|a |a a a 求模长;若给出向量a 的坐标,则用|a |=2211x y +来求解.学-科网例4若非零向量,a b r r满足223a b =r r ,且()()32a b a b -⊥+r r r r ,则a r 与b r 的夹角为( ) A .4π B .3π C .2π D .34π【分析】利用向量垂直的充要条件,计算出a r 与b r 的数量积与a r 、b r模的关系,再利用向量夹角公式,即可求出向量a r 与b r的夹角.【解析】()()()()22223232=03203a b a b a b a b a b a b a b b -⊥+⇒-⋅+⇒--⋅=⇒⋅=r r r r r r r r r r r r r r r所以22223cos ,,.2422||||3b a b a b a b a b b π⋅<>===⇒<>=r r r r r r r r r r 选A. 考向四 向量与其他知识的交汇【解题法宝】对向量与其他知识结合的综合问题,有两种思路,思路1:需要将题中以向量形式给出的条件利用相关公式化为代数代数条件或几何条件,结合相关知识解题;思路2:将题中平行、垂直、角、长度等问题,运用向量的相关知识,转化为向量问题去处理. 例5在ABC ∆中, BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅u u u v u u u v u u u v u u u v的最小值为( ) A. 1 B. 2 C. -2 D. -1【分析】以BC 边的中点为原点,BC 上的中线为y 轴建立坐标系,设P(x,y),将PA PB PA PC ⋅+⋅u u u v u u u v u u u v u u u v 用x,y表示出来,再求出其范围. 【解析】建立如图所示的平面直角坐标系,使得点D 在原点处,点A 在y 轴上,则()0,2A .设点P 的坐标为(),x y ,则()(),2,,PA x y PO x y =--=--u u u r u u u r , 故()()22222PA PB PA PC PA PB PC PA PO x y y ⋅+⋅=⋅+=⋅=+-u uu r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()222122x y ⎡⎤=+--≥-⎣⎦,当且仅当0,1x y ==时等号成立. 所以PA PB PA PC ⋅+⋅u u u r u u u r u u u r u u u r的最小值为2-.选C . 【主题集训】1.在ABC ∆中,若4AB AC AP +=u u u v u u u v u u u v ,则CPu u u v =( ) A. 3144AB AC -u u u v u u u v B. 3144AB AC -+u u uv u u u vC. 1344AB AC -u u u v u u u vD. 1344AB AC -+u u uv u u u v【答案】C【解析】由题意得4AB AC AP +=u u u v u u u v u u u v =()4AB CP +u u u v u u u v ,解得CP u u u v =1344AB AC -u u u v u u u v,选C.2. 已知向量()2,3a =r, ()1,2b =-r ,若ma b +r r 与2a b -r r 垂直,则实数m 的值为( )A. 65-B. 65C. 910D. 910-【答案】B【解析】()()21,32,24,1ma b m m a b +=-+-=-v vv v ,由于两个向量垂直,所以()()21,324,18432560m m m m m -+⋅-=---=-=,解得65m =,故选B. 3.若两个非零向量a r , b r 满足2a b a b b +=-=r rr r r ,则向量a b +r r 与a r 的夹角为( )A.6π B. 3π C. 23π D. 56π 【答案】A4.已知向量()1,3a =v , (),23b m m =-v ,平面上任意向量c v都可以唯一地表示为(),c a b R λμλμ=+∈v v v,则实数m 的取值范围是( ). A. ()(),00,-∞⋃+∞ B. (),3-∞ C. ()(),33,-∞-⋃-+∞ D. [)3,3- 【答案】C【解析】根据平面向量基本定理可知,若平面上任意向量c r都可以唯一地表示为(),c a b R λμλμ=+∈r r r,则向量a r , b r 不共线,由()1,3a =r , (),23b m m =-r 得233m m -≠,解得3m ≠-,即实数m 的取值范围是()(),33,-∞-⋃-+∞,故选C .5.已知向量 AB AC AD u u u ru u u ru u u r,,满足 2 1AC AB AD AB AD =+==u u u r u u u r u u u r u u u r u u u r,,, E F ,分别是线段 BC CD,的中点,若54DE BF ⋅=-u u u r u u u r,则向量AB u u u r 与AD u u u r的夹角为( ) A .6πB .3π C.23π D .56π 【答案】B【解析】 22AD ABDE AB BF AD =-=-u u u r u u u r u u u r u u u r u u u r u u u r ,,∴225555224244AB AD AD AB DE BF AB AD ⋅⋅=--+=-+⋅=-u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r .∴1AB AD ⋅=u u u r u u u r ,1cos 2AB AD <>=u u u r u u u r ,,∴AB u u u r 与AD u u u r 的夹角为3π.选B. 6.在ABC ∆中, BC 边上的中线AD 的长为2, 26BC =,则AB AC ⋅=u u u v u u u v( ) A. 1 B. 2 C. -2 D. -1 【答案】C【解析】()()()()22462AB AC AD DB AD DC AD DB AD DB AD DB ⋅=++=+-=-=-=-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,故选C.7已知ABC ∆的外接圆半径为1,圆心为点O ,且3450OA OB OC ++=u u u r u u u r u u u r r ,则OC AB u u u r u u u rg 的值为( )A .85B .75 C. 15- D .45【答案】C【解析】因为3450OA OB OC ++=u u u r u u u r u u u r r ,所以453OB OC OA +=-u u u r u u u r u u u r,所以2221640259OB OB OC OC OA +⋅+=u u u r u u u r u u u r u u u r u u u r ,又因为1OA OB OC ===u u u r u u u r u u u r ,所以45OB OC ⋅=-u u u r u u u r ,同理可求35OA OC ⋅=-u u u r u u u r ,所以431()()555OC AB OC OB OA ⋅=⋅-=---=-u u u r u u u r u u u r u u u r u u u r ,故选C.8.已知BC 是圆O 的直径, H 是圆O 的弦AB 上一动点, 10BC =, 8AB =,则HB HC⋅u u u r u u u r的最小值为( )A. 4-B. 25-C. 9-D. 16- 【答案】D9.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈u u u v u u u v u u u v,且点P 落在四边形ABNM 内(含边界),则12y x y +++的取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦B .13,34⎡⎤⎢⎥⎣⎦C .13,44⎡⎤⎢⎥⎣⎦D .12,43⎡⎤⎢⎥⎣⎦【答案】C【解析】分三种情况讨论:①当P 在线段AB 上时,设BP PA λ=u u u r u u u r,则1OB OA OP λλ+=+u u u r u u u ru u u r .由于(),OP xOA yOB x y =+∈R u u ur u u u r u u u r ,所以1x λλ=+,11y λ=+,故1x y +=;②当P 在线段MN 上时,设MP PN λ=u u u r u u u r,则1OM ON OP λλ+=+u u u u r u u u r u u u r .由于()11,22OP xOA yOB xOM yON x y R =+=+∈u u u r u u u r u u u r u u u u r u u u r ,所以121x λλ=+,1121y λ=+,故2x y +=;③当在阴影部分内(含边界),则113,244y x y +⎡⎤∈⎢⎥++⎣⎦,故选C .10.在中,为的重心,过点的直线分别交,于,两点,且,,则( )A. B. C. D. 【答案】A【解析】因为为三角形的重心,所以,又,,所以,,所以,因为三点共线,所以,故,故选A.11.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE CD =,若点P 为CD 的中点,且AP AB AE λμ=+u u u r u u u r u u u r,则λμ+=( )A .3B .52C .2D .1 【答案】B【解析】由题意,不妨设正方形的边长为1,建立如图所示的直角坐标系,则(0,0),(1,0),(1,1)A B E -,1(,1)2P ,所以1(,1)2AP=u u u r ,(1,0)AB =u u u r ,(1,1)AE =-u u u r ,所以由1(,)(,1)2AP AB AE λμλμμ=+=-=u u u r u u u r u u u r ,得121λμμ⎧-=⎪⎨⎪=⎩,即321λμ⎧=⎪⎨⎪=⎩,所以52λμ+=,故选B .11.在中,是的中点,是上一点,且,则的值是( )A.B.C.D.【答案】A 【解析】,所以,选A.12.设向量a r ,b r 满足||1a =r ,||3a b +=r r ,()0a a b ⋅+=r r r ,则|2|a b -=r r( ) A .2 B .23 C .4 D .43【答案】B【解析】||1a =r Q ,||3a b +=r r,()22222||32322a b a b a b b a b ∴+=⇒+⋅+=∴⋅+=r r r r r r r r r ,又22()00,1a a b a a b a b a ⋅+=∴+⋅=⋅=-=-r r r r r r r r r Q ,故由222b a b ⋅+=r r r 可得24,2b b ==r r,则222|2|4444412|2|23a b a ab b a b -=-+=++=∴-=r r r r r r r r ,选B 13.在直角坐标系中,已知三点若向量与在向量方向上的投影相同,则的最小值为( )A. 2B. 4C.D.【答案】D 【解析】向量在向量方向上的投影相同,,,,在直线上,的最小值为原点到直线距离的平方,因为,所以的最小值为,故选D. 14.已知是的重心,过点作直线与,交于点,且,,,则的最小值是( )A. B. C. D.【答案】D 【解析】如图三点共线, ∵是的重心,解得, 结合图象可知令故故当且仅当等号成立,故选D15.已知平面向量,,a b c r r r 满足: 5a b ==r r , 0a b ⋅=r r , 2,3c a c b π--=r r r r , 23c a -=r r ,则a b -r r 与c b -rr 的夹角正弦值为 _____________【答案】3210【解析】由题意得25,,,233OA OB OA OB BCA AC π==⊥∠==,即求sin CBA ∠,如下图,所以52,sin sin AC ABAB CBA BCA ==∠∠, 2352332,sin sin 103522CBA CBA =∠==∠,填3210。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 高一平面向量复习专题
一、选择题
1.化简AC -BD +CD -AB 得()
A.AB B.DA C.BC D.0
2.设a0 , b0 分别是与a, b 向的单位向量,则下列结论中正确的是()
A.a0 =b0B.a ⋅b = 1C.| a0 | + | b0 |= 2 D.| a0 +b0 |= 2
0 0
3.已知下列命题中:
(1)若k ∈R ,且kb = 0 ,则k = 0 或b = 0 ,
(2)若a ⋅b = 0 ,则r
= 0 或b = 0
(3)若不平行的两个非零向量a, b ,满足| a |=| b |,则(a +b) ⋅ (a -b) = 0
(4)若a 与b 平行,则a g b =| a | ⋅ | b | 。

其中真命题的个数是()
A.0 B.1 C.2 D.3
4.下列命题中正确的是()
A.若a⋅b=0,则a=0 或b=0
B.若a⋅b=0,则a∥b
C.若a∥b,则a 在b 上的投影为|a|
D.若a⊥b,则a⋅b=(a⋅b)2
r
5.已知平面向量a = (3,1) ,b = (x, -3) ,且a ⊥b ,则x =()
A.-3 B.-1 C.1 D.3
6.已知向量a = (cos, sin) ,向量b = ( 3,-1) 则| 2a -b | 的最大值,最小值分别是()
A.4 2,0 B.4, 4 C.16, 0 D.4, 0
7.下列命题中正确的是()
A.OA -OB =AB B.AB +BA = 0
C.0 ⋅AB = 0 D.AB +BC +CD =AD
1
2
2 3 2 7 10 13 a r
r
u u u r u u u r
8. .设点 A (2, 0) , B (4, 2) , 若点 P 在直线 AB 上,且 AB = 2 AP
,则点 P 的坐标为(

A . (3,1)
B . (1, -1)
C . (3,1) 或(1, -1)
D .无数多个
9. 若平面向量b 与向量 a = (1,-2) 的夹角是180o
,且| b |= 3
A . (-3,6)
B . (3,-6)
C . (6,-3)
D . (-6,3)
,则b = ( )
10.向量 a = (2, 3) , b = (-1, 2) ,若 ma + b 与 a - 2b 平行,则 m 等于( )
A . -2
B . 2
C . 1
D . - 1
2 2
11.若 a , b 是非零向量且满足(a - 2b ) ⊥ r
, (b - 2a ) ⊥ b ,则 a 与b 的夹角是( )
A .
B . 6
C . 3 2 5
D .
3 6
r 3 r 1
12.设 a = ( , sin ) , b = (cos , ) ,且a // b ,则锐角为( )
2 3
A . 30
B .
600 C . 750 D . 450
13.若三点 A (2, 3), B (3, a ), C (4, b ) 共线,则有( )
A . a = 3, b = -5
B . a - b +1 = 0
C . 2a - b = 3
D . a - 2b = 0
14.设 0 ≤< 2,已知两个向量 OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),
则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 2
15. 下列命题正确的是( )
A .单位向量都相等
B .若 a 与b 是共线向量, b 与c 是共线向量,则 a 与c 是共线向量( )
C .| a + b | =| a - b | ,则 a ⋅ b = 0
D .若 a 0 与b 0 是单位向量,则 a 0 ⋅ b 0 = 1
r 0
r r 16. 已知 a , b 均为单位向量,它们的夹角为60 ,那么 a + 3b = ( )
A .
B .
C .
D . 4
5 3
5 r r
17.
已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为( )
A .
B .
C .
D .
6
4
3
2
18.若平面向量b 与向量 a = (2,1) 平行,且| b |= 2 , 则 b = ( )
A . (4,2)
B . (-4,-2)
C . (6,-3)
D . (4,2) 或(-4,-2)
二、填空题
1.若OA = (2,8) , OB = (-7,2) ,则 1
AB =
3
2.平面向量 a , b 中,若 a = (4, -3) , b =1,且 a ⋅ b = 5 ,则向量b =
r r r r
3.
若 a = 3 , b = 2 ,且 a 与b 的夹角为600
,则 a - b =
4. 把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是
5. 已知 a = (2,1) 与b = (1,2) ,要使 a + tb 最小,则实数t 的值为
6.
若| a |= 1,| b |= 2, c = a + b ,且c ⊥ a ,则向量a 与b 的夹角为





→ →
7.已知向量 a = (1, 2) , b = (-2, 3) , c = (4,1) ,若用 a 和 b 表示 c ,则 c =
r r
8.若 a = 1 , b = 2 , a 与b 的夹角为600 ,若(3a + 5b ) ⊥ (ma - b ) ,则 m 的值为
u u u r u u u r u u u r 9.若菱形 ABCD 的边长为2 ,则 AB - CB + CD =




10.若 a = (2,3) , b = (-4,7) ,则 a 在 b 上的投影为
r r
11.已知向量 a = (cos , sin ) ,向量b = ( 3, -1) ,则 2a - b 的最大值是
12.若 A (1, 2), B (2, 3), C (-2, 5) ,试判断则△ABC 的形状
13.若 a = (2, -2) ,则与 a 垂直的单位向量的坐标为
14.若向量| a |= 1,| b |= 2,| a - b |= 2, 则| a + b |=
r 15.平面向量 a , b 中,已知 a = (4, -3) , b = 1,且 a ⋅ b = 5 ,则向量b =
三、解答题
1.如图,平行四边形ABCD 中,E, F 分别是BC, DC 的中点,G 为交点,若AB =a ,AD
=b ,试以a ,b 为基底表示DE 、BF 、CG .
D F C
G E
A B
2.已知向量a 与b 的夹角为60o ,| b |= 4 ,(a + 2b) ⋅ (a - 3b) =-72 ,求向量a 的模。

→→→→
3.已知点B(2, -1) ,且原点O 分AB 的比为-3 ,又b = (1, 3) ,求b 在AB 上的投影。

4.已知a = (1, 2) , b = (-3,2) ,当k 为何值时,
(1)ka +b 与a - 3b 垂直?
(2)ka +b 与a - 3 b 平行?平行时它们是同向还是反向?
5.求与向量a = (1, 2),b = (2,1) 夹角相等的单位向量c 的坐标.
r r r r r r r
6.设非零向量a, b, c, d ,满足d = (a ⋅c )b - (a ⋅b )c ,求证:a ⊥d
3 r a
a cos x a y ka 7.已知a = (cos
,sin ) , b = (cos ,sin ) ,其中0 << <

r r
(1)
求证: a + b 与 a - b 互相垂直;
(2)
若 ka +b 与r
-kb 的长度相等,求-的值( k 为非零的常数).
r r
8. 已知 a , b , c 是三个向量,试判断下列各命题的真假.
r r r r r
(1)
若 a ⋅ b = a ⋅ c 且 a ≠ 0 ,则b = c
(2) 向量 a 在b 的方向上的投影是一模等于r
(是 a 与b 的夹角),方向与 a 在b
相同或相反的一个向量.
r r 1 9.
平面向量 a = ( 3, -1), b = ( , ) ,若存在不同时为0 的实数 k 和t ,满足条件:
2 2
r = r + (t 2
- 3)b , r = - r + tb ,且 x ⊥ y ,试求函数关系式 k =
f (t ) 。

10.
如图,在直角△ABC 中,已知 BC = a ,若长为2a 的线段 PQ 以点 A 为中点,问 PQ 与BC
的夹角
取何值时 BP ⋅ CQ 的值最大?并求出这个最大值。

相关文档
最新文档