2.1 人教版七年级上册数学第二章《整式的加减》 第2课时 整式 专题训练含答案及解析
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
人教版七年级数学上册课时练 第二章 整式的加减 2.2整式的加减

人教版七年级数学上册课时练 第二章 整式的加减 2.2整式的加减一、选择题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=22.下列计算正确的是( )A .224x x x +=B .2352x x x +=C .3x ﹣2x=1D .2222x y x y x y -=-3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --4.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .325.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a 元的价格购进了35件牛奶;每件b 元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( )A .赚钱B .赔钱C .不嫌不赔D .无法确定赚与赔6.某天数学课上老师讲了整式的加减运算,小颖回家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:5(2a 2+3ab-b 2)-(-3+ab+5a 2+b 2)=5a 2■-6b 2+3被墨水弄脏了,请问被墨水遮盖住的一项是()A .+14abB .+3abC .+16abD .+2ab 7.有两桶水,甲桶装有a 升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的13倒给甲桶,假定桶足够大,水不会溢岀.我们将上述两个步骤称为一次操作,进行重复操作,则( ) A .每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B .每操作一次,甲桶中的水量都会减小,但永远倒不完C .每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D .每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少8.已知m)n 为常数,代数式2x 4y)mx |5-n|y)xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个9.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x )y 有关B .与x 有关C .与y 有关D .与x )y 无关10.有理数m)n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A .mB .2n -mC .-mD .m -2n 二、填空题11.给定一列按规律排列的数:32-,1,710-,917,…,根据前4个数的规律,第2020个数是_____. 12.若(x -1)4(x+2)5=a 0+a 1x+a 2x 2+…+ a 9x 9,求:a 1+a 3+a 5+a 7+a 9=________.13.观察下列单项式:0,23x -,38x ,415x -,524x ⋯按规律写出第n 个单项式是________.14.若3132m a b -与52114n a b +的和仍是单项式,则56m n +的值为______ ) 15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12)16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3)5)7)8)9)11)12)13)15)16)17)19)20)21)23)24)25)…则第2 013个“智慧数”是______.三、解答题16.已知关于,x y 的多项式212x my +-与多项式36nx y -+的差中不含有关于,x y 的一次项,求m n mn ++的值. 17.有这样一道题“计算:(2m 4-4m 3n -2m 2n 2)-)m 4-2m 2n 2)+)-m 4+4m 3n -n 3)的值,其中14m =)n=-1.”小强不小心把14m =错抄成了14m =-,但他的计算结果却也是正确的,你能说出这是为什么吗? 18.某商场销售一种西装和领带,西装每套定价800元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装2套,领带x 条(x >2).(1)若该客户按方式一购买,需付款 元(用含x 的式子表示);若该客户按方式二购买,需付款 元.(用含x 的式子表示)(2)若x=5,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案,并算出所需费用.19.如图,数轴上有三个点A ,B ,C ,表示的数分别是﹣4,﹣2,3.(1)若使C 、B 两点的距离是A 、B 两点的距离的2倍,则需将点C 向左移动 个单位;(2)点A 、B 、C 开始在数轴上运动,若点A 以每秒a 个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t 秒:①点A 、B 、C 表示的数分别是 、 、 (用含a 、t 的代数式表示);②若点B 与点C 之间的距离表示为d 1,点A 与点B 之间的距离表示为d 2,当a 为何值时,5d 1﹣3d 2的值不会随着时间t 的变化而改变,并求此时5d 1﹣3d 2的值.20.已知210x x +-=,求322002200120032007x x x +--的值.21.老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当1,1a b ==-时,求被捂住的多项式的值.22.有一道题目,是一个多项式减去2146x x +-,小强误当成了加法计算,结果得到223x x -+,正确的结果应该是多少?23.在数学中,有许多关系都是在不经意间被发现的.当然,没有敏锐的观察力是做不到的.数学家们往往是这样来研究问题的:特值探究–猜想归纳–逻辑证明–总结应用.下面我们也来像数学家们那样分四步找出这两个代数式的关系:对于代数式()()a b a b +-与22a b -)()1特值探究)当2a =)0b =时,()()a b a b +-=________)22a b -=________当5a =-)3b =时,()()a b a b +-=________)22a b -=________()2猜想归纳:观察()1的结果,写出()()a b a b +-与22a b -的关系:________)()3逻辑证明:如图,边长为a 的正方形纸片剪出一个边长为b 的小正方形之后,剩余部分(即阴影部分)又剪拼成一个矩形(不重叠无缝隙),请你说说是如何用这个图来得出()2中的关系?()4总结应用:利用你发现的关系,求:①若226a b -=,且2a b +=,则a b -=________)②()()()()()248162121212121+++++的值.(提示:你可能要用到公式()m n mn a a =) 【参考答案】1.B 2.D 3.C 4.A 5.D 6.A 7.D 8.C 9.D 10.C 11.4041408040112.-813.()()1(1)11n n n n x ---+14.1615.2 68716.-717.才会出现小强计算结果也是正确的18.(1)200x+1200;180x+1440;(2)按方案一购买较合算;(3)先按方案一购买2套西装获赠送2条领带,再按方案二购买3条领带. 所需费用为1600+200×3×90%=2140(元),是最省钱的购买方案.19.(1)1或9(2)①﹣4﹣at ;﹣2+2t ;3+5t ;②19.20.-2008.21.(1)8b 2+4ab ;(2)422.2915x -+)23.()14)4)16)16) ()2 ()()22a b a b a b +-=-)()3 略;()4①3)②3221-.。
部编数学七年级上册必刷基础练【第2章《整式的加减》章节达标检测】(解析版) 考点必刷精编讲义)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第二章《整式的加减》章节达标检测考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022•义乌市模拟)下列各组式子中,是同类项的为( )A.2a与2b B.a2b与2ab2C.2ab与﹣3ba D.3a2b与a2bc解:A.所含字母不相同,不是同类项,故A不符合题意;B.所含字母相同,但相同字母指数不相同,不是同类项,故B不符合题意;C.所含字母相同,相同字母的指数相同,是同类项,故C符合题意;D.所含字母不尽相同,不是同类项,故D不符合题意;故选:C.2.(2分)(2021秋•曲阳县期末)下列各组中的两个单项式,属于同类项的是( )A.6xy和6xyz B.x3与53C.2a2b与﹣ab2D.0.85xy4与﹣y4x解:A、6xy和6xyz中所含字母不同,不是同类项,故本选项不符合题意;B、x3与53中所含字母不同,不是同类项,故本选项不符合题意;C、2a2b与﹣ab2中所含字母相同,但相同含字母的指数不同,不是同类项,故本选项不符合题意;D、0.85xy4与﹣y4x中所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意.故选:D.3.(2分)(2021秋•雁峰区校级期末)下列各组代数式中,不是同类项的是( )A.2与﹣2B.﹣5xy2与3xy2C.﹣3t与20t D.2a2b与﹣b2a解:A、2与﹣2是同类项,故A不符合题意;B、﹣5xy2与﹣3xy2是同类项,故B不符合题意;C、﹣3t与20t是同类项,故C不符合题意;D、2a2b与﹣b2a不是同类项,故D符合题意.故选:D.4.(2分)(2021秋•长安区期末)某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为( )A.元B.元C.0.3a元D.0.7a元解:某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为:a÷(1﹣30%)=a÷0.7==(元),故选:B.5.(2分)(2022•泰州)下列计算正确的是( )A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2解:A、原式=5ab,符合题意;B、原式=3y2,不符合题意;C、原式=8a,不符合题意;D、原式不能合并,不符合题意.故选:A.6.(2分)(2021秋•射阳县校级期末)若3x m+5y2与23x8y n+4的差是一个单项式,则代数式n m的值为( )A.﹣8B.6C.﹣6D.8解:由题意得:m+5=8,n+4=2,∴m=3,n=﹣2,∴n m=(﹣2)3=﹣8,故选:A.7.(2分)(2021秋•未央区校级期末)下列结论中,正确的是( )A.单项式的系数是3,次数是2B.多项式2x2+xy+3是四次三项式C.单项式a的次数是1,系数为0D.﹣xyz2单项式的系数为﹣1,次数是4解:∵单项式的系数是,次数是3,∴A不合题意.∵多项式2x2+xy+3是二次三项式,∴B不合题意.∵单项式a的次数为1,系数为1.∴C不合题意.∵﹣xyz2是系数为﹣1,次数为4的单项式.故D符合题意.故选:D.8.(2分)(2021秋•江阴市期末)某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A.增加10%B.增加4%C.减少4%D.大小不变解:长方形草地的长为x,宽为y,则改造后长为1.3x,宽为0.8y,则改造后的面积为:1.3x×0.8y=1.04xy,所以可知这块长方形草地的面积增加4%.故选:B.9.(2分)(2021秋•石狮市期末)若(2x﹣1)6=a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a,则a6﹣a5+a4﹣a3+a2﹣a1的值为( )A.0B.1C.728D.729解:把x=0代入,得:(﹣1)6=a把x=﹣1代入得:[2×(﹣1)﹣1]6=a6﹣a5+a4﹣a3+a2﹣a1+a,(﹣3)6=a6﹣a5+a4﹣a3+a2﹣a1+1,∴a6﹣a5+a4﹣a3+a2﹣a1=728,故选:C.10.(2分)(2021秋•镇江期末)代数式kx+b当中,当x取值分别为﹣1,0,1,2时,对应代数式的值如下表:x…﹣1012…kx+b…﹣1135…则﹣2k﹣b的值为( )A.﹣1B.2C.﹣3D.﹣5解:∵x=2时,代数式2k+b=5,∴﹣2k﹣b=﹣(2k+b)=﹣5.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022•杨浦区二模)如果某种商品每8千克的售价为32元,那么这种商品m千克的售价为 4m 元.解:∵这种商品的单价为32÷8=4元,∴这种商品m千克的售价为4m元.故答案为:4m.12.(2分)(2021秋•井研县期末)多项式﹣2x﹣x3+4x2+1,按x的升幂排列为 1﹣2x+4x2﹣x3 .解:把多项式﹣2x﹣x3+4x2+1按x的升幂排列为1﹣2x+4x2﹣x3,故答案为:1﹣2x+4x2﹣x3.13.(2分)(2021秋•余干县校级期末)当n= ±2 时.2x|n|与﹣3x2是同类项.解:∵2x|n|与﹣3x2是同类项,∴|n|=2,解得n=±2.故答案为:±2.14.(2分)(2021秋•龙泉驿区校级期末)如果关于x,y的多项式xy|a|﹣+1是三次三项式,则a的值为 ﹣2 .解:∵关于x,y的多项式xy|a|﹣+1是三次三项式,∴|a|=2且a﹣2≠0,解得,a=﹣2.故答案为:﹣2.15.(2分)(2021秋•南关区校级期末)某种商品每件的进价为m元,标价为n元,后来由于该商品积压,于是将此商品按标价的70%销售,则该商品每件利润为 (0.7n﹣m) 元.解:由题意得:该商品的每件利润为:70%n﹣m=(0.7n﹣m)元,故答案为:(0.7n﹣m).16.(2分)(2021秋•潍坊期末)已知m﹣n=2,mn=﹣5,则3(mn﹣n)﹣(mn﹣3m)的值为 ﹣4 .解:原式=3mn﹣3n﹣mn+3m=3m﹣3n+2mn,∵m﹣n=2,mn=﹣5,∴原式=3(m﹣n)+2mn=3×2+2×(﹣5)=6﹣10=﹣4,故答案为:﹣4.17.(2分)(2021秋•大名县期末)如图,阴影部分面积用代数式表示为 a+b﹣6 .解:阴影部分的面积为3(a﹣2)+2b﹣×3a﹣×2b=3a﹣6+2b﹣a﹣b=a+b﹣6,故答案为:a+b﹣6.18.(2分)(2021秋•武功县期末)一个两位数,十位上的数字与个位上的数字之和是5,个位上的数字是a (a<5),则这个两位数为 50﹣9a .(用含a的代数式表示)解:由题意得,这个两位数为10(5﹣a)+a=50﹣10a+a=50﹣9a.则这个两位数是50﹣9a.故答案为:50﹣9a.19.(2分)(2021秋•镇平县校级期末)下面是一个简单的数值运算程序,当首先输入a=﹣2时,计算出正数为止,那么输出的结果是 2 .解:当a=﹣2时,则3a+5=﹣1<0;当a=﹣1时,则3a+5=2>0,故答案为:2.20.(2分)(2021秋•延庆区期末)如下表是某面包店的价目表.小明原本拿了4个面包去结账,结账时收银员告诉小明,店内有优惠活动,优惠方式为每买5个面包,其中1个价格最低的面包就免费.因此,小明又去拿了一个,他挑选了香蒜面包.如果小明原本的结账金额为a元,则小明后来的结账金额为 a 或(a+1.5)或(a+2.5) 元.(用含a的式子表示)面包品种甜甜圈芒果面包香蒜面包切片面包奶香片奶油面包单价5元6元7.5元11元12元12元解:小明原本拿了4个面包最低价钱是5元,小明后来的结账金额为a+7.5﹣5=(a+2.5)元;或小明原本拿了4个面包最低价钱是6元,小明后来的结账金额为a+7.5﹣6=(a+1.5)元;或小明原本拿了4个面包最低价钱是大于等于7.5元,小明后来的结账金额为a元.故小明后来的结账金额为a或(a+1.5)或(a+2.5)元.故答案为:a或(a+1.5)或(a+2.5).三.解答题(共8小题,满分60分)21.(4分)(2021秋•井研县期末)化简:2x+(5x﹣3y)﹣(﹣5y+3x).解:原式=2x+5x﹣3y+5y﹣3x=4x+2y.22.(4分)(2021秋•龙泉驿区校级期末)先化简,再求值:3x2y2﹣5xy2+(4xy2﹣9)+2x2y2,其中,y =2.解:原式=3x2y2﹣5xy2+4xy2﹣9+2x2y2=5x2y2﹣xy2﹣9,当,y=2时,原式===45+6﹣9=42.23.(7分)(2021秋•雁峰区校级期末)已知M=3x2﹣2xy+y2,N=x2﹣xy+y2.(1)化简:M﹣2N;(2)当x=﹣1,y=2时.求M﹣2N的值.解:(1)M﹣2N=(3x2﹣2xy+y2)﹣2(x2﹣xy+y2)=3x2﹣2xy+y2﹣2x2+2xy﹣2y2=x2﹣y2.(2)当x=﹣1,y=2时,原式=(﹣1)2﹣22=1﹣4=﹣3.24.(8分)(2021秋•房县期末)下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.(1)填空:①以上化简步骤中,第一步的依据是 乘法分配律 ;②以上化简步骤中,第 二 步开始不符合题意,这一步错误的原因是 去括号没变号 ;(2)请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.解:(1)①以上化简步骤中,第一步的依据是乘法分配律;故答案为:乘法分配律.②以上化简步骤中,第二步开始出现不符合题意,这一步错误的原因是去括号没变号;故答案为:二,去括号没变号.(2)原式=3x2y+2xy﹣(2xy+2x2y)=3x2y+2xy﹣2xy﹣2x2y=x2y,当x=﹣1,y=﹣时,原式==﹣.25.(8分)(2021秋•雄县期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)5与 ﹣3 是关于1的平衡数;(2)7﹣2x与 2x﹣5 是关于1的平衡数(用含x的式子表示);(3)若a=2x2﹣3(x2+x),b=4﹣3x+(6x+x2),判断a与b是否是关于1的平衡数,并说明理由.解:(1)∵5+(﹣3)=2,∴5与﹣3是关于1的平衡数.故答案为:﹣3;(2)由已知条件可知,2﹣(7﹣2x)=2x﹣5,∴7﹣2x与2x﹣5是关于1的平衡数,故答案为:2x﹣5;(3)a与b不是关于1的平衡数,理由如下:∵a+b=(2﹣3+1)x2+(﹣3﹣3+6)x+4=4≠2,∴a与b不是关于1的平衡数.26.(10分)(2021秋•昌吉市校级期末)北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只6元,超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款.现某顾客要到该超市购买茶壶5只,茶杯x只(茶杯数多于5只).(1)若x=10,按方案①购买需付款 130 元,按方案②购买需付款 144 元.(2)若该顾客按方案①购买,需付款 6x+70 元(用含x的代数式表示);若该顾客按方案②购买,需付款 5.4x+90 元(用含x的代数式表示).(3)若x=40,请通过计算说明此时按哪种方案购买较为合算?(4)若x=40,综合①②两种优惠方案,你能设计一种更省钱的购买策略吗?请写出来.解:(1)当x=10时,方案①需付款:20×5+6×(10﹣5)=100+30=130(元);方案②需付款:0.9(20×5+10×6)=144(元).故答案为:130,144;(2)购买x只茶杯,5只茶壶,方案①需付款:20×5+6×(x﹣5)=6x+70.方案②需付款:0.9×(20×5+6x)=5.4x+90.故答案为:6x+70;5.4x+90;(3)当x=40时,方案①需付款:6x+70=6×40+70=310(元).方案②需付款:5.4x+90=5.4×40+90=306(元).310>306,∴方案②更合算;(4)先按方案①购买5只茶壶,赠送5只茶杯,花钱100元,再按方案②购买剩下的35只茶杯花钱35×6×0.9=189元,共计花费289元.27.(9分)(2021秋•长海县期末)一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?解:(1)图形的面积为:x2+4x+3y+8(x+4﹣y)=x2+4x+3y+8x+32﹣8y=(x2+12x﹣5y+32)m2;(2)阴影部分的面积为:x2+8(x+4﹣y),当x=6,y=2时,阴影部分的面积为:62+8(6+4﹣2)=36+64=100(m2).∵铺地砖每平方米的平均费用为80元,∴铺地砖的总费用为:100×80=8000(元).答:铺地砖的总费用为8000元.28.(10分)(2021秋•长海县期末)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠九折优惠低于300元但不低于100元300元或超过300元其中300元部分给予九折优惠,超过300元部分给予八折优惠(1)某顾客一次性购物500元,他实际付款 430 元;(2)若顾客在该超市一次性购物x元,当x小于300但不小于100时,他实际付款0.9x元,当x大于或等于300时,他实际付款 (0.8x+30) 元(用含x的式子表示);(3)如果某顾客两次购物货款合计620元,第一次购物的货款为a元(100<a<300),某顾客两次购物实际付款多少元(用含a的式子表示)?解:(1)实际付款:300×90%+(500﹣300)×80%=270+160=430(元),故答案为:430;(2)实际付款:300×90%+(x﹣300)×80%=270+0.8x﹣240=(0.8x+30)元,故答案为:(0.8x+30);(3)解:0.9a+0.8(620﹣300﹣a)+270=0.9a+256﹣0.8a+270=(0.1a+526)元.答:两次购物张某实际付款(0.1a+526)元.。
人教版七年级数学上册《2.2.3整式的加减》同步专题练习(含参考答案)

七年级数学上册——整式的加减专题练习(满分120分,90分钟完卷)学校:班级:七()班姓名:___________1.化简:(1)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y)(4分); (2)y-{y-2x+[5x-3(y+2x)+6y]} (4分).2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(7分)3.先化简,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.(6分)4.求4x2+3xy+2y2与x2-5xy+2y2的差.(6分)5.已知A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.(7分)6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.(6分)1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为()(4分)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是()(4分)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=()(4分)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是() (4分)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于() 4分)A.9a-4B.9a-1C.9a-2D.9a-36 (2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()(4分)A.A>BB.A=BC.A<BD.无法确定7.(4分)(2016·湖南株洲中考)计算:3a-(2a-1)=.8.(4分)(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=.9.(4分)(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为.10.(4分)2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.(6分)12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(8分)(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?13. (2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(8分)(1)求A; (2)若|a+1|+(b-2)2=0,计算A的值.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(9分)(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.15.已知A=2x2-3x-1,B=x2-3x-5, (1)计算2A+3B; (2)通过计算比较A与B的大小.(9分)七年级数学上册——整式的加减专题练习(参考答案)1.化简:-2(x+y)-5(x-y)+4(x+y)+3(x-y); (2)y-{y-2x+[5x-3(y+2x)+6y]}.x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y) (2)y-{y-2x+[5x-3(y+2x)+6y]}=3(x-y)-5(x-y)+3(x-y)-2(x+y)+4(x+y)=y-[y-2x+(5x-3y-6x+6y)]=(x-y)+2(x+y)=x-y+2x+2 =y-(y-2x+5x-3y-6x+6y)y=3x+y. =y-y+2x-5x+3y+6x-6y=3x-3y.2.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.(2m-4)岁,小华的年龄为岁,则这三名同学的年龄的和为m+(2m-4)+=m+2m-4+(m-2+1)=4m-5(岁).答:这三名同学的年龄的和是(4m-5)岁.,再求值:3(y+2x)-[3x-(x-y)]-2x,其中x,y互为相反数.y+2x)-[3x-(x-y)]-2x=3y+6x-3x+x-y-2x=2(x+y).因为x,y互为相反数,所以x+y=0.所以3(y+2x)-[3x-(x-y)]-2x=2(x+y)=2×0=0.4x2+3xy+2y2与x2-5xy+2y2的差.x2+3xy+2y2)-(x2-5xy+2y2)=4x2+3xy+2y2-x2+5xy-2y2=3x2+8xy.A=x2+xy+y2,B=x2-xy+y2,x2+3xy+4y2=2,4x2-2xy+y2=3,求4A+B-(A-B)的值.A+B-(A-B)=4A+B-A+B=3A+2B.∵∴∴3A+2B=5x2+xy+5y2=(x2+3xy+4y2)+(4x2-2xy+y2)=2+3=5.∴4A+B-(A-B)=5.6.如果关于x的多项式(3x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)的值与x的取值无关,试确定m的值,并求m2+(4m-5)+m的值.x2+2mx-x+1)+(2x2-mx+5)-(5x2-4mx-6x)=(2m-m+4m+6-1)x+6=(5m+5)x+6.因为它的值与x的取值无关,所以5m+5=0,所以m=-1.因为m2+(4m-5)+m=m2+5m-5,所以当m=-1时,m2+(4m-5)+m=(-1)2+5×(-1)-5=-9.1.(2016·山东济南一模)化简(2x-3y)-3(4x-2y)的结果为(B)A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y2.(2015·江苏镇江中考)计算-3(x-2y)+4(x-2y)的结果是(A)A.x-2yB.x+2yC.-x-2yD.-x+2y3.(2016·河北邢台二模)设A,B,C均为多项式,小方同学在计算“A-B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x-1,C=x2+2x,那么A-B=(C)A.x2-2xB.x2+2xC.-2D.-2x4.(2016·福建厦门一模)多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是(D)A.-2x2-3x+2B.-x2-3x+1C.-x2-2x+2D.-2x2-2x+15.(2016·辽宁辽阳月考)如果b=2a-1,c=3b,则a+b+c等于(A)A.9a-4B.9a-1C.9a-2D.9a-36.导学号19054071(2015·山东淄博模拟)若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是(A)A.A>BB.A=BC.A<BD.无法确定7.(2016·湖南株洲中考)计算:3a-(2a-1)=a+1.8.(2016·河北中考)若mn=m+3,则2mn+3m-5mn+10=1.9.(2016·辽宁沈阳期中)若(a+1)2+|b-2|=0,则化简a(x2y+xy2)-b(x2y-xy2)的结果为-3x2y+xy2.10.导学号19054072(2016·江苏东台市期中)定义新运算“*”为a*b=则当x=3时,计算2*x-4*x的结果为8.11.(2016·江苏无锡期中)小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.A+B=9x2-2x+7,B=x2+3x-2,∴A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9.∴A-B=8x2-5x+9-(x2+3x-2)=8x2-5x+9-x2-3x+2=7x2-8x+11.12.(2015·湖北武汉期中)某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压减价,按售价的80%出售,又销售60件.(1)销售100件这种商品后的总销售额为多少元?(2)销售100件这种商品共盈利多少元?解(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品后的总销售额为(88a+88b)元;(2)根据题意,得88a+88b-100a=-12a+88b(元),则销售100件这种商品后共盈利(-12a+88b)元.13.导学号19054073(2016·吉林农安县期末)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7.(1)求A;(2)若|a+1|+(b-2)2=0,计算A的值.解(1)由题意得A=2(-4a2+6ab+7)+7a2-7ab=-8a2+12ab+14+7a2-7ab=-a2+5ab+14.(2)根据题意及绝对值与平方的非负性可得a=-1,b=2,故A=-a2+5ab+14=3.14.已知式子A=2x2+3xy+2y-1,B=x2-xy+x-.(1)求A-2B; (2)若A-2B的值与x的取值无关,求y的值.解(1)A-2B=2x2+3xy+2y-1-2=2x2+3xy+2y-1-2x2+2xy-2x+1=5xy+2y-2x;(2)由(1)得A-2B=5xy+2y-2x=(5y-2)x+2y,因为A-2B的值与x的取值无关,所以5y-2=0,即y=.15.导学号19054074已知A=2x2-3x-1,B=x2-3x-5,2A+3B; (2)通过计算比较A与B的大小.解(1)因为A=2x2-3x-1,B=x2-3x-5,所以2A+3B=2(2x2-3x-1)+3(x2-3x-5)=4x2-6x-2+3x2-9x-15=7x2-15x-17;(2)因为A-B=(2x2-3x-1)-(x2-3x-5)=2x2-3x-1-x2+3x+5=x2+4≥4>0,所以A>B.。
人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)

1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。
人教版七年级上册 第二章《整式的加减》综合测试题含答案

图 1 图2人教版七年级上册 第二章《整式的加减》综合测试题一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是( ).A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是( ).A .15x +是多项式B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( ).A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为( ).A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为( ).A .5B .6C .7D .85.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为( ).A .7B .9C .-7D .-96.友龙在电脑中设置了一个运算程序:输入数a ,加“⊗”键,再输入数b ,得到运算a ⊗b =2ab 2+a 2b . 若a =-2,b=3,则输出的值为( ).A .-9B .-12C .-24D .67.有一个三位数,它的百位上的数字是a ,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是( ).A .2的倍数B .3的倍数C .5的倍数D .9的倍数8.已知y=x -1,则(x -y)2+(y -x)+1的值为( ).A .-1B .0C .1D .29.已知有理数a 、b 、c 在数轴上的位置如图1所示,且a 与b 互为相反数,那么| a -c |-| b +c |的值为( ).A .0B .1C .a +bD .2c 10.如图2,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为( ).A .2a -3bB .4a -8bC .2a -4bD .4a -10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a 元收费;图4 图3 若超过100度,那么超过部分每度按b 元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a 3b n +1与单项式-3a m -2b 2的和仍是单项式,则3m -4n=_________.13.如图3,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x 、y 、z 的代数式表示)14.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______.18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元.三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b . (1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B+C 的结果却是一样的,你认为这可能吗?说明你的理由.222(3)51x x x --=-+第1个 第2个 第3个 第4个22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股.(1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)填写下表:(2)归纳猜测第n 个图形棋子的个数(用含n 的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x -3x 2+5x 3-7x 4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n (n 为正整数)项是什么?(3)当x =1时,求它的前2016项的和.参考答案一、选择题1.B .提示:列代数式表示“a 与4的积的平方”为 (4a)2.2.D .提示:选项A 分母中含有字母,故不是多项式,选项B 的系数是13π-,选项C 的项是2x 2和-1. 3.A .提示:由于2月份产值是(1-10%)x 万元,故3月份产值是在(1-10%)x 万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B .提示:由于-a 3 b 4 c 的次数为8,则a 3+a x +1b -2a 2b 2的次数x +1+1=8,故x=6.5.D .提示:根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,所以2×1-3=x ,故x=-1;又因为2x -7=y ,即2×(-1)-7=y ,故y=-9.6.C .提示:当a =-2,b=3时,2ab 2+a 2b =2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数.8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1.9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a+c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a -3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b.二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元. 12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1.13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12. 15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元.三、解答题19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5.(2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17.20.(1)由于31222-+=,所以12b =. (2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-. 当32a =-,b =12时,原式=-8×(32-)×12=6. 21.可能. 理由如下:A -B +C=(-6x 2+4x)-(-x 2-3x)+(5x 2-7x +4)=-6x 2+4x +x 2+3x +5x 2-7x +4=4.由于化简后的结果中不含有字母x ,所以无论x 取何数值,其结果都是4.22.(1)王家持股:(2a 2+1)-(a -1)=2a 2-a +2.李家持股:(5a 2-3a +3)-(2a 2+1)-(2a 2-a +2)=a 2-2a .(2)当a =300时,a 2-2a = 3002-2×300=89400.所以李家能获得的钱数为:89400×15%×20=268200(元).23.(1)填表如下:(2)3(n+1);(3)同意建军的说法. 理由如下:当n=671时,3(n+1)= 3×(671+1)=2016. 所以第670个图形有2016颗黑色棋子. 24.(1)第100项是-199x100;(2)第n(n为正整数)项是(-1)n+1(2n-1)x n;(3)当x=1时,原式=1-3+5-7+…+4029-4031=(1-3)+(5-7)+…+(4029-4031)=-2×1008=-2016.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单1、n是任意整数,则表示任意一个奇数的式子是()A.n B.2n C.2n-1 D.2n+1 【分析】n是任意整数,偶数是能被2整除的数,则偶数可以表示为2n,因为偶数与奇数相差1,所以奇数可以表示为2n+1,据此解答.【解答】n是任意整数,则表示任意一个奇数的式子是:2n+1;故选D.2、已知-2a+3b=5,那么代数式9b-6a+2的值为()A.3 B.7 C.17 D.16 【分析】先把9b-6a+2变形为3(3b-2a)+2,然后利用整体代入的方法进行计算.【解答】∵-2a+3b=5,即3b-2a=5,∴9b-6a+2=3(3b-2a)+2=3×5+2=17.故选C.3、m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或nC.m+n D.m,n中的较大数【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m+y n+3m+n的次数是m,n中的较大数是该多项式的次数.【解答】根据多项式次数的定义求解.由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m+y n+3m+n中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.4、下列代数式中,不是整式的是()A.2a ba+B.214a+C.0 D.2a bπ【解答】根据整式的概念可知,不是整式有2a ba+,因为它的分母中含有字母,是分式.故选A.5、一个n次多项式(n为正整数),它的每一项次数()A.都不大于n B.都不小于n C.都等于n D.都小于n 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数可正确判定选择项.【解答】∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数∴n次多项式的次数必然都小于等于n.故选A.6、用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子()A.4n枚B.(4n-4)枚C.(4n+4)枚D.n2枚【分析】每增加一个数就增加四个棋子.【解答】n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.7、多项式(a-4)x3-x b+x-b是关于x的二次三项式,求a-b.【分析】根据多项式的定义分别分析得出即可.【解答】因为多项式(a-4)x3-x b+x-b是关于x的二次三项式,所以(a-4)x3这一项系数应为0,-x b应是最高次项.由题意,得a-4=0,b=2,即a=4,b=2,所以a-b=2.8、若多项式x2+2kxy+y2-2xy-k不含xy的项,求k的值.【分析】多项式合并得到结果,根据结果不含xy项,即可确定出k的值.【解答】原式=x2+(2k-2)xy+y2-k,由结果中不含xy项,得到2k-2=0,则k=1.9、用“⊗”定义新运算:对于任意实数a、b,都有a⊗b=b2+1,例如:7⊗4=42+1=17,那么2015⊗3=__________;当m为实数时,m⊗(m⊗2)=__________.【分析】根据题意a⊗b=b2+1,分别代入求出即可.【解答】∵7⊗4=42+1=17,∴2015⊗3=32+1=10;当m为实数时,m⊗(m⊗2)=m⊗(22+1)=m⊗5=52+1=26.故答案为:10,26.10、已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,则()A.m=-5,n=-1 B.m=5,n=1 C.m=-5,n=1 D.m=5,n=-1 【分析】根据多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2,可令其系数为0.【解答】因为多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3和x2.所以含x3和x2的单项式的系数应为0,即m+5=0,n-1=0,求得m=-5,n=1.故选C.11、关于x的多项式4x m-2(n-1)x+3是二次三项式的条件是,()A.m=2,n=1 B.m=2,n≠1C.m≠2,n=0 D.m=2,n≠0【分析】由于多项式是关于x的二次三项式,所以m=2,但-(n-1)≠0,根据以上两点可以确定m和n的值.【解答】∵多项式是关于x的二次三项式,∴m=2,但-(n-1)≠0,即n≠1,综上所述,m=2,n≠1,故选B.12、多项式3x2-2x-1的各项分别是()A.3x2,2x,1 B.3x2,-2x,1 C.-3x2,2x,-1 D.3x2,-2x,-1 【解答】多项式3x2-2x-1的各项分别是:3x2,-2x,-1.故选D.13、下列说法正确的是()A.x5+3x2y4-27x5是六次三项式B.xyz的系数是0C.a2b3c是五次单项式D.3x2-x+1的一次项系数是1【分析】根据多项式的次数与项数的定义,单项式的系数与次数的定义求解即可.【解答】A、x5+3x2y4-27x5是六次三项式,本选项正确;B、xyz的系数是1,本选项错误;C、a2b3c是六次单项式,本选项错误;D、3x2-x+1的一次项系数是-1,本选项错误.故选A.14、对于多项式-3x+2xy2-1,下列说法正确的是()A.一次项系数是3 B.最高次项是2xy2C.常数项是1 D.是四次三项式【分析】根据多项式的项和次数的定义进行判断.【解答】多项式-3x+2xy2-1,A、一次项系数是-3,故此选项错误;B、最高次项是2xy2,此选项正确;C、常数项是-1,故此选项错误;D、是三次三项式,故此选项错误.故选B.15、如果(m-1)x4-x n+x-1是二次三项式,则m=_________,n=_________.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数可得m-1=0,n=2,再解即可.【解答】由题意得:m-1=0,n=2,解得:m=1,n=2,故答案为:1;2.难题1、购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款_________元.【分析】用3本笔记本的总价加上5支铅笔的总价即可.【解答】应付款3a+5b元.故答案为:3a+5b.2、为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为__________元.【分析】用购买m个篮球的总价加上n个排球的总价即可.【解答】购买这些篮球和排球的总费用为(80m+60n)元.故答案为:(80m+60n).3、如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是__________米.【分析】这卷电线的总长度=截取的1米+剩余电线的长度.【解答】根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(ba+1)米.故答案为:(ba+1).4、某人买了50元的乘车月票卡,如果此人乘车的次数用m表示,则记录他每次乘车后的余额n元,如下表:乘车次数m 月票余额n/元1 50-0.82 50-1.63 50-2.44 50-3.2 ……(1)写出此人乘车的次数m表示余额n的公式;(2)利用上述公式,计算:乘了13次车还剩多少元?(3)此人最多能乘几次车?【分析】①根据表中的数据可知余额n等于50减去0.8乘以乘车的次数用m;②把m=13代入即可求值;③用总钱数除以0.8所得的最大整数即为最多能乘的次数车.【解答】①n=50-0.8m;②当m=13时,n=50-0.8×13=39.6(元);③当n=0时,50-0.8m=0.解出,m=62.5∵m为正整数∴最多可乘62次.5、17个连续整数的和是306,那么紧接在这17个数后面的那17个连续整数的和等于_____________.【分析】从题中所给信息可以知道,设17个连续整数的任意一个数位x,则在他后面第17个数为17+x,从而可以求出这17个数后面的那17个连续整数的和.【解答】由题意可知:17个连续整数的和是306,那么紧接着后面的那17个连续整数的和为306+17×17=595.故填595.6、(1)填写下表,并观察下列两个代数式的值的变化情况.n 1 2 3 4 5 6 7 85n+6n2(2)随着n的值逐渐变大,两个代数式的值如何变化?(3)估计一下,哪个代数式的值先超过100?【分析】(1)逐个求值,将结果准确计算即可.(2)随着n的值逐渐变大,5n逐渐变大,所以5n+6也逐渐变大;n2也逐渐变大.(3)当n=19时,5n+6=101,而当n=10时,n2=100,所以n2的值先超过100.【解答】(1)填表:第一排依次填11,16,21,26,31,36,41,46,第二排依次填1,4,9,16,25,36,49,64.(2)随n的值逐渐增大,两代数式的值也相应增大.(3)n2的值先超过100.7、假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是()号.A.28 B.23 C.20 D.13 【分析】根据编码的方法分析,在1~30中,除以5余3的数有8,13,18,23,28,而其中除以7余6的数只有13,故可求得答案.【解答】∵1~30中,除以5余3的有:8,13,18,23,28,1~30中,除以7余6的有:13,20,27,∴刻的数是36的钥匙所对应的原来房间应该是13.故选D.8、下列说法正确的有()①-mn2+3n2m-5+2m3n2是五次四项式②3a-2的相反数是-3a+2③5πR2的次数是 3 ④34x3是7次单项式.A.1个B.2个C.3个D.4个【分析】根据多项式次数及项数的定义,相反数的定义,单项式次数的定义,分别进行各项的判断即可.【解答】①①-mn2+3n2m-5+2m3n2是五次四项式,正确;②3a-2的相反数是-3a+2,正确;③5πR2的次数是2,原说法错误,故本选项错误;④34x3是3次单项式,原说法错误,故本选项错误;综上可得:①②正确.故选B.9、多项式-x3+3的次数和项数分别为()A.-1,3 B.-1,2 C.3,2 D.3,4【分析】多项式-x3+3的最高次项为-x3,常数项为3,故为三次二项式.【解答】多项式-x3+3的次数和项数分别为3,2.故选C.10、对于多项式22t2+3t-1,下列说法中不正确的是()A.它是关于t的二次三项式B.当t=-1时,此多项式的值为0C.它的常数项是-1D.二次项的系数是2【分析】A、根据多项式的次数和项数的定义即可判定是否正确;B、把t=-1代入多项式计算即可求出多项式的值,然后即可判定是否正确;C、D、根据多项式各项的定义可以判定是否正确.【解答】A、多项式22t2+3t-1是二次三项式,故选项正确;B、当t=-1时,此多项式的值为4-3-1=0,故选项正确;C、它的常数项是-1,故选项正确;D、二次项的系数是22=4,故选项错误.故选D.11、按某种标准,单项式5x2y和多项式a2b+2ab2-5属于同一类,则下列哪一个多项式也属于此类()A.3x3+2xy4B.x2-2 C.abc-1 D.m2+2mn+n2【分析】观察单项式5x2y和多项式a2b+2ab2-5,发现它们的次数都是3次,因此可以属于同一类,然后找出四个选项中的三次多项式即可.【解答】∵单项式5x2y和多项式a2b+2ab2-5的次数都是3次,又∵多项式3x3+2xy4的次数为4;x2-2的次数为2;abc-1的次数为3;m2+2mn+n2的次数为2;∴多项式abc-1的次数与单项式5x2y和多项式a2b+2ab2-5的次数相同.故选C.12、下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2-3 D.x2+y2+x-y【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选A.13、下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2-3 D.x2+y2+x-y 【分析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.【解答】A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选A.14、对于一个六次多项式,它的任何一项的次数()A.都小于6 B.都等于6 C.都不小于6 D.都不大于6 【分析】六次多项式,即其次数最高次项的次数六次.也就是说,每一项都可以是六次,也可以低于六次,但不可以超过六次.【解答】一个六次多项式,它的任何一项的次数都不大于6.故选D.15、若m,n为自然数,则多项式x m-y n-4m+n的次数应当是()A.m B.nC.m+n D.m,n中较大的数【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m,n均为自然数,而4m+n是常数项,所以多项式的次数应该是x,y的次数,由此可以确定选择项.【解答】∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,而4m+n是常数项,∴多项式x m-y n-4m+n的次数应该是x,y中指数大的,∴D是正确的.故选D.16、若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.故选B.17、当a为何值时,化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式.【分析】由于(2-7a)x3-3ax2-x+7是关于x的二次三项式,则需满足2-7a=0且-3a≠0,根据以上两点可以确定a的值.【解答】∵化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式,∴2-7a=0且-3a≠0,∴a=27且a≠0,综上所述,a=27.故当a=27时,化简式子(2-7a)x3-3ax2-x+7可得关于x的二次三项式.。