2018合肥1模数学(文)
安徽省合肥市2018届高三第一次教学质量检测数学理试题含Word版含解析

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.安徽省合肥市 2018 届高三第一次教学质量检测 数学理试题 第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1. 已知为虚数单位,则()A. 5 B.C.D.【答案】A【解析】由题意可得:.本题选择 A 选项.2. 已知等差数 ,若,则 的前 7 项的和是( )A. 112 B. 51 【答案】CC. 28D. 18【解析】由等差数列的通项公式结合题意有:,求解关于首项、公差的方程组可得:,则数列的前 7 项和为: 本题选择 C 选项. 3. 已知集合 是函数.的定义域,集合 是函数的值域,则A.B.C.且D.【答案】B【解析】函数有意义,则:,即,结合二次函数的性质可得函数的值域为,即:,结合交集的定义可得:.本题选择 B 选项.()文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.4. 若双曲线的一条渐近线方程为,该双曲线的离心率是( )A.B.C.D.【答案】C【解析】双曲线的焦点位于 轴,则双曲线的渐近线为,结合题意可得: ,双曲线的离心率:,本题选择 C 选项. 5. 执行如图程序框图,若输入的 等于 10,则输出的结果是( )A. 2 B.C.D.【答案】C【解析】结合流程图可知程序运行如下:首先初始化数据,此次循环满足 ,执行:,;此次循环满足 ,执行:,;此次循环满足 ,执行:,;此次循环满足 ,执行:,;此时的值出现循环状态,结合输入的 值为 ,而执行:,;可知最后一次循环时:此次循环不满足 ,输出 .本题选择 C 选项.6. 已知某公司生产的一种产品的质量 (单位:克)服从正态分布.现从该产品的生产线上随机抽取 10000 件产品,其中质量在内的产品估计有( )(附:若 服从,则,)文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.A. 3413 件 B. 4772 件 C. 6826 件 D. 8185 件【答案】D【解析】由题意可得,该正态分布的对称轴为,且 ,则质量在内的产品的概率为,而质量在内的产品的概率为,结合对称性可知,质量在内的产品估计有,据此估计产品的数量为:件.本题选择 D 选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记 P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与 x 轴之间面积为 1.7. 将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则 的可能取值为( )A.B.C.D.【答案】D【解析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择 D 选项. 8. 已知数列 的前 项和为 ,若A.B.C.,则 D.()文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.【答案】A【解析】由题意可得:,两式作差可得:,即,,结合可得:,则数列是首项为 ,公比为 的等比数列,据此有:,.本题选择 A 选项.9. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.B.C.D.【答案】C【解析】由三视图可得,该几何体是一个组合体,左右两端为半径为 的半球,中间部分为底面半径为 ,高为 的半个圆柱,其中球的表面积,半圆柱的侧面积,半圆柱裸露的面积,半球裸露的面积,综上可得,该几何体的表面积本题选择 C 选项.10. 已知直线与曲线. 相切(其中为自然对数的底数),则实数的值是( )A.B. 1 C. 2 D.【答案】B【解析】由函数的解析式可得:,则切线的斜率:,令可得:,则函数在点,即处的切线方程为:,整理可得:,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.结合题中所给的切线的斜率有:.本题选择 B 选项. 11. 某企业生产甲、乙两种产品,销售利润分别为 2 千元/件、1 千元/件.甲、乙两种产品都 需要在 两种设备上加工,生产一件甲产品需用 设备 2 小时, 设备 6 小时;生产一件乙 产品需用 设备 3 小时, 设备 1 小时. 两种设备每月可使用时间数分别为 480 小时、960 小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A. 320 千元 B. 360 千元 C. 400 千元 D. 440 千元 【答案】B 【解析】设生产甲、乙两种产品 x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:,原问题等价于在上述约束条件下求解目标函数的最大值.绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点处取得最大值:千元.本题选择 B 选项. 点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个 变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约 条件和正确的目标函数.12. 已知函数(其中为自然对数的底数),若函数零点,则 的取值范围为( )有4个A.B.C.D.【答案】D【解析】考查函数,求导可得,..............................文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.函数是定义在 上关于 轴对称的偶函数,分别对应建立两个平面直角坐标系,第一个坐标系按照我们熟悉的坐标系绘制函数 的图像,第二个坐标系以水平方向为 轴方向,以竖直方向为 轴方向,在第一个坐标系中绘制函数 的图像,在第二个坐标系中绘制函数 的图像,如图所示的直线位置处可以找到满足题意的方程的四个零点,函数零点的值为点处的横坐标,观察可得, 的取值范围为 ,其中,题中直线为临界条件,临界条件处:,,.结合选项,满足所得结论形式的区间只有 D 选项.本题选择 D 选项.第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13. 若平面向量 满足,则__________.【答案】【解析】由题意可得:,,两式作差可得:.14. 已知 是常数,,且,则 __________. 【答案】3【解析】所给的等式中,令 可得:,令 可得:,结合题意有: 15. 抛物线,求解关于实数 的方程可得: . 的焦点为 ,准线与 轴交于点 ,过抛物线 上一点 (第.一.象.限.内.)作的文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.垂线 ,垂足为 .若四边形 的周长为 16,则点 的坐标为__________. 【答案】 【解析】由抛物线的方程可知焦点坐标为 ,准线方程为 ,设点 的坐标为,由题意结合抛物线的定义可得:,,,则四边形 的周长为,整理可得:,则点 的坐标为 .16. 在四面体中,则四面体外接球的半径为__________.,二面角【答案】【解析】过等边三角形 的中心作平面 的垂线,取 的中点 ,过点 做平面 的垂线,设,由几何关系可知:点 为四面体外接球的球心,△ABD 是边长为 2 的等边三角形,则,二面角 据此,在的大小为 ,则 中,, ,的大小为 ,四面体外接球的半径为.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角的对边分别为 ,.(1)求角 ;文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.(2)若,求的周长的最大值.【答案】(1)(2)【解析】试题分析:(1)根据正弦定理边化角可得:,整理计算有,则 .(2)由(1)的结论结合余弦定理得,即,结合均值不等式可知(当且仅当时等号成立),则周长的最大值为.试题解析:(1)根据正弦定理,由已知得:,即,∴,∵,∴,∴,从而.∵,∴ .(2)由(1)和余弦定理得,即,∴,即(当且仅当时等号成立).所以,周长的最大值为.18. 2014 年 9 月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获 等的概率都是 0.8,所选的自然科学科目考文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.试的成绩获 等的概率都是 0.75,且所选考的各个科目考试的成绩相互独立.用随机变量 表 示他所选考的三个科目中考试成绩获 等的科目数,求 的分布列和数学期望.【答案】(1) (2),分布列见解析【解析】试题分析: (1)由题意结合对立事件计算公式可知该位考生选考的三个科目中,至少有一个自然科学科目的概率为;(2)由题意可知,随机变量 的所有可能取值有 0, 1,2,3.计算相应的概率值为,,,,据此可得分布列,然后计算数学期望为.试题解析:(1)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件 ,则,所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为 .(2)随机变量 的所有可能取值有 0, 1,2,3.因为,,,,所以 的分布列为所以.19. 如图,在多面体中, 是正方形, 平面, 平面,,点 为棱 的中点.(1)求证:平面平面 ;(2)若,求直线 与平面 所成的角的正弦值.文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.【答案】(1)见解析(2)【解析】试题分析:(1)连结 ,交 于点 ,由三角形中位线的性质可得 平面 ,由线面垂直的性质定理可得 为平行四边形,则,结合面面平行的判断定理有 平面 .最后,利用面面平行的判断定理可得平面平面 .(2)利用两两垂直建立空间直角坐标系,利用空间几何关系可得平面 的一个法向量为,,则直线 与平面 所成角的正弦值.试题解析:(1)证明:连结 ,交 于点 ,∴ 为 的中点,∴.∵ 平面 , 平面 ,∴ 平面 .∵都垂直底面,∴.∵,∴ 为平行四边形,∴.∵ 平面 , 平面 ,∴ 平面 .又∵,∴平面平面 .(2)由已知, 平面,是正方形.∴两两垂直,如图,建立空间直角坐标系.设,则,从而,∴,设平面 的一个法向量为,由得.令 ,则,从而.∵,设 与平面 所成的角为,则文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.,所以,直线 与平面 所成角的正弦值为 .20. 在平面直角坐标系中,圆 交 轴于点 ,交 轴于点 .以 为顶点, 分别为左、右焦点的椭圆 ,恰好经过点 . (1)求椭圆 的标准方程; (2)设经过点 的直线与椭圆 交于 两点,求面积的最大值.【答案】(1)(2)当直线的斜率为 时,可使的面积最大,其最大值 .【解析】试题分析:(1)由已知可得,椭圆 的焦点在 轴上.设椭圆 的标准方程为,易知,结合椭圆过点 ,可得椭圆 的标准方程为.(2)由题意可知直线的斜率存在.设直线方程为,.联立直线方程与椭圆方程有.直线与椭圆交于不同的两点,则,,由弦长公式可得,而点到直线的距离,据此可得面积函数.换元令,,结合二次函数的性质可得当直线的斜率为 时,可使 试题解析: (1)由已知可得,椭圆 的焦点在 轴上.的面积最大,其最大值 .设椭圆 的标准方程为,焦距为 ,则 ,∴,∴椭圆 的标准方程为.文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.又∵椭圆 过点 ,∴,解得 .∴椭圆 的标准方程为.(2)由于点在椭圆 外,所以直线的斜率存在.设直线的斜率为 ,则直线,设.由消去 得,.由得,从而,∴.∵点到直线的距离,∴的面积为.令,则,∴,当即时, 有最大值,,此时.所以,当直线的斜率为 时,可使的面积最大,其最大值 .点睛:解决直线与椭圆的综合问题时,要注意: (1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件; (2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦 长、斜率、三角形的面积等问题.21. 已知.(1)讨论 的单调性;文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.(2)若恒成立,求的值.【答案】(1)见解析(2)【解析】试题分析:(1) 的定义域为,求导可得.则考查函数的单调性只需考查二次函数的性质可得:当 时, 在上单调递增;当 时, 在和上单调递增,在上单调递减.(2)原问题等价于,恒成立. 构造函数,令,则,,即 在 时取得最大值.试题解析: (1) 的定义域为.由解得 .经检验可得 a=1 符合题意.故 .,.∵.令,则(a)若 ,即当时,对任意恒成立(仅在孤立点处等号成立).∴在上单调递增.,恒成立, 即当时,(b)若 ,即当 或 时, 的对称轴为 .①当 时, ,且.如图,任意,恒成立, 即任意时,恒成立,∴在上单调递增.文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.②当 时, ,且.如图,记的两根为∴当时,;当时,.∴当时,,当时,.∴在 和上单调递增,在上单调递减.综上,当 时, 在上单调递增;当 时, 在和上单调递增,在上单调递减.(2)恒成立等价于,恒成立.令,则恒成立等价于,.要满足 式,即 在 时取得最大值.∵.由解得 .当 时,,∴当时,;当时,.∴当 时, 在 上单调递增,在上单调递减,从而,符合题意.所以, . 点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知 识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及 命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几 何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考 查数形结合思想的应用. 请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系 中,曲线(为参数),在以 为极点, 轴的正半轴为极轴的极坐标系中,曲线.(1)求曲线 的普通方程;(2)若曲线 上有一动点 ,曲线 上有一动点 ,求 的最小值.【答案】(1);(2)【解析】试题分析:(1) 的极坐标方程即. ,利用极坐标方程与普通方程的关系可得曲线 的普通方程为.(2)由(1)可知,圆 的圆心为,半径为 1. 设曲线 上的动点点 在圆 上可得:.由三角函数的性质可得小值为.试题解析:(1)由得:.因为,所以,即曲线 的普通方程为.(2)由(1)可知,圆 的圆心为,半径为 1.,由动 ,则 的最设曲线 上的动点,由动点 在圆 上可得:.∵当时,,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.∴.23. 已知函数.(1)解关于 的不等式(2)若关于 的不等式; 的解集不是空集,求 的取值范围.【答案】(1);(2).【解析】试题分析:(1)由不等式的性质零点分段可得不等式的解集为.(2)原问题等价于结合绝对值三角不等式的性质可得试题解析: (1),当且仅当时等号成立,则 的取值范围是.,或或或,所以,原不等式的解集为.(2)由条件知,不等式由于当且仅当,即当所以, 的取值范围是.有解,则 ,时等号成立,故 .即可.。
2018年安徽省合肥市蜀山区中考数学一模试卷

2018年安徽省合肥市蜀山区中考数学一模试卷一、选择题:1.下列说法正确的是( )A.没有最小的正数B.﹣a表示负数C.符号相反两个数互为相反数D.一个数的绝对值一定是正数2.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<NB.M>NC.M=ND.不能确定3.下列结论正确的是( )A.若a2=b2,则a=b;B.若a>b,则a2>b2;C.若a,b不全为零,则a2+b2>0;D.若a≠b,则 a2≠b2.4.小强用8块棱长为3 cm的小正方体,搭建了一个如图所示的积木,下列说法中不正确的是( )A.从左面看这个积木时,看到的图形面积是27cm2B.从正面看这个积木时,看到的图形面积是54cm2C.从上面看这个积木时,看到的图形面积是45cm2D.分别从正面、左面、上面看这个积木时,看到的图形面积都是72cm25.计算的正确结果是()A.0B.C.D.6.若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )7.下列调查中,调查方式选择合理的是()A.了解妫水河的水质情况,选择抽样调查B.了解某种型号节能灯的使用寿命,选择全面调查C.了解一架Y-8GX7新型战斗机各零部件的质量,选择抽样调查D.了解一批药品是否合格,选择全面调查8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①与②相似B.①与③相似C.①与④相似D.②与④相似9.如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小 B.逐渐增大 C.先增大后减小 D.不变10.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2 C. D.3二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab=.12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的(从“平均数、众数、中位数、方差”中选择答案)13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是km/h.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB==2S△AMN∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF以上结论中,正确的是(请把正确结论的序号都填上)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.16.用配方法解一元二次方程:x2﹣6x+6=0.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是;正方形A n B n C n C n﹣1的面积是.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.2018年安徽省合肥市蜀山区中考数学一模试卷参考答案与试题解析1.A2.B3.C4.D5.C6.B7.A8.B9.A.10.C二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab=2ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(b2﹣4)=2ab(b+2)(b﹣2),故答案为:2ab(b+2)(b﹣2)12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的中位数(从“平均数、众数、中位数、方差”中选择答案)【考点】统计量的选择.【分析】根据题意和平均数、众数、中位数、方差的含义可以解答本题.【解答】解:由题意可得,11个班级中取前5名,故只要知道参加决赛的11个班级最终成绩的中位数即可,故答案为:中位数.13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是72km/h.【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验.【解答】解:设乙车的速度为xkm/h,,解得,x=60,经检验x=60是原分式方程的根,∴1.2x=1.2×60=72,故答案为:72.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB==2S△AMN∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF以上结论中,正确的是①②③④(请把正确结论的序号都填上)【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故②正确;根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;由△AMN ∽△BME,得到,推出△AMB∽△NME,根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,=2S△AMN故④正确.根据相似三角形的性质得到EF=MN,于是得到S△AEF【解答】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故②正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH,∴∠ANM=∠AEB,∴∠AEB=∠AEF=∠ANM;故①正确;∵AC⊥BD,∴∠AOM=∠ADF=90°,∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO,∴△OAM∽△DAF,故③正确;连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°,∵∠EAN=45°,∴∠NAE=∠NEA=45°,∴△AEN是等腰直角三角形,∴AE=AN,∵△AMN∽△BME,△AFE∽△BME,∴△AMN∽△AFE,∴=,∴EF=MN,∵AB=AO,=S△AHE=HE•AB=EF•AB=MN AO=2×MN•AO=2S△AMN.故④正∴S△AEF确.故答案为:①②③④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.16.用配方法解一元二次方程:x2﹣6x+6=0.【考点】解一元二次方程﹣配方法.【分析】移项后两边配上一次项系数一半的平方,写成完全平方式,再开方即可得.【解答】解:∵x2﹣6x=﹣6,∴x2﹣6x+9=﹣6+9,即(x﹣3)2=3,则x﹣3=±,∴x=3.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.【考点】作图﹣旋转变换;轨迹;作图﹣平移变换.【分析】(1)利用点平移的坐标规律写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)先计算出OA,然后利用弧长公式计算.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==2,所以点A所经过的路径的长度==π.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是A6(32,31);点B6的坐标是(32,63);(2)点A n的坐标是(2n﹣1,2n﹣1);正方形A n B n C n C n﹣1的面积是22n﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标,然后根据正方形的面积公式即可得到结论.【解答】解:(1)观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),A5(16,15),A6(32,31),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1),∴B6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得A n(2n﹣1,2n﹣1﹣1)(n为正整数),∴正方形A n B n C n C n﹣1的面积是(2n﹣1)2=22n﹣2,故答案为:(2n﹣1,2n﹣1)(n为正整数).五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG长,加上1.6m即为主教学楼的高度AB.【解答】解:在Rt△AFG中,tan∠AFG=,∴FG==,在Rt△ACG中,tan∠ACG=,∴CG==AG.又∵CG﹣FG=24m,即AG﹣=24m,∴AG=12m,∴AB=12+1.6≈22.4m.20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.【考点】反比例函数综合题.【分析】(1)由平行线分线段成比例可求得CD的长,则可求得A、B、C、的坐标,再利用待定系数法可求得函数解析式;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,结合函数图象可求得答案;(3)由B、C的坐标可求得BC的长,当BC=BP时,则可求得P点坐标,当BC=PC 时,可知点C在线段BP的垂直平分线上,则可求得BP的中点坐标,可求得P 点坐标.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.【考点】切线的性质.【分析】(1)连接OC,由CD是⊙O切线,得到OC⊥CD,根据平行线的性质得到∠EAC=∠ACO,有等腰三角形的性质得到∠CAO=∠ACO,于是得到结论;(2)连接BC,由三角函数的定义得到sin∠CAE==,得到∠CAE=30°,于是得到∠CAB=∠CAE=30°,由AB是⊙O的直径,得到∠ACB=90°,解直角三角形即可得到结论;(3)根据余角的性质得到∠DCB=∠ACO根据相似三角形的性质得到结论.【解答】(1)证明:连接OC,∵CD是⊙O切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠A=CAO,即AC平分∠BAE;(2)解:连接BC,∵AE⊥CE,AC=2CE=6,∴sin∠CAE==,∴∠CAE=30°,∴∠CAB=∠CAE=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠CAB==,∴AB=4,∴⊙O的半径是2;(3)CD2=BD•AD,证明:∵∠DCB+∠BCO=90°,∠ACO+∠BCO=90°,∴∠DCB=∠ACO,∴∠DCB=∠ACO=∠CAD,∵∠D=∠D,∴△BCD∽△CAD,∴,即CD2=BD•AD.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.2-1-c-n-j-y如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.【考点】二次函数的应用.【分析】(1)利用抛物线的顶点F的坐标为(6,2.8),将点(0,2)代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.8=2.6,当y=0时,﹣(x﹣6)2+2.8=﹣0.4,分别得出即可;(3)设抛物线解析式为y=a(x﹣6)2+h,由点C(0,2)得解析式为y=(x ﹣6)2+h,再依据x=18时y≤0即可得h的范围.【解答】解:(1)由题意可得抛物线的顶点F的坐标为(6,2.8),设抛物线的解析式为y=a(x﹣6)2+2.8,将点C(0,2)代入,得:36a+2.8=2,解得:a=﹣,∴y=﹣(x﹣6)2+2.8;(2)当x=9时,y=﹣(9﹣6)2+2.8=2.6>2.24,当x=18时,y=﹣(18﹣6)2+2.8=﹣0.4<0,∴这次发球可以过网且不出边界;(3)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,2)代入,得:36a+h=2,即a=,∴此时抛物线解析式为y=(x﹣6)2+h,根据题意,得: +h≤0,解得:h≥,又∵h>2.32,∴h≥答:球既能过网又不会出界的h的取值范围是h≥.。
【真卷】2018年安徽省合肥市、安庆市名校大联考中考数学一模试卷及解析PDF(解析版)

2018年安徽省合肥市、安庆市名校大联考中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)在﹣1,0,﹣2,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.12.(4分)如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=36°,则∠2的大小为()A.34°B.54°C.56°D.66°3.(4分)如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.4.(4分)一个扇形的半径等于一个圆的半径的2倍,且扇形面积是圆的面积的一半,则这个扇形的圆心角度数是()A.45°B.60°C.90°D.75°5.(4分)下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似x1<x2时,y1<y2,那么函数y=的图象位于象限()A.一、四B.二、四C.三、四D.一、三7.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,则下列结论正确的是()A.BD=AD B.BC2=AB•CD C.AD2=BD•AB D.CD2=AD•BD8.(4分)一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是()A.3.8 B.4 C.3.6或3.8 D.4.2或49.(4分)反比例函数y=图象上三点A(x1,y1),B(x2,y2),C(x3,y3),已知x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3>y1>y2B.y3>y2>y1C.y1>y2>y3D.y2>y1>y310.(4分)如图,在正方形ABCD对角线BD上截取BE=BC,连接CE并延长交AD于点F,连接AE,过B作BG⊥AE于点G,交AD于点H,则下列结论错误的是()A.AH=DF B.S四边形EFHG=S△DCF+S△AGHC.∠AEF=45°D.△ABH≌△DCF二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)因式分解:16x2y﹣xy=.12.(5分)2017年安徽人口数量约为5950.05万人,其中城镇人口2674万人,乡村人口占安徽总人口的55.2%,其中数据5950.05万用科学记数法可表示为.13.(5分)如图,△ABC绕C点顺时针旋转37°后得到了△A′B′C,A′B′⊥AC于点D,则∠A=°.14.(5分)已知关于x的二次函数y=ax2﹣4ax+a2+2a﹣3在﹣1≤x≤3的范围内有最小值5,则a的值为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:﹣22+tan60°﹣(3.14﹣π)0﹣|1﹣|.16.(8分)先化简:(﹣x﹣1)÷,然后求当x=﹣1时代数式的值.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)在12×12的网格中,每个小正方形的边长均为1,建立如图所示的平面直角坐标系,按照要求作图并解答相关问题.(1)将△ABC围绕这原点O按顺时针方向旋转90°,得到△A1B1C1;(2)以坐标原点O为位似中心,作出与△A1B1C1位似且位似比为1:2的△A2B2C2,并写出点A2的坐标.18.(8分)如图,在△ABC中,∠B=45°,∠C=60°,AC=20.(1)求BC的长度;(2)若∠ADC=75°,求CD的长.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)某中学为了解七年级学生的体育成绩,从全年级学生中随机抽取部分学生进行“双飞”跳绳测试,结果分为A,B,C,D四个等级,请跟进两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该学校七年级共有400名学生,请你估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有多少名.20.(10分)“白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?六、解答题(本大题满分12分)21.(12分)在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.七、解答题(本大题满分12分)22.(12分)如图,抛物线y=﹣x2+bx+2与x轴交于A,B两点,与y轴交于C 点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.八、解答题(本大题满分14分)23.(14分)如图1,在矩形ABCD中,AB=9,BC=12,点M从点A出发,以每秒2个单位长度的速度沿AB方向在AB上运动,以点M为圆心,MA长为半径画圆,如图2,过点M作NM⊥AB,交⊙M于点N,设运动时间为t秒.(1)填空:BD=,BM=;(请用准确数值或含t的代数式表示)(2)当⊙M与BD相切时,①求t的值;②求△CDN的面积.(3)当△CND为直角三角形时,求出t的值.2018年安徽省合肥市、安庆市名校大联考中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)在﹣1,0,﹣2,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣2<﹣1<0<1,∴最小的数是﹣2.故选:A.2.(4分)如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=36°,则∠2的大小为()A.34°B.54°C.56°D.66°【分析】先根据平行线的性质,得出∠1=∠3=36°,再根据AB⊥BC,即可得到∠2=90°﹣36°=54°.【解答】解:∵a∥b,∴∠1=∠3=36°,又∵AB⊥BC,∴∠2=90°﹣36°=54°,故选:B.3.(4分)如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选:C.4.(4分)一个扇形的半径等于一个圆的半径的2倍,且扇形面积是圆的面积的一半,则这个扇形的圆心角度数是()A.45°B.60°C.90°D.75°【分析】根据扇形和圆的面积公式列出等式计算.【解答】解:设圆的半径为r,扇形圆心角为n°.则扇形的半径为2r,利用面积公式可得:,解得n=45.故选:A.5.(4分)下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似【分析】根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法求解.【解答】解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.6.(4分)如果点A(x1,y1)和点B(x2,y2)是直线y=﹣kx+b上的两点,且当x1<x2时,y1<y2,那么函数y=的图象位于象限()A.一、四B.二、四C.三、四D.一、三【分析】根据一次函数的增减性判断出k的符号,再根据反比例函数的性质解答即可.【解答】解:∵当x1<x2时,y1<y2,∴﹣k>0,∴k<0∴函数y=的图象在二、四象限,故选:B.7.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,则下列结论正确的是()A.BD=AD B.BC2=AB•CD C.AD2=BD•AB D.CD2=AD•BD【分析】根据直角三角形结合垂线的定义,可得出△ACB∽△ADC、△ACB∽△CDB,进而可得出△ADC∽△CDB,再根据相似三角形的性质即可得出结论.【解答】解:∵∠A=∠A,∠ACB=∠ADC=90°,∴△ACB∽△ADC.同理:△ACB∽△CDB,∴△ADC∽△CDB,∴=,∴CD2=AD•BD.故选:D.8.(4分)一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是()A.3.8 B.4 C.3.6或3.8 D.4.2或4【分析】根据众数的定义得出正整数a的值,再根据平均数的定义求解可得.【解答】解:∵数据:a,3,5,5,6(a为正整数),唯一的众数是4,∴a=1或2,当a=1时,平均数为=4;当a=2时,平均数为=4.2;故选:D.9.(4分)反比例函数y=图象上三点A(x1,y1),B(x2,y2),C(x3,y3),已知x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3>y1>y2B.y3>y2>y1C.y1>y2>y3D.y2>y1>y3【分析】先根据反比例函数y=的系数m2+1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【解答】解:∵k=m2+1>0,∴函数图象如图,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x2<0<x3,∴点A(x1,y1),B(x2,y2)在第三象限,点C(x3,y3)在第一象限,∴y3>y1>y2.故选:A.10.(4分)如图,在正方形ABCD对角线BD上截取BE=BC,连接CE并延长交AD于点F,连接AE,过B作BG⊥AE于点G,交AD于点H,则下列结论错误的是()A.AH=DF B.S四边形EFHG=S△DCF+S△AGHC.∠AEF=45°D.△ABH≌△DCF【分析】先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到A、D正确,根据三角形的外角求出∠AEF=45°,得出C正确;连接HE,判断出S△EFH ≠S△EFD得出B错误.【解答】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°﹣∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故ACD正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH ≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故B错误,二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)因式分解:16x2y﹣xy=xy(16x﹣1).【分析】直接找出公因式,再提取公因式得出答案.【解答】解:16x2y﹣xy=xy(16x﹣1).故答案为:xy(16x﹣1).12.(5分)2017年安徽人口数量约为5950.05万人,其中城镇人口2674万人,乡村人口占安徽总人口的55.2%,其中数据5950.05万用科学记数法可表示为5.95005×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5950.05万=59500500=5.95005×107,故答案为:5.95005×107.13.(5分)如图,△ABC绕C点顺时针旋转37°后得到了△A′B′C,A′B′⊥AC于点D,则∠A=53°.【分析】根据旋转的性质,可得知∠ACA′=37°,∠A=∠A′,利用垂直的定义以及直角三角形两锐角互余求得∠A′的度数,即可求出∠A的度数.【解答】解:∵△ABC绕C点顺时针旋转37°后得到了△A′B′C,∴∠ACA′=37°,∠A=∠A′.∵A′B′⊥AC于点D,∴∠A′DC=90°,∴∠A′=90°﹣∠ACA′=53°,故答案为:53.14.(5分)已知关于x的二次函数y=ax2﹣4ax+a2+2a﹣3在﹣1≤x≤3的范围内有最小值5,则a的值为4或﹣8.【分析】由y=ax2﹣4ax+a2+2a﹣3=a(x﹣2)2+(a2﹣2a﹣3)可知当a>0时,最小值是a2﹣2a﹣3=5,当a<0时,x=﹣1时,y有最小值5,则a+4a+a2+2a﹣3=5,解关于a的方程即可求得.【解答】解:y=ax2﹣4ax+a2+2a﹣3=a(x﹣2)2+(a2﹣2a﹣3),其对称轴为x=2,当a>0时,最小值是a2﹣2a﹣3=5,解得a1=4,a2=﹣2(舍去);当a<0时,x=﹣1时,y有最小值5,则a+4a+a2+2a﹣3=5,整理得a2+7a﹣8=0,解得a1=1(舍去),a2=﹣8,所以a的值为4或﹣8,故答案为:4或﹣8三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:﹣22+tan60°﹣(3.14﹣π)0﹣|1﹣|.【分析】计算乘方、代入正切函数值、计算零指数幂、取绝对值符号,再去括号、计算加减运算可得.【解答】解:原式=﹣4+﹣1﹣(﹣1)=﹣4+﹣1﹣+1=﹣4.16.(8分)先化简:(﹣x﹣1)÷,然后求当x=﹣1时代数式的值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=(﹣)•=•=,当x=﹣1时,原式===.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)在12×12的网格中,每个小正方形的边长均为1,建立如图所示的平面直角坐标系,按照要求作图并解答相关问题.(1)将△ABC围绕这原点O按顺时针方向旋转90°,得到△A1B1C1;(2)以坐标原点O为位似中心,作出与△A1B1C1位似且位似比为1:2的△A2B2C2,并写出点A2的坐标.【分析】(1)利用关于旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点坐标进而得出答案.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,点A2的坐标为(2,2)或(﹣2,﹣2).18.(8分)如图,在△ABC中,∠B=45°,∠C=60°,AC=20.(1)求BC的长度;(2)若∠ADC=75°,求CD的长.【分析】(1)作AE⊥BC于E,如图,在Rt△ACE中利用∠C=60°可计算出CE=10,AE=10,在Rt△ABE中利用∠B=45°得到BE=AE=10,从而得到BC的长;(2)证明△CDA∽△CAB,然后利用相似比计算CD的长.【解答】解:(1)作AE⊥BC于E,如图,在Rt△ACE中,∵∠C=60°,∴CE=AC=10,AE=CE=10,在Rt△ABE中,∵∠B=45°,∴BE=AE=10,∴BC=BE+CE=10+10;(2)∵∠BAC=180°﹣45°﹣60°=75°,而∠ADC=75°,∴∠ADC=∠ABC,∵∠ACD=∠BCA,∴△CDA∽△CAB,∴=,即=,∴CD=20﹣20.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)某中学为了解七年级学生的体育成绩,从全年级学生中随机抽取部分学生进行“双飞”跳绳测试,结果分为A,B,C,D四个等级,请跟进两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该学校七年级共有400名学生,请你估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有多少名.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用400乘以D等级的百分比可估计该中学七年级学生中“双飞”跳绳测试结果为D等级的学生数.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)400×=32,所以估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名.20.(10分)“白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程求解可得;(2)根据(1)中的相等关系列出二次函数解析式,再转化为顶点式,利用二次函数图象的性质进行解答.【解答】解:(1)设裤子的定价为每条x元,根据题意,得:(x﹣50)[50+5(100﹣x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值答:定价为每条80元可以使每天的利润最大,最大利润是4500元.六、解答题(本大题满分12分)21.(12分)在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.【分析】(1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.【解答】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.七、解答题(本大题满分12分)22.(12分)如图,抛物线y=﹣x2+bx+2与x轴交于A,B两点,与y轴交于C 点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【分析】(1)把点A的坐标代入解析式,求出b,利用配方法求出抛物线的顶点坐标;(2)解一元二次方程求出OB,根据勾股定理求出AC、BC,根据勾股定理的逆定理判断即可;(3)连接BC交对称轴于M,由轴对称的性质得到此时△ACM的周长最小,利用待定系数法求出直线BC的解析式,求出点M的坐标.【解答】解:(1)∵点A(1,0)在抛物线y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣,抛物线的解析式为y=﹣x2﹣x+2,y=﹣x2﹣x+2=﹣(x+)2+,则顶点D的坐标为(﹣,);(2)△ABC是直角三角形,证明:点C的坐标为(0,2),即OC=2,﹣x2﹣x+2=0,解得,x1=﹣4,x2=1,则点B的坐标为(﹣4,0),即OB=4,OA=1,OB=4,∴AB=5,由勾股定理得,AC=,BC=2,AC2+BC2=25=AB2,∴△ABC是直角三角形;(3)由抛物线的性质可知,点A与点B关于对称轴对称,连接BC交对称轴于M,此时△ACM的周长最小,设直线BC的解析式为:y=kx+b,由题意得,,解得,,则直线BC的解析式为:y=x+2,当x=﹣时,y=,∴当M的坐标为(﹣,).八、解答题(本大题满分14分)23.(14分)如图1,在矩形ABCD中,AB=9,BC=12,点M从点A出发,以每秒2个单位长度的速度沿AB方向在AB上运动,以点M为圆心,MA长为半径画圆,如图2,过点M作NM⊥AB,交⊙M于点N,设运动时间为t秒.(1)填空:BD=15,BM=9﹣t;(请用准确数值或含t的代数式表示)(2)当⊙M与BD相切时,①求t的值;②求△CDN的面积.(3)当△CND为直角三角形时,求出t的值.【分析】(1)先判断出∠BAD=90°,利用勾股定理求出BD=15,再由运动即可得出结论;(2)①先判断出∠BEM=∠BAD=90°,进而得出△BME∽△BDA,得出比例式建立方程,即可得出结论;②先求出MN=4,CD边上的高为AD﹣MN=12﹣4=8,最后用面积公式即可得出结论;(3)先得出FN=2t,GN=9﹣2t,DF=CG=12﹣2t,分两种情况,建立方程即可得出结论.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=12,∠BAD=90°,在Rt△ABD中,AB=9,BC=12,根据勾股定理得,BD==15,由运动知,AM=t.∴BM=AB﹣AM=9﹣t,故答案为:15,9﹣t;(2)①如图1,⊙M且BD于E,∴ME⊥BD,∴∠BEM=∠BAD=90°,∵∠EBM=∠ABD,∴△BME∽△BDA,∴,∴,∴t=2,②∵MN=AM=2t=4,∴CD边上的高为AD﹣MN=12﹣4=8,∴S=×9×8=36;△CDN(3)如图2,过点N作直线FG⊥MN,分别交AD,BC于点F,G,∴FN=2t,GN=9﹣2t,DF=CG=12﹣2t,∴DN2=DF2+FN2=(12﹣2t)2+(2t)2,∴CN2=CG2+GN2=(12﹣2t)2+(9﹣2t)2,①当∠DNC=90°时,DN2+CN2=CD2,∴(12﹣2t)2+(2t)2+(12﹣2t)2+(9﹣2t)2=81,化简,得4t2﹣33t+72=0,∵△=(﹣33)2﹣4×4×72<0,∴此方程无实数根;②当∠DCN=90°时,点N在BC上,BN=BA=2t=9,∴t=4.5,综上所述,t=4.5秒.。
安徽省合肥市高考数学一模试卷(文科)

高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x||x-1|<3},B={x|x∈N},则A∩B=()A. {x|0<x<4}B. {-1,0,1,2,3}C. {0,1,2,3}D. {1,2,3}2.设(a,b∈R,i为虚数单位),则b-ai的表达式为()A. B. C. D.3.曲线f(x)=a ln x在点P(e,f(e))处的切线经过点(-1,-1),则a的值为()A. 1B. 2C. eD. 2e4.某位教师2017年的家庭总收入为80000元,各种用途占比统计如图1所示的折线图.2018年收入的各种用途占比统计如图2所示的条形图,已知2018年的就医费用比2017年增加了4750元,则该教师2018年的家庭总收入为()A. 100000元B. 95000元C. 90000元D. 85000元5.已知tanα=3,α∈(0,),则sin2α+cos(π-α)的值为()A. B. C. D.6.如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大的截面面积是()A. 2B.C. 4D. π7.若x是从区间[0,4]内任意选取的一个实数,y也是从区间[0,4内任意选取的一个实数,则点(x,y)在圆C:(x-1)2+y2=4内的概率为()A. B. C. D. 1-8.函数f(x)=sin x2+cos x的部分图象符合的是()A. B.C. D.9.已知直线l:x+y=3与x轴,y轴分别交于点A,B,点P在椭圆+y2=1上运动,则△PAB面积的最大值为()A. 6B.C.D.10.已知锐角△ABC的角A,B,C的对边分别为a,b,c,且c=1,三角形ABC的面积S△ABC=1,则a2+b2的取值范围为()A. [)B. (9,+∞)C. [,9]D. [,9)11.在△ABC中,AB=a,BC=a,AC=2a,过AC的中点O作平面ABC的垂线,点P在该垂线上,当PO=2a时,三棱锥P-ABC外接球的半径为()A. B. C. D.12.已知双曲线C:-=1(a>0,b>0)的左,右焦点分别为F1,F2,右顶点为A,以A为圆心,OA(O为坐标原点)为半径的圆与双曲线C在第一象限的交点为P,若PF2⊥PA,且|PF1|=2|PF2|,则双曲线C的离心率为()A. 1+B. 1+C.D.二、填空题(本大题共4小题,共20.0分)13.已知向量=(1,3),=(-2,-1),=(2,4),若向量(+k)与向量共线,则实数k的值为______.14.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽______人.15.若x,y满足约束条件,则z=的取值范围为______.16.已知函数f(x)=g(x)+x2,函数g(x)是定义域为R的奇函数,且f(1)=2,则f(-1)的值为______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}的前n项和为S n,a1=-2,公差为d(d∈N*).(1)若a5=30,求数列{a n}的通项公式;(2)是否存在d,n使S n=10成立?若存在,试找出所有满足条件的d,n的值,并求出数列{a n}的通项公式;若不存在,请说明理由.18.如图1,在直角梯形ABCP中,CP∥AB,CP⊥BC,,D是CP的中点,将△PAD沿AD折起,使点P到达点P′的位置得到图2,点M为棱P′C上的动点.(1)当M在何处时,平面ADM⊥平面P′BC,并证明;(2)若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.19.为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图如图:(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);(2)若对得分在前15%的学生进行校内奖励,估计获奖分数线;(3)若这60名学生中男女生比例为2:1,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面2×2列联表,是否有90%的把握认为“成绩附:K2=,n=a+b+c+d临界值表:20.已知抛物线E:y2=4x,圆C:(x-3)2+y2=1.(1)若过抛物线E的焦点F的直线l与圆C相切,求直线l方程;(2)在(1)的条件下,若直线l交抛物线E于A,B两点,x轴上是否存在点M (t,0)使∠AMO=∠BMO(O为坐标原点)?若存在,求出点M的坐标;若不存在,请说明理由.21.设函数f(x)=(a>0).(1)试讨论函数f(x)的单调性;(2)若a=2,证明:方程=1有且仅有3个不同的实数根.(附:≈1.414,e≈1.34,e≈5.51)22.在平面直角坐标系xOy中,圆C的参数方程为(α为参数),过点P(-2,0)作斜率为k的直线l与圆C交于A,B两点.(1)若圆心C到直线l的距离为,求k的值;(2)求线段AB中点E的轨迹方程.23.已知函数f(x)=|x+1|+2|x-1|.(1)在下面平面直角坐标系中作出两数f(x)的图象;(2)若当x∈(-∞,0]时,不等式f(x)≤ax+b(a,b∈R)恒成立,求a-b的最大值.答案和解析1.【答案】C【解析】解:A={x|-2<x<4},B={x|x∈N};∴A∩B={0,1,2,3}.故选:C.可求出集合A,然后进行交集的运算即可.考查描述法、列举法的定义,绝对值不等式的解法,以及交集的运算.2.【答案】A【解析】解:∵-2i==a+bi,∴,则b-ai=,故选:A.利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得a,b的值,则答案可求.本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.3.【答案】C【解析】解:由f(x)=a ln x,得f′(x)=,则斜率k=f′(e)=,又f(e)=a,∴切线方程为y-a=,即y=,把点(-1,-1)代入,可得a=e.故选:C.求出原函数的导函数,得到f′(e),写出曲线在点P(e,f(e))处的切线方程,把点(-1,-1)代入求得a值.本题考查利用导数研究过曲线上某点处的切线方程,是中档题.4.【答案】D【解析】【分析】本题考查教师2018年的家庭总收入的求法,考查折线图和条形统计图的性质等基础知识,考查运算求解能力,是基础题.先求出2017年的就医费用,从而求出2018年的就医费用,由此能求出该教师2018年的家庭总收入.【解答】解:由已知得,2017年的就医费用为80000×10%=8000元,∴2018年的就医费用为8000+4750=12750元,∴该教师2018年的家庭总收入=85000元.故选:D.5.【答案】A【解析】解:已知tanα==3,sin2α+cos2α=1,α∈(0,),∴sinα=,cosα=,则sin2α+cos(π-α)=2sinαcosα-cosα=-=,故选:A.由题意利用同角三角函数的基本关系,二倍角公式,求得要求式子的值.本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.6.【答案】A【解析】解:几何体是一个轴截面的顶角为120°的半圆锥,过顶点的截面面积的最大值为,两条母线的夹角为90°的截面,最大值为:=2,故选:A.画出几何体的直观图,利用三视图的数据,转化求解最大的截面面积.本题考查三视图求解几何体的截面面积的最值,是基本知识的考查.7.【答案】C【解析】【分析】本题考查了不等式组表示平面区域的应用问题,也考查了几何概型的计算问题,是基础题.根据题意画出图形,结合图形求出对应面积的比值即可.【解答】解:点(x,y)构成的基本区域是边长为4的正方形,其面积S=42=16,因为cos∠MCO=,且∠MCO为锐角,所以∠MCO=60°,所以∠MCO=120°,所以阴影部分的面积为S阴影=×π22+×1×2×sin60°=+,故点(x,y)在圆C:(x-1)2+y2=4内的概率为P==,故选:C.8.【答案】B【解析】【分析】本题主要考查函数图象的识别和判断,利用特殊值法是解决本题的关键.利用特殊值法分别计算f(0),f()的值进行排除即可.【解答】解:函数f(x)是偶函数,图象关于y轴对称,f(0)=sin0+cos0=1排除C,f()=sin+cos=sin>0,排除A,D,故选:B.9.【答案】D【解析】解:直线l:y+x=3和x轴,y轴分别交于A、B两点,可得|AB|=3,P在椭圆椭圆+y2=1上运动,设P(cosθ,sinθ),三角形的高h==,其中tanγ=,△PAB面积为:×3×=|cos(θ-γ)-3|≤,当且仅当cos(θ-γ)=-1时取等号,那么△ABC面积的最大值为.故选:D.求出弦长AB,设出P的坐标,然后通过点到直线的距离,表示三角形的面积,然后求解面积的最大值.本题考查直线与椭圆的位置关系的综合应用,也可以利用直线与椭圆相切,转化求解三角形的面积的最大值.考查分析问题解决问题的能力10.【答案】D【解析】解:因为三角形为锐角三角形,所以过C作CD⊥AB于D,D在边AB上,如图:因为:S△ABC=AB•CD=1,所以CD=2,在三角形ADC中,AD==,在三角形BDC中,BD==,∵AD+BD=AB=1,∴+=1,∴a2+b2=a2-4+b2-4+8=()2+()2+8=()2+(1-)2+8=2()2-2+9∵∈(0,1).∴a2+b2∈[,9).故选:D.因为三角形为锐角三角形,所以过CCD⊥AB于D,D在边AB上,如图:根据面积算出CD=2,再根据勾股定理,二次函数知识可求得.本题考查了基本不等式及其应用,属中档题.11.【答案】D【解析】解:由AB=a,BC=a,AC=2a,可知,AB2+BC2=AC2,∴O为△ABC的外接圆的圆心,又∵PO⊥平面ABC,∴三棱锥P-ABC的外接球的球心必在PO上,设其半径为R,则(PO-R)2+a2=R2,即PO2-2PO•R+R2+a2=R2,∴4a2-2×2a•R+R2+a2=R2,得R=.故选:D.由已知可得,三角形ABC为直角三角形,由PO⊥平面ABC,知三棱锥P-ABC的外接球的球心必在PO上,然后利用勾股定理列式求解.本题考查多面体外接球表面积、体积的求法,考查数形结合的解题思想方法,是中档题.12.【答案】A【解析】解:由题意,圆心A(a,0),所以|PA|=a,|AF2|=c-a,∵PF2⊥PA,∴|PF2|==,∵|PF1|=2|PF2|,∴由双曲线的性质可得|PF1|-|PF2|=2a,即|PF2|=2a,∴=2a,即c2-2ac=4a2,即e2-2e+1=5,解得e=1+(e=1-舍去),故选:A.根据勾股定理和双曲线的性质可得,=2a,结合离心率公式,计算即可得到本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查直角三角形的勾股定理,以及化简整理的运算能力,属于中档题.13.【答案】-【解析】解:;∵与共线;∴4(1-2k)-2(3-k)=0;解得.故答案为:.可求出,根据与共线即可得出4(1-2k)-2(3-k)=0,解出k即可.考查向量坐标的加法和数乘运算,以及平行向量的坐标关系.14.【答案】60【解析】解:由题意可知,抽样比为=.故北乡应抽8100×=180,南乡应抽5400×=120,所以180-120=60,即北乡比南乡多抽60人,故答案为:60根据分层抽样的定义建立比例关系即可得到结论.本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.15.【答案】(-∞,-3]∪[,+∞)【解析】解:画出满足条件的平面区域,如图所示:解得A(-2,0),解得B(,)z=的几何意义表示平面区域内的点与点C(-1,-3)的斜率,而直线AD的斜率是-3,直线BD的斜率是:=,故z=的取值范围是(-∞,-3]∪[,+∞),故答案为:(-∞,-3]∪[,+∞).画出满足条件的平面区域,结合z的几何意义求出直线AC、BC的斜率,从而求出z的范围.本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.16.【答案】【解析】解:根据题意,函数f(x)=g(x)+x2,若f(1)=2,则有f(1)=g(1)+=2,解可得,g(1)=,又由函数g(x)是定义域为R的奇函数,则g(-1)=-,则f(-1)=g(-1)+==;故答案为:.根据题意,由f(1)=2可得f(1)=g(1)+=2,解可得,g(1)的值,结合函数奇偶性的性质可得g(-1)的值,结合函数的解析式计算可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数值的计算,属于基础题.17.【答案】解:(1)当a5=30时,由a5=a1+4d,得30=-2+4d,即d=8.∴a n=a1+(n-1)d=8n-10;(2)由题意可知,,即-4n+dn2-dn=20,∴dn2-(d+4)n-20=0.令n=1时,得-24=0,不合题意;n=2时,得d=14,符合.此时数列的通项公式为a n=14n-16;n=3时,得d=,不合题意;n=4时,得d=3,符合.此时数列的通项公式为a n=3n-5;n=5时,得d=2,符合.此时数列的通项公式为a n=2n-4;n=6时,得d=,不合题意;n=7时,得d=,不合题意;n=8时,得d=,不合题意;n≥9时,d<1,均不合题意.∴存在3组,其解与相应的通项公式分别为:d=14,n=2,a n=14n-16;d=3,n=4,a n=3n-5;d=2,n=5,a n=2n-4.【解析】(1)由已知求得公差,直接代入等差数列的通项公式得答案;(2)由S n=10,得到dn2-(d+4)n-20=0,然后依次取n值,求得d,分类分析即可得到所有满足条件的d,n的值,并求得通项公式.本题考查等差数列的通项公式,考查等差数列的前n项和,考查分类讨论的数学思想方法,考查计算能力,是中档题.18.【答案】解:(1)当点M为P′C的中点时,平面ADM⊥平面P′BC,证明如下:∵DP′=DC,M为P′C中点,∴P′C⊥DM,∵AD⊥DP′,AD⊥DC,DP′DC=D,DP′,DC平面DP′C,∴AD⊥平面DP′C,P′C平面DP′C,∴AD⊥P′C,AD DM=D,AD,DM平面ADM,∴P′C⊥平面ADM,P′C平面P′BC,∴平面P′BC⊥平面ADM;(2)证明:在平面P′CD上作P′H⊥CD于H,由(1)中AD⊥平面DP′C,可知平面P′CD⊥平面ABCD,∴P′H⊥平面ABCD,由题意得DP′=2,∠P′DH=45°,∴P′H=,又,设点C到平面P′AD的距离为h,即=,由题意△ADC≌△P′AD,∴P′H=h,故点C到平面P′AD的距离等于点P′到平面ABCD的距离,且距离为.【解析】本题考查了线面垂直,面面垂直,等体积法等,难度适中.(1)取P′C中点M,证P′C与DM,AD垂直,进而得线面垂直,面面垂直;(2)利用转换顶点三棱锥体积不变易证.19.【答案】25 40 3 17 20 18 42 60【解析】解(1)预选赛的平均成绩为45×0.3+55×0.4+65×0.2×75×0.1=56(分),(2)因为成绩落在区间[70,80]的频率是0.01×10=0.1,成绩落在区间[60,70)的频率是0.02×10=0.2,0.1<0.15<0.1+0.2,所以获奖分数线落在区间[60,70).设为x,则(70-x)×0.02+0.1=0.15,解得x=67.5,即获奖分数线为67.5分.(3)成绩落在区间[60,80]的人数为60×(0.02+0.01)×10=18,又60人中男女生比例为2:1,故男生40人,女生20人,可得列联表如下:所以K2=≈3.214,又因为3.214>2.706,所以有90%的把握认为“成绩良好”与“性别”有关.(1)用各区间的中点值与该矩形的面积相乘后再相加;(2)因为成绩落在区间[70,80]的频率是0.01×10=0.1,成绩落在区间[60,70)的频率是0.02×10=0.2,0.1<0.15<0.1+0.2,所以获奖分数线落在区间[60,70).设为x,则(70-x)×0.02+0.1=0.15,解得x=67.5,即获奖分数线为67.5分.(3)成绩落在区间[60,80]的人数为60×(0.02+0.01)×10=18,又60人中男女生比例为2:1,故男生40人,女生20人,由此得到列联表,再根据列联表中的数据求得K2,结合临界值表可得.本题考查了独立性检验,属中档题.20.【答案】解:(1)由题意可得抛物线的焦点F(1,0),当直线的斜率不存在时,过F的直线不可能与圆C相切,设直线的斜率为k,方程设为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线的距离为d==,当直线与圆相切时,d=r=1,解得k=±,即直线方程为y=±(x-1);(2)可设直线方程为y=(x-1),A(x1,y1),B(x2,y2),联立抛物线方程可得x2-14x+1=0,则x1+x2=14,x1x2=1,x轴上假设存在点M(t,0)使∠AMO=∠BMO,即有k AM+k BM=0,可得+=0,即为y1(x2-t)+y2(x1-t)=0,由y1=(x1-1),y2=(x2-1),可得2x1x2-(x1+x2)-(x1+x2-2)t=0,即2-14-12t=0,即t=-1,M(-1,0)符合题意;当直线为y=-(x-1),由对称性可得M(-1,0)也符合条件.所以存在定点M(-1,0)使得∠AMO=∠BMO.【解析】(1)求得抛物线的焦点,设出直线的方程,运用直线和圆相切的条件:d=r,解方程可得所求直线方程;(2)设出A,B的坐标,联立直线方程和抛物线方程,运用韦达定理和直线的斜率公式,化简整理,解方程可得t,即M的坐标,即可得到结论.本题考查直线与圆的位置关系和直线与抛物线的位置关系,考查相切的条件和联立方程,运用韦达定理,考查直线的斜率公式的运用,以及方程思想和变形能力,属于中档题.21.【答案】解:(1)由f(x)=,得f′(x)=e x•,令g(x)=ax2-2ax+1,故△=4a(a-1),故0<a≤1时,△≤0,g(x)≥0恒成立,即f′(x)≥0恒成立,故f(x)递增,当a>1时,△>0,此时方程g(x)=0有2个不相等的根x1,x2,不妨设x1<x2,令ax2-2ax+1=0,解得:x=,故x1=,x2=,故x∈(-∞,x1)时,g(x)>0,即f′(x)>0,f(x)递增,x∈(x1,x2)时,g(x)<0,即f′(x)<0,f(x)递减,当x∈(x2,+∞)时,g(x)>0,即f′(x)>0,f(x)递增,综上,当0<a≤1时,f(x)在R递增,当a>1时,f(x)在(-∞,),(,+∞)递增,在(,)递减;(2)证明:当a=2时,f(x)=,由(1)知,函数f(x)在(-∞,)递增,在(,)递减,在(,+∞)递增,故当x=时,函数f(x)有极大值,且f()=≈>1,当x=时,函数f(x)有极小值,且f()==<<1,又∵f(0)=1,f(3)==>>1,故直线y=1与函数f(x)的图象在区间R上有且只有3 个交点,故当a=2时,方程=1有且仅有3个不同的实数根.【解析】(1)求出函数的导数,结合二次函数的性质通过讨论a的范围,求出函数的单调区间即可;(2)代入a的值,根据函数的单调性证明即可.本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(1)由,可得圆C的普通方程为(x-2)2+y2=4.即圆C的圆心坐标为C(2,0),半径r=2,依题意可设过点P(-2,0)的直线方程为y=k(x+2),即kx-y+2k=0.设圆心C到直线l的距离为d,则d=,解得k=;(2)设直线l的参数方程为,θ∈(),代入圆(x-2)2+y2=4,得t2-8t cosθ+12=0.设A,B,E对应的参数分别为t A,t B,t E,则.∴t A+t B=8cosθ,t E=4cosθ,又点E的坐标满足,∴点E的轨迹的参数方程为,即,θ∈().化为普通方程为:x2+y2=4(1<x≤2).【解析】(1)化圆的方程为普通方程,求出圆心坐标与半径,再由点到直线的距离公式列式求得k值;(2)设直线l的参数方程为,θ∈(),代入圆(x-2)2+y2=4,得t2-8t cosθ+12=0,再由参数t的几何意义求解.本题考查轨迹方程的求法,考查参数方程与普通方程的互化,考查计算能力,是中档题.23.【答案】解:(1)f(x)=|x+1|+2|x-1|=,其图象如下图:(2)若x∈(-∞,0],由(1)知函数f(x)的图象与y轴的交点的纵坐标为3,各部分所在直线的斜率的最小值为-3,故当且仅当a≤-3且b≥3时,x∈(-∞.0],不等式f(x)≤ax+b恒成立,所以-b≤-3,所以a-b≤-6.故a-b的最大值为-6.【解析】(1)去绝对值变成分段函数后,再分段作图;(2)结合x≤0时两个函数的图象分析可得.本题考查了不等式恒成立问题,属中档题.。
2018年安徽省合肥市高考一模数学试卷(文科)【解析版】

(θ 为参数),在以 O
为极点,x 轴的正半轴为极轴的极坐标系中,曲线 C2:ρ﹣2cosθ=0. (1)求曲线 C2 的普通方程; (2)若曲线 C1 上有一动点 M,曲线 C2 上有一动点 N,求|MN|的最小值. [选修 4-5:不等式选讲] 23.已知函数 f(x)=|2x﹣1|. (1)解关于 x 的不等式 f(x)﹣f(x+1)≤1; (2)若关于 x 的不等式 f(x)<m﹣f(x+1)的解集不是空集,求 m 的取值范
则实数 a 的值是( )
A.
B.1
C.2
D.e
12.(5 分)如图,椭圆
的焦点为 F1,F2,过 F1 的直线交椭圆于 M,N
两点,交 y 轴于点 H.若 F1,H 是线段 MN 的三等分点,则△F2MN 的周长为 ()
A.20
B.10
C.
D.
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
[40,50)
[50,60]
使用
45 人
30 人
15 人
15 人
未使用
0人
10 人
20 人
45 人
(1)为推广移动支付,商场准备对使用移动支付的顾客赠送 1 个环保购物袋.若 某日该商场预计有 12000 人购物,试根据上述数据估计,该商场当天应准备 多少个环保购物袋?
(2)某机构从被调查的使用移动支付的顾客中,按分层抽样的方式抽取 7 人作 跟踪调查,并给其中 2 人赠送额外礼品,求获得额外礼品的 2 人年龄都在[20, 30)内的概率.
说明理由.
21.(12 分)已知函数
(a∈R).
(1)求函数 y=f(x)的单调区间;
(2)当 a=1 时,求证:
2018年合肥一模数学试卷(文)(含答案)

A
CD
三.解答题: 17.(Ⅰ)根据正弦定理,由 bcosC
acos2 B bcos AcosB 可得
sin BcosC sin Acos2 B sin Bcos AcosB cosB sin AcosB sin Bcos A
cosBsin A B 即 sin BcosC cos Bsin C ,故 sin B C , ,故 B C,所以 ABC 是等腰三角形;
(Ⅰ)连接 EN,FN .在正方形 ABCD 中,AC BD , 又 M
BF 平面 ABCD, BF AC .
BF BD B ,
D
AC 平面 BDEF,且垂足为 N, ……9 分 C
N
VA CEF
AC S 3
1 NEF 3
11 2 22
2 2 3,
AB
三棱锥 A CEF 的体积为 . ……12 分注:第(Ⅱ)题用补体法求解,应相应给分. 20.(Ⅰ)由抛物线定义知,点 P 到抛物线 E 的准线的距离为 5.
合肥市 2018 年高三第一次教学质量检测
数学试题(文科)参考答案及评分标准
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.
1
2
3
4
5
6
7
8
9
B
C
A
C
D
A
C
D
C
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13. 1 14.
15.
6
323
2
16. 27
10 11 12
调递减,即当 x 1 时,g x( ) 取得最大值,
2) 2 (x x 0,
1) 2 (x x 1) ……10 分 g x( )在(0, 1)上单调递增,在(1,
安徽省合肥市2018届高三第一次教学质量检测理数试题

安徽省合肥市2018届高三第一次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则()()2342i i i +-=-( )A .5B .5iC .71255i --D .71255i -+2.已知等差数{}n a ,若2510,1a a ==,则{}n a 的前7项的和是( )A .112B .51C .28D .18 3.已知集合M 是函数12y x=-的定义域,集合N 是函数24y x =-的值域,则M N ⋂=( )A .12x x ⎧⎫≤⎨⎬⎩⎭B .142x x ⎧⎫-≤<⎨⎬⎩⎭C .()1,2x y x ⎧<⎨⎩且}4y ≥- D .∅4.若双曲线()222210,0x y a b a b -=>>的一条渐近线方程为2y x =-,该双曲线的离心率是( )A .5B .3C .5D .23 5.执行如图程序框图,若输入的n 等于10,则输出的结果是( )A .2B .3-C .12-D .136.已知某公司生产的一种产品的质量X (单位:克)服从正态分布()100,4N .现从该产品的生产线上随机抽取10000件产品,其中质量在[]98,104内的产品估计有( )(附:若X 服从()2,N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=) A .3413件 B .4772件 C .6826件 D .8185件7.将函数cos sin y x x =-的图像先向右平移()0ϕϕ>个单位,再将所得的图像上每个点的横坐标变为原来的a 倍,得到cos2sin 2y x x =+的图像,则,a ϕ的可能取值为( )A .,22a πϕ== B .3,28a πϕ== C .31,82a πϕ== D .1,22a πϕ== 8.已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018a =( )A .201821- B .201836- C .20181722⎛⎫- ⎪⎝⎭D .201811033⎛⎫-⎪⎝⎭9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .518π+B .618π+C .86π+D .106π+10.已知直线210x y -+=与曲线x y ae x =+相切(其中e 为自然对数的底数),则实数a 的值是( )A .12B .1C .2D .e 11.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元12.已知函数()()22,2xe f x x x g x x =-=+(其中e 为自然对数的底数),若函数()()h x f g x k =-⎡⎤⎣⎦有4个零点,则k 的取值范围为( )A .()1,0-B .()0,1C .221,1e e ⎛⎫- ⎪⎝⎭D .2210,e e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若平面向量,a b 满足2,6a b a b +=-=,则a b ⋅= .14.已知m 是常数,()543252054311 a x a x a x a x a x a mx +++++-=,且12345533a a a a a a +++++=,则m = .15.抛物线2:4E y x =的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P (第一象限内.....)作l 的垂线PQ ,垂足为Q .若四边形AFPQ 的周长为16,则点P 的坐标为 .16.在四面体ABCD 中,2,60,90AB AD BAD BCD ==∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,()2cos cos 0a b C c A -+=. (1)求角C ;(2)若23c =,求ABC ∆的周长的最大值.18.2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目 并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科 学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获A 等的概率都是0.8,所选的自然科学科目考试的成绩获A 等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量X 表示他所选考的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望.19.如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF DE =,点M 为棱AE 的中点.(1)求证:平面//BMD 平面EFC ;(2)若2DE AB =,求直线AE 与平面BDM 所成的角的正弦值.20.在平面直角坐标系中,圆O 交x 轴于点12,F F ,交y 轴于点12,B B .以12,B B 为顶点,12,F F 分别为左、右焦点的椭圆E ,恰好经过点⎛ ⎝⎭. (1)求椭圆E 的标准方程;(2)设经过点()2,0-的直线l 与椭圆E 交于,M N 两点,求2F MN ∆面积的最大值. 21.已知()()()ln 21af x x a R x=-+∈. (1)讨论()f x 的单调性; (2)若()f x ax ≤恒成立,求a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线13cos :2sin x C y θθ=⎧⎨=⎩(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:2cos 0C ρθ-=.(1)求曲线2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求MN 的最小值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)解关于x 的不等式()()11f x f x -+≤;(2)若关于x 的不等式()()1f x m f x <-+的解集不是空集,求m 的取值范围.试卷答案一、选择题1-5: A CBCC 6-10: D DACB 11、12:BD二、填空题13. 1- 14. 3 15.()4,4 三、解答题17. 解:(1)根据正弦定理,由已知得:()sin 2sin cos sin cos 0A B C C A -+=, 即sin cos sin cos 2sin cos A C C A B C +=, ∴()sin 2sin cos A C B C +=,∵A C B π+=-,∴()()sin sin sin 0A C B B π+=-=>, ∴sin 2sin cos B B C =,从而1cos 2C =.∵()0,C π∈,∴3C π=.(2)由(1)和余弦定理得2221cos 22a b c C ab +-==,即2212a b ab +-=,∴()2212332a b a b ab +⎛⎫+-=≤ ⎪⎝⎭,即()248a b +≤ (当且仅当23a b ==时等号成立). 所以,ABC ∆周长的最大值为4363c +=.18. (1)记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M ,则()3336119112020C P M C =-=-=,所以该位考生选考的三个科目中,至少有一个自然科学科目的概率为1920. (2)随机变量X 的所有可能取值有0, 1,2,3. 因为()211105480P X ⎛⎫==⨯= ⎪⎝⎭,()2124111311545448P X C ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,()212413133325445480P X C ⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭,()243935420P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为所以()11033360123 2.380808080E X =⨯+⨯+⨯+⨯=. 19.(1)证明:连结AC ,交BD 于点N , ∴N 为AC 的中点,∴//MN EC .∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴//MN 平面EFC .∵,BF DE 都垂直底面ABCD , ∴//BF DE .∵BF DE =,∴BDEF 为平行四边形,∴//BD EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴//BD 平面EFC .又∵MN BD N ⋂=,∴平面//BDM 平面EFC . (2)由已知,DE ⊥平面ABCD ,ABCD 是正方形.∴,,DA DC DE 两两垂直,如图,建立空间直角坐标系D xyz -. 设2AB =,则4DE =,从而()()()()2,2,0,1,0,2,2,0,0,0,0,4B M A E , ∴()()2,2,0,1,0,2DB DM ==,设平面BDM 的一个法向量为(),,n x y z =, 由00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩得22020x y x z +=⎧⎨+=⎩.令2x =,则2,1y z =-=-,从而()2,2,1n =--.∵()2,0,4AE =-,设AE 与平面BDM 所成的角为θ,则45sin cos n AE n AE n AEθ⋅=⋅==⋅, 所以,直线AE 与平面BDM 所成角的正弦值为45.20.(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E 的标准方程为()222210x y a b a b +=>>,焦距为2c ,则b c =,∴22222a b c b =+=,∴椭圆E 的标准方程为222212x y b b+=.又∵椭圆E过点⎛ ⎝⎭,∴2211212b b +=,解得21b =. ∴椭圆E 的标准方程为2212x y +=.(2)由于点()2,0-在椭圆E 外,所以直线l 的斜率存在.设直线l 的斜率为k ,则直线():2l y k x =+,设()()1122,,,M x y N x y . 由()22212y k x x y =+⎧⎪⎨+=⎪⎩消去y 得,2222)128820k x k x k +++-=(. 由 0∆>得2102k ≤<,从而22121222882,1212k k x x x x k k --+==++,∴12MN x =-=.∵点()21,0F 到直线l的距离d =,∴2F MN ∆的面积为12S MN d =⋅=令212k t +=,则[)1,2t ∈,∴S===, 当134t =即[)441,233t ⎛⎫=∈ ⎪⎝⎭时,S 有最大值,maxS =,此时k =.所以,当直线l 的斜率为时,可使2F MN ∆ 21.(Ⅰ)()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,,()()2222222121a x ax a f x x x x x -+'=-=--.∵2210,0x x ->>. 令()222g x x ax a =-+,则 (1)若0∆≤,即当02a ≤≤时,对任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x ≥恒成立, 即当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '≥恒成立(仅在孤立点处等号成立).∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.(2)若0∆>,即当2a >或0a <时,()g x 的对称轴为2ax =. ①当0a <时,02a <,且11022g ⎛⎫=> ⎪⎝⎭. 如图,任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x >恒成立, 即任意1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>恒成立,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.②当2a >时,12a > ,且11022g ⎛⎫=> ⎪⎝⎭.如图,记()0g x =的两根为()()2212112,222x a a a x a a a =--=+-∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0g x >;当(211,222a a a ⎛⎫-- ⎪⎝⎭时,()0g x <. ∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0f x '>,当()12,x x x ∈时,()0f x '<.∴()f x 在11,2x ⎛⎫⎪⎝⎭和()2,x +∞上单调递增,在()12,x x 上单调递减.综上,当2a ≤时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增;当2a >时,()f x 在(11,22a ⎛⎫ ⎪⎝⎭和(1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,在((11,22a a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭上单调递减.(Ⅱ)()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()0f x ax -≤恒成立.令()()()ln 21a h x f x ax x ax x =-=-+-,则()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()()01h x h ≤= ()*.要满足()*式,即()h x 在1x =时取得最大值. ∵()()()32222221ax a x ax ah x x x -++-+'=-.由()10h '=解得1a =.当1a =时,()()()()2212121x x x h x x x --+'=-,∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '>;当()1,x ∈+∞时,()0h x '<.∴当1a =时,()h x 在1,12⎛⎫⎪⎝⎭上单调递增,在()1,+∞上单调递减,从而()()10h x h ≤=,符合题意.所以,1a =.22. (1)由2cos 0ρθ-=得:22cos 0ρρθ-=. 因为222,cos x y x ρρθ=+=,所以2220x y x +-=, 即曲线2C 的普通方程为()2211x y -+=.(2)由(1)可知,圆2C 的圆心为()21,0C ,半径为1. 设曲线1C 上的动点()3cos ,2sin M θθ, 由动点N 在圆2C 上可得:2min min1MN MC =-.∵2MC =当3cos 5θ=时,2minMC =∴2min min11MN MC =-=. 23.(1)()()1121211f x f x x x -+≤⇔--+≤,四川奥邦药业集团.11 1221211x x x ⎧≥⎪⇔⎨⎪---≤⎩或112212211x x x ⎧-<<⎪⎨⎪---≤⎩或1212211x x x ⎧≤-⎪⎨⎪-++≤⎩ 12x ⇔≥或1142x -≤<14x ⇔≥-, 所以,原不等式的解集为1,4⎡⎫-+∞⎪⎢⎣⎭. (2)由条件知,不等式22 11x x m -++<有解,则()min 2121 m x x >-++即可. 由于()1222112211221x x x x x x =-++≥-+++-=+, 当且仅当()()12210x x -+≥,即当11,22x ⎡⎤∈-⎢⎥⎣⎦时等号成立,故 2m >. 所以,m 的取值范围是()2,+∞.。
安徽省合肥市重点中学2018年中考一模数学试卷及参考答案

】
菠萝
A
B
C
D
E
去皮前
1.1kg
1.3kg
1.8kg
1.3kg
2.0kg
去皮后
0.7kg
0.9kg
1.2kg
0.8kg
1.4kg
A. 0.7a
B. 1.1a
C. 1.5a
D. 2a
10.如图,矩形 ABCD 中,O 为对角线 AC 的中点,点 P、Q 分别从 A
和 B 两点同时出发,在边 AB 和 BC 上匀速运动,并且同时到达终
7.一副直角三角板按如图所示的方式摆放,其中点 C 在 FD 的延长线上,且 AB∥FC,则∠CBD
的度数为【
】
A. 15°
B. 20°
C. 25°
D. 30°
第 7 题图
第 8 题图
8.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为【
】
A. y 1 x2 B. y 1 x 12
21. (满分 12 分)已知:如图,AB 为半圆的直径,O 为圆心,OC⊥AB,D 为 BC 的中点,连
接 DA、DB、DC,过点 C 作 DC 的垂线交 DA 于点 E,DA 交 OC 于点 F. (1)求∠CED 的度数;(2)求证:AE=BD;(3)求 AO 的值.
OF
22. (满分 12 分)为了迎接“六一”儿童节的到来,某校七年级进行集体跳大绳比赛.如图所示, 跳绳时,绳甩到最高处时的形状可看作是抛物线的一部分,记作 G,绳子两端的距离 AB 约为 8 米,两名甩绳同学拿绳的手到地面的距离 AC 和 BD 基本保持 1 米,当绳甩到最低点时刚好擦过 地面,且与抛物线 G 关于直线 AB 对称.