七年级数学整式的除法

合集下载

11.3 整式的除法(第3课时 整式除以单项式)(课件)-七年级数学上册(沪教版2024)

11.3 整式的除法(第3课时 整式除以单项式)(课件)-七年级数学上册(沪教版2024)


时间为 t ;第二阶段的平均速度为 v ,所用时间为 t ,则小明在爬这一小
山的平均速度为(


A. v


C. v
D )
B. 3 v


D. v
7. 已知三角形的面积为-9 m4-3 a2 m3+ am2,一边长为3 m2,则这条边上的
2-2 a2 m + a
-6
m
高为

.

8. 小明在做练习册上的一道多项式除以单项式的习题时,一不小心,墨水污染
= 6 − 4 + 2.
2. 计算:
1
6 23 + 32 + 4 ÷ 122 ;
解: 1 6 23 + 32 + 4 ÷ 122
= 124 + 183 + 242 ÷ 122
= 124 ÷ 122 + 183 ÷ 122 + 242 ÷ 122
2
2
= + +2


(2)已知一个长为( x +2),宽为( x -2)的长方形 A ,若将它的长增加6,宽增加 a
就得到一个新长方形 B ,此时长方形 B 的周长是长方形 A 周长的2倍(如图
②),用含 x 的代数式表示 a ;
【解】由题意得 x +2+6+ x -2+ a =2( x +2+ x -2),
∴ a =2 x -6.
3
3
课本例题
3
2 2 3 3 2
1
2
− + − 2 ÷ − ;
3
4
2
2
3
3
4
1
2
解: − 2 3 + 2 − 2 2 ÷ − ;

初一数学整式的除法知识点例题

初一数学整式的除法知识点例题

初一数学整式的除法知识点例题1、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数即系数相除,然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式2、多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。

方法总结:①乘法与除法互为逆运算。

②被除式=除式×商式+余式整式的除法的例题一、选择题1.下列计算正确的是A.a6÷a2=a3B.a+a4=a5C.ab32=a2b6D.a-3b-a=-3b2.计算:-3b32÷b2的结果是A.-9b4B.6b4C.9b3D.9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是A.ab2=ab2B.a32=a6C.a6÷a3=a2D.a3•a4=a124.下列计算结果为x3y4的式子是A.x3y4÷xyB.x2y3•xyC.x3y2•xy2D.-x3y3÷x3y25.已知a3b6÷a2b2=3,则a2b8的值等于A.6B.9C.12D.816.下列等式成立的是A.3a2+a÷a=3aB.2ax2+a2x÷4ax=2x+4aC.15a2-10a÷-5=3a+2D.a3+a2÷a=a2+a二、填空题7.计算:a2b3-a2b2÷ab2=_____.8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.计算:6x5y-3x2÷-3x2=_____.三、解答题11. 三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用多少年?结果用科学记数法表示12.计算.130x4-20x3+10x÷10x232x3y3z+16x2y3z-8xyz÷8xyz36an+1-9an+1+3an-1÷3an-1.13.若xm÷x2n3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.14.若n为正整数,且a2n=3,计算3a3n2÷27a4n的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?整式的除法参考答案一、选择题1.答案:C解析:【解答】A、a6÷a2=a4,故本选项错误;B、a+a4=a5,不是同类项不能合并,故本选项错误;C、ab32=a2b6,故本选项正确;D、a-3b-a=a-3b+a=2a-3b,故本选项错误.故选C.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.2.答案:D解析:【解答】-3b32÷b2=9b6÷b2=9b4.故选D.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,计算即可.3.答案:B解析:【解答】A、应为ab2=a2b2,故本选项错误;B、a32=a6,正确;C、应为a6÷a3=a3,故本选项错误;D、应为a3•a4=a7,故本选项错误.故选B.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.4.答案:B解析:【解答】A、x3y4÷xy=x2y3,本选项不合题意;B、x2y3•xy=x3y4,本选项符合题意;C、x3y2•xy2=x4y4,本选项不合题意;D、-x3y3÷x3y2=-y,本选项不合题意,故选B【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算得到结果,即可做出判断.5.答案:B解析:【解答】∵a3b6÷a2b2=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.6.答案:D解析:【解答】A、3a2+a÷a=3a+1,本选项错误;B、2ax2+a2x÷4ax=x+a,本选项错误;C、15a2-10a÷-5=-3a2+2a,本选项错误;D、a3+a2÷a=a2+a,本选项正确,故选D【分析】A、利用多项式除以单项式法则计算得到结果,即可做出判断;B、利用多项式除以单项式法则计算得到结果,即可做出判断;C、利用多项式除以单项式法则计算得到结果,即可做出判断;D、利用多项式除以单项式法则计算得到结果,即可做出判断.二、填空题7.答案:b-1解析:【解答】a2b3-a2b2÷ab2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对于多项式除以单项式可以是将多项式中的每一个项分别除以单项式.8.答案:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:6a2-9ab+3a÷3a=2a-3b+1.故答案为:2a-3b+1.【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.答案:x2+3x解析:【解答】[x3+3x2-1--1]÷x=x3+3x2÷x=x2+3x.【分析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.10.答案:-2x3y+1解析:【解答】6x5y-3x2÷-3x2=6x5y÷-3x2+-3x2÷-3x2=-2x3y+1.【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.三、解答题11.答案:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×1085.5×109÷2.75×108=5.5÷2.75×109-8=2×10年.答:三峡工程该年所发的电能供该市居民使用2×10年.【分析】先求出该市总用电量,再用当年总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.12.答案:13x3-2x2+1;24x2y2+16xy2-1;3-3an+1+3an-1÷3an-1=-3a2+1.解析:【解答】130x4-20x3+10x÷10x=3x3-2x2+1;232x3y3z+16x2y3z-8xyz÷8xyz=4x2y2+16xy2-1;36an+1-9an+1+3an-1÷3an-1=-3an+1+3an-1÷3an-1=-3a2+1.【分析】1根据多项式除以单项式的法则计算即可;2根据多项式除以单项式的法则计算即可;3先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.13.答案:39.解析:【解答】xm÷x2n3÷x2m-n=xm-2n3÷x2m-n=x3m-6n÷x2m-n=xm-5n因它与2x3为同类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分析】根据同底数幂相除,底数不变指数相减,对xm÷x2n3÷x2m-n化简,由同类项的定义可得m-5n=2,结合m+5n=13,可得答案.14.答案:1解析:【解答】原式=9a6n÷27a4n= a2n,∵a2n=3,∴原式= ×3=1.【分析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.15.答案:20.解析:【解答】根据题意得:2.6×107÷1.3×106=2×10=20,则人造地球卫星的速度飞机速度的20倍.感谢您的阅读,祝您生活愉快。

北师大版数学七年级下册(课件+精练)1.7 整式的除法1.7 整式的除法

北师大版数学七年级下册(课件+精练)1.7 整式的除法1.7 整式的除法

7 整式的除法
栏目索引
例1 计算: (1)-3a7b4c÷(9a4b2); (2)28x4y2÷(7x3y); (3)4a3m+1b÷(-8a2m+1).
分析 根据单项式与单项式相除的法则解答即可.
解析 (1)原式=[(-3)÷9]a7-4b4-2c=- 1 a3b2c.
3
(2)原式=(28÷7)x4-3y2-1=4xy.
错因分析 错误的原因是运用法则不准确,漏掉了除式- 2 a2c的“-”.
3
正解
原式= 23 a2b2c2÷

2 3
a
2c

+

2 5
a
2bc

÷

2 3
a
2c

=-b2c+ 53 b.
7 整式的除法
栏目索引
阅读材料题中的数学运算 素养解读 数学运算是指在明晰运算对象的基础上,依据运算法则解决 数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路, 选择运算方法,设计运算程序,求得运算结果等. 数学运算是解决数学问题的基本手段.数学运算是演绎推理,是计算机 解决问题的基础. 在数学运算核心素养的形成过程中,学生能进一步发展数学运算能力; 有效借助运算方法解决实际问题;通过运算促进数学思维发展,形成规 范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.
=…=(22 048-1)×(22 048+1)=24 096-1.
回答下列问题:
(1)请借鉴该同学的经验,计算:
1
1 2

×1

1 22

×1
1 24
×1
1 28

七年级数学整式的除法

七年级数学整式的除法

关键知识点总结
除法运算步骤 将被除式与除式按降幂排列。
用被除式的第一项除以除式的第一项,得到商式的第一项。
关键知识点总结
将商式的第一项与除式相乘, 得到积式。
用被除式减去积式,得到差式 。
将差式作为新的被除式,重复 以上步骤,直到差式为0或次 数低于除式。
关键知识点总结
注意事项 在除法运算中,要保证每一步的运算都是准确的。
整式的除法与因式分解有着密切的联系。在 整式的除法中,如果被除式可以分解为两个 因式的乘积,那么可以通过因式分解的方法 简化运算过程。同时,因式分解也可以看作 是整式的除法的一种特殊情况,即被除式为 0的情况。因此,掌握因式分解的方法对于
理解和应用整式的除法具有重要意义。
THANK YOU
感谢聆听
练习题与答案
$a$ 的指数部分
$a^4 div a^2 = a^{(4-2)} = a^2$
$b$ 的指数部分
$b^3 div b = b^{(3-1)} = b^2$
练习题与答案
02
01
03
$c$ 保持不变 因此,$(15a^4b^3c) div (5a^2b) = 3a^2b^2c$ 练习题2:计算 $(18x^5y^6z^3) div (9x^3y^3z)$
整式除法可用于解决经济问题中的利 润率、折扣率、税率等问题。
工程问题
在工程问题中,利用整式除法可以计 算工作效率、工作时间、工作总量等 问题。
05
整式除法运算技巧与注意事项
简化计算过程技巧
01
02
03
利用乘法分配律
将除法转化为乘法,简化 计算过程。
提取公因式
在整式除法中,可以提取 被除数和除数的公因式, 使计算更简便。

七年级数学整式的除法3(新编201911)

七年级数学整式的除法3(新编201911)
法则:多项式除以多项式,先把这个多项式的每一项分 别除以单项式,再把所得的商相加。
3. 应用举例 计算(1).(6ab 8b来自 (2b)aa
aa a
(3).( xy3 2xy) (xy) (xy3 2xy) 1 (xy3) 1 (2xy) 1 y2 2
xy
xy
xy
;云通天下 免设备群控 云通天下云控 云控 爆粉

白露至立冬均减五万五千 不存治实 节气后天 得天之统 都事八人 五年 晋合有四十八食 日影短 天正壬子朔冬至 兵等曹参军 日一度 为鹑火 历助教傅俊 风流未远 置令 清明后 荥阳郡统县十一 御府局监事 副监 置以周行 十五日行十五度 六年十一月庚午朔 誓以山河 淮安郡统县七 特云精 妙 二月乙巳 总知学事 立晋王昭为皇太子 张胄玄历合癸未夏至 皆置直长 壬戌 雍州西曹书佐 是知昧旦思治 通直三十六人 佥谐厥议 奚官等三署 入自建国门 国未可量也 改门大夫为宫门监 求次日 十四日乙酉冬至 知冬至已差三日 有害于民 备身左右 子 各置备身郎将一人 城门直长 二王后 朕当待以不次 发丁男数十万掘堑 食十五分之九半弱 只合在斗十七度 妄设平分 庚申 "在汉之时 国公 "朕应运受图 不复专谒者矣 初炀帝置四方馆于建国门外 各三人 改周之六官 罢诸总管 食既 以吴州总管宇文弼为刑部尚书 《周礼·职方氏》 前太史上士马显 为闰 义同舟楫 典签 被升为太 史令 位次黄门下 处暑前 月以午后二刻 亲王府主簿 每有陈闻 亲王府功曹 左右屯卫所领名羽林 又名位既殊 以为散职 录事 "士卒皆沾湿 中津丞 满去如前 并统诸鹰扬府 北平 张宾历合乙酉冬至 具以名闻 依历时加巳弱上 十年三月十六日癸卯 舟楫署每津置尉一人 有功则可大 废铠甲 减中 中郡五人 祭祀则太尉亚献 求朔望加时入历术

初中七年级数学整式的除法

初中七年级数学整式的除法

内容全解
1.单项式÷单项式
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式.
如:(3a 2b )÷(5a )=(3÷5)·(a 2÷a )·b =5
3ab . 注意啦:Ⅰ.单项式除以单项式主要是通过转化为同底数幂的除法解决的.
Ⅱ.本节只研究结果为整式的单项式除法,所以单项式相除的结果中的字母少于或等于被除式的字母,而结果的次数为被除式、除式的次数之差.
2.多项式÷单项式
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 如:(3x 2y -4xy 2)÷(xy )=(3x 2y )÷(xy )-(4xy 2)÷(xy )=3x -4y
说明:Ⅰ.多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项.
Ⅱ.本节只研究结果为整式的情况,则结果的次数小于或等于被除式的次数.。

整式的除法-2023年新七年级数学核心知识点与常见题型通关讲解练(沪教版)(解析版)

整式的除法-2023年新七年级数学核心知识点与常见题型通关讲解练(沪教版)(解析版)

整式的除法【知识梳理】一:单项式除以单项式1、单项式除以单项式:两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 二:多项式除以单项式1、多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.(1)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(2)中容易丢掉最后一项. (2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.【考点剖析】 题型一:单项式除以单项式 例1.计算:(1)527398b b ÷;(2)645242x y x y −÷; (3)362424a b a b ÷;(4)()22153ab b ÷−.【答案】(1)35627b ;(2)22xy −;(3)212ab ;(4)5a −. 【解析】(1)52523737356989827b b b b −⎛⎫÷=÷= ⎪⎝⎭;(2)()64526542242422x y x y x y xy −−−÷=−÷=−;(3)()362432642124242a b a b a b ab −−÷=÷=;(4)()()()22221531535ab b ab a−÷−=÷−=−.【总结】本题考查了单项式除以单项式:两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 【变式1】计算:(1)()226ab ab ÷=;(2)()()2515xy xy ÷−=;(3)()231255a x a ÷=;(4)()32243a b ab ÷=−.【答案】(1)2312a b ;(2)2375x y −;(3)325ax ;(4)28a b −.【解析】(1)2236212ab ab a b ⋅=;(2)22351575xy xy x y −⋅=−; (3)233125525a x a ax ÷=;(4)()3222438a b ab a b÷−=−.【总结】本题考查了单项式乘以单项式以及单项式除以单项式,注意法则的准确运用. 【变式2】计算:()2233310.52x y z x y ⎛⎫−÷− ⎪⎝⎭.【答案】3212xy z −.【解析】()()22333462332311120.50.524x y z x y x y z y z x xy ⎛⎫−÷−=÷−= −⎪⎝⎭.【总结】本题主要考查了单项式除以单项式.【变式3】计算:()()4312282x y y x ⎡⎤+÷−+⎣⎦.【答案】332x y −−.【解析】()()()()443312282128232x y y x x y x y −⎡⎤+÷−+=÷−+=−−⎡⎤⎣⎦⎣.【总结】本题主要考查了单项式除以单项式. 【变式4】若32144m n x y x y x ÷=,求2531335m n mn ÷的值.【答案】259.【解析】33121444mnm n x y x y x y x −−÷==,∴3210m n −=⎧⎨−=⎩,解得51m n =⎧⎨=⎩,253215321313535359m n mn m n mn −−⎛⎫÷=÷= ⎪⎝⎭,把51m n =⎧⎨=⎩代入得 原式2552551999mn ==⨯⨯=. 【总结】本题考查了单项式除以单项式,以及幂的运算. 【变式5】计算:()()564233331232a b c a b c a b c ÷−÷.【答案】2−. 【解析】()()()56423333523633413123212322a b c a b c a b c ab c −−−−−−÷−÷=÷−÷=−⎡⎤⎣⎦.【总结】本题主要考查了单项式除以单项式的运算,注意先确定符号,再去计算. 题型二:多项式除以单项式 例2.计算:(1)()3286x x x −÷;(2)()()2101055x x −−÷−.【答案】(1)286x x −;(2)2221x x −++.【解析】(1)()32322868686x x x x x x x x x−÷=÷−÷=−;(2)()()()()()22210105510510555221x x x x x x −−÷−=÷−−÷−−÷−=−++.【总结】本题考查了多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加. 【变式1】计算:()22642xy x y xy −÷. 【答案】32y x −.【解析】()2222642624232xyx y xy xy xy x y xy y x−÷=÷−÷=−.【总结】本题考查了多项式除以单项式. 【变式2】计算:(1)()324222a a a a −+÷;(2)()643396123a a a a −+÷.【答案】(1)221a a −+;(2)3324a a −+.【解析】(1)()32322422242222221a a a a a a a a a a a a −+÷=÷−÷+÷=−+; (2)()64336343333961239363123324a a a a a a a a a a a a −+÷=÷−÷+÷=−+.【总结】本题考查了多项式除以单项式. 【变式3】计算:(1)()312273ax ax ax −÷;(2)()2322224822x y x y xy xy +−÷.【答案】(1)249x −;(2)241xy x +−.【解析】(1)()3321227312327349ax ax ax ax ax ax ax x −÷=÷−÷=−;(2)()232222232222224822428222x y x y xy xy x y xy x y xy xy xy +−÷=÷+÷−÷241xy x =+−.【总结】本题考查了多项式除以单项式.【变式4】计算:()()33232222181263x y x y x y x y −+−÷−. 【答案】642xy y −+.【解析】()()33232222181263x yx y x y x y −+−÷−()()()33222322222218312363x y x y x y x y x y x y =−÷−+÷−−÷−642xy y =−+.【总结】本题考查了多项式除以单项式.【变式5】计算:()()755364523521287x y x y x y x y −+÷−.【答案】232534x y y xy −+−.【解析】()()755364523521287x yx y x y x y −+÷−()()()755253526452357217287x y x y x y x y x y x y =÷−−÷−+÷−232534x y y xy =−+−. 【总结】本题考查了多项式除以单项式,计算时注意商的符号.【变式6】计算:()()222233ab a ab a b a b a b ⎡⎤−−−÷⎣⎦.【答案】13b .【解析】()()222233ab a ab a b a b a b ⎡⎤−−−÷⎣⎦()3223222233a b a b a b a ba b =−−+÷222133a b a b b =÷=.【总结】本题考查了多项式乘单项式、合并同类项及多项式除以单项式. 【变式7】计算:()()()22342343223x x x x x x x x ++⋅−++÷−.【答案】543223321x x x x x ++−−−.【解析】()()()22342343223xx x x x x x x ++⋅−++÷−()345232123x x x x x =++−++543223321x x x x x =++−−−.【总结】本题考查了多项式乘单项式、合并同类项及多项式除以单项式. 【变式8】已知一个多项式与单项式22x y −的积是32212x y x y −,求这个多项式. 【答案】1124x y−+.【解析】()32221112224x y x y x y x y ⎛⎫−÷−=−+ ⎪⎝⎭.【总结】本题考查了多项式除以单项式,计算时要准确理解题意.【过关检测】一、单选题1.(2022秋·七年级单元测试)计算(﹣6xy 2)2÷(﹣3xy )的结果为( ) A .﹣12xy 3 B .2y 3 C .12xy D .2xy 3【答案】A【分析】先算积的乘方,再进行除法计算 【详解】原式=36x2y4÷(﹣3xy )=﹣12xy3, 故选:A .【点睛】本题考查了积的乘方,单项式的除法,掌握计算方法和计算顺序是解题关键.2.(2023·上海·七年级假期作业)小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( ) A .(2a +b 2) B .(a +2b ) C .(3ab +2b 2) D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可. 【详解】∵(4a2b+2ab3)÷2ab =2a+b2, ∴被墨汁遮住的一项是2a+b2. 故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.3.(2020秋·七年级校考课时练习)计算()()42357153x y x y −÷−的结果为( ) A .55xy B .355x yC .5xD .35x【答案】B【分析】根据单项式除以单项式除法的运算法则进行计算即可. 【详解】()()()423578125785127351531531535x y x y x yx y x y x y −−−÷−=÷=÷=,故选:B .【点睛】本题考查了单项式除以单项式,掌握运算法则是解题关键. 4.(2023·上海·七年级假期作业)下列运算中正确的是( ). A .()()632632x x x ÷= B .()()826842x x x ÷= C .()()233xy x y ÷=D .()()222x y xy xy ÷=【答案】B【分析】根据积的乘方和单项式的除法法则逐项计算判断即可.【详解】解:A 、()()633632x x x ÷=,故本选项计算错误;B 、()()826842x x x ÷=,故本选项计算正确; C 、()()22333xy x xy ÷=,故本选项计算错误;D 、()()2221x y xy ÷=,故本选项计算错误.故选:B .【点睛】本题主要考查积的乘方和单项式的除法,熟练掌握运算法则是解题关键.【答案】B【分析】把被除式、除式里的系数、同底幂分别相除可得解. 【详解】解:211131344a b c ac −−⎛⎫÷= ⎪⎝⎭,故选B .【点睛】本题考查整式的除法,熟练掌握整式的除法法则是解题关键.6.(2023·上海·七年级假期作业)如图,墨迹污染了等式中的运算符号,则污染的是( )A .+B .-C .×D .÷【答案】D【分析】根据整式的加减乘除计算法则逐一判断可求解. 【详解】解:∵332x 与4x 不是同类项,不能进行加减计算,∴A 、B 选项不符合题意;∵34324128x x x ⨯=,∴C 选项不符合题意;∵323248÷=x x x ,∴D 选项符合题意; 故选:D .【点睛】本题主要考查整式的四则运算,掌握相关计算法则是解题的关键.二、填空题7.(2023·上海·七年级假期作业)如果一个单项式乘以3x 的积是3x 2y ,那么这个单项式是 ___. 【答案】xy【分析】根据单项式的除法求解即可.【详解】解:由题意可得,这个单项式为233x yxy x =故答案为xy【点睛】此题考查了单项式除以单项式,解题的关键是熟练掌握单项式除法的运算法则.【答案】﹣8x3y【分析】单项式除以单项式:把系数,同底数幂分别相除,对于只在被除式里含有的字母则连同它的指数一起作为商的一个因式,根据运算法则直接计算即可. 【详解】解:原式=﹣8x3y . 故答案为:﹣8x3y .【点睛】本题考查的是单项式除以单项式,掌握单项式除以单项式的法则是解本题的关键. 9.(2019秋·上海青浦·七年级校考阶段练习)计算:232-93a b b ÷=_____________ 【答案】-3a2b【分析】根据单项式除以单项式的运算法则计算可得.【详解】解:23293a b b −÷=-3a2b故答案为-3a2b .【点睛】本题主要考查整式的除法,解题的关键是掌握单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.【答案】29a b【分析】先根据除数=被除数÷商,可知A=32133a b ab÷,再根据整式的除法运算法则进行计算即可. 【详解】解:∵32133a b A ab÷=, ∴A=32133a b ab ÷=29a b . 故答案为:29a b .【点睛】本题考查整式的除法运算,正确掌握运算法则是解题关键. 11.(2020秋·七年级校考阶段练习)计算:4262÷=a b a _________.【答案】23a b【分析】利用单项式除以单项式的法则计算即可【详解】解:422623b ÷=a b a a故答案为:23a b【答案】24168x y −+【分析】根据多项式除以单项式的运算法则计算即可.【详解】()322322223181264x yx y x y x y ⎛⎫−+−÷− ⎪⎝⎭()()32222322222233318126444x y x y x y x y x y x y ⎛⎫⎛⎫⎛⎫=−÷−+÷−+−÷− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭32232222222218126333444x y x y x y x y x y x y −−=++−−− 24168x y =−+,故答案为:24168x y −+.【点睛】本题主要考查了多项式除以单项式的知识,掌握多项式除以单项式的运算法则是解答本题的关键.【答案】13n ab+−【分析】根据单项式的乘法和除法法则从左到右依次计算即可.【详解】原式=3221124n n a b a b −−÷=13n ab +−.故答案为13n ab+−.【点睛】本题考查了单项式的乘法和除法,熟练掌握单项式的乘法和除法是解答本题的关键. 14.(2021秋·上海·七年级期末)计算:8x 2y 4÷(﹣2xy 2)=_____. 【答案】﹣4xy2【分析】根据单项式除以单项式运算法则,本题只需要把系数、同底数幂分别相除作为商的因式,计算得出答案即可.【详解】解:8x2y4÷(﹣2xy2)=21424x y −−−=﹣4xy2.故答案为:﹣4xy2.【点睛】本题考查了单项式除以单项式,掌握单项式除以单项式的运算法则是解题关键. 15.(2022秋·上海·七年级专题练习)计算:4a 3÷2a =_____. 【答案】2a2【分析】直接利用整式的除法运算法则计算得出答案 【详解】解:4a3÷2a =312a − =2a2.故答案为:2a2.【点睛】本题考查同底数幂的除法法则,正确使用法则是重点 16.(2022秋·上海·七年级校考期中)计算:446x x ÷=_____. 【答案】323x /323x【分析】根据单项式除以单项式运算法则进行计算即可. 【详解】解:432463x x x ÷=. 故答案为:323x .【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式运算法则是解答本题的关键.【答案】3x2y【分析】根据单项式除以单项式的法则计算即可. 【详解】原式=3x2y ,故答案为3x2y .【点睛】本题考查整式的运算有关知识,根据整式的运算法则即可求出答案. 18.(2019秋·上海黄浦·七年级统考期末)计算:(2xy )2÷2x =_____. 【答案】2xy2【分析】首先根据积的乘方的运算方法,求出(2xy )2的值是多少;然后用它除以2x 即可. 【详解】(2xy )2÷2x =4x2y2÷2x =2xy2 故答案为:2xy2.【点睛】此题主要考查了整式的除法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.三、解答题19.(2020·七年级上海市建平中学西校校考期中)计算:()()322563−÷a b a a【答案】22523a b a −【分析】根据整式的除法法则,用多项式的每一项去除单项式,应用单项式除以单项式的除法法则计算,再把所得的商相加即可得出答案.【详解】解:()()322563−÷a b a a 3225363=÷−÷a b a a a 22523=−a b a .【点睛】本题考查了多项式除以单项式,解题的关键是熟练掌握运算法则进行解题. 20.(2021·上海奉贤·七年级校联考期末)计算:(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2. 【答案】﹣4x2+52x ﹣3【分析】直接利用整式的除法运算法则计算得出答案.【详解】原式=6x3÷(﹣2x )+3x2÷(﹣2x )+(﹣2x )÷(﹣2x )﹣(x ﹣2)2 =﹣3x2﹣32x+1﹣(x2﹣4x+4)=﹣3x2﹣32x+1﹣x2+4x ﹣4=﹣4x2+52x ﹣3.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.21.(2023秋·上海嘉定·七年级上海市育才中学校考期末)计算:()342(2)(12)(12)x x x x x −÷−−+−.【答案】22x【分析】先算除法和乘法,再去括号合并同类项即可. 【详解】解:()342(2)(12)(12)x x x x x −÷−−+−324(2)2(2)(14)x x x x x =÷−−÷−−−222114x x =−+−+22x =【点睛】本题考查了整式的四则混合运算,熟练掌握运算顺序是解答本题的关键.四则混合运算的顺序是先算乘除,再算加减;同级运算,按从左到右的顺序计算.【答案】9【分析】根据单项式除以单项式法则将等式左边化简,再根据左边等于右边,列出等式求得m 、n 的值,再根据单项式除以单项式法则将原式化简,代入数据计算即可.【详解】解:∵33121444m n m n x y x y x y x −−÷==,∴3210m n −=⎧⎨−=⎩,解得51m n =⎧⎨=⎩,∴253215321313535359m n mn m n mn −−⎛⎫÷=÷= ⎪⎝⎭,把51m n =⎧⎨=⎩代入得,原式2552551999mn ==⨯⨯=. 【点睛】本题考查了单项式除以单项式,以及幂的运算.利用法则将代数式进行化简是解决此题的关键.23.(2023·上海·七年级假期作业)计算:()()564233331232a b c a b c a b c ÷−÷.【答案】2−【分析】根据单项式除以单项式进行计算即可.【详解】解:()()564233331232a b c a b c a b c ÷−÷()5236334131232a b c −−−−−−=÷−÷⎡⎤⎣⎦2=−.【点睛】本题主要考查了单项式除以单项式的运算,注意先确定符号,再去计算. 24.(2022秋·七年级单元测试)小伟同学的错题本上有一题练习题,这道题被除式的第二项和商的第一项不小心被墨水污染了(污染处用字母M 和N 表示),污染后的习题如下:()()422223012632x y M x y x y N xy y ++÷−=+−.(1)请你帮小伟复原被污染的M 和N 处的代数式,并写出练习题的正确答案;(2)爱动脑的小芳同学把练习题的正确答案与代数式2x y xy y ++相加,请帮小芳求出这两个代数式的和,并判断所求的和能否进行因式分解?若能,请分解因式;若不能,请说明理由.【答案】(1)3218M x y =−;25N x y =−;2532x y xy y −+−(2)能,()221y x −−【分析】(1)根据多项式与单项式的除法法则计算即可(2)先求正确答案与2x y xy y ++的和,再因式分解即可. 【详解】(1)()2323618M xy x y x y =−=−,()42223065N x y x y x y =÷−=−,∴原题为())32422221830126x y x y x y x y +÷−−. 则答案为:2532x y xy y −+− (2)()22253244x y xy y x y xy y x y xy y −+−+++=−+−,能因式分解:()()2224444121x y xy y y x x y x −+−=−−+=−−【点睛】本题考查多项式除以单项式及因式分解,掌握相应法则时解题关键.【答案】44x y −【分析】先计算完全平方公式、单项式乘以多项式,再计算括号内的整式加减,然后计算多项式除以单项式即可得.【详解】解:原式22211164444x xy y xy y x ⎛⎫−++−÷ ⎪⎝⎭=()21634x xy x −=÷344x y =−.【点睛】本题考查了完全平方公式、单项式乘以多项式、多项式除以单项式等知识点,熟练掌握整式的运算法则是解题关键.【答案】(1)21600− (2)53225a a +(3)264【分析】(1)根据新定义的运算法则计算即可;(2)根据新定义的运算法则及整式的混合运算法则计算即可;(3)将2a =代入(2)中结论即可求解.【详解】(1)解:243 1.2−2314832 1.23421600=−⨯−÷=−; (2)解:()()()()86323386168626216822a a a a a a a a a a a a −+=+−−−−()53534242a a a a =+−−53534242a a a a =+−+ 53225a a =+;(3)解:2−的相反数是2,当2a =时,386621682a aa a a a +−−535322522252264a a =+=⨯+⨯=.【点睛】本题考查新定义运算,整式的混合运算,含乘方的有理数的混合运算,掌握新定义的运算法则并正确计算是解题的关键.【答案】2223x x −+− 【分析】根据多项式除以单项式法则进行运算,即可求解.【详解】解:()43222423x x x x ⎛⎫−+÷− ⎪⎝⎭211223x x =−+− 【点睛】本题考查了多项式除以单项式法则,熟练掌握和运用多项式除以单项式法则是解决本题的关键.【答案】5【分析】根据整式的运算法则,幂的运算法则处理.【详解】解:∵2223421111533n n n n xyz m x y z x y z ++−+⎛⎫−⋅=÷ ⎪⎝⎭, ∴22232311915x y z m x y z ⋅=.∴3232221131595m x y z x y z xz =÷=.∵正整数x 、z 满足:1223723x z −⋅==,∴3x =,12z −=.∴3x =,3z =,∴3273355m =⨯⨯=. 【点睛】本题考查幂的运算法则,整式的混合运算,掌握相关法则是解题的关键.。

初中数学《整式的除法》教案

初中数学《整式的除法》教案

初中数学《整式的除法》教案整式的除法(1)教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力.②理解整式除法的算理,发展有条理的思考及表达能力.教学重点与难点重点:整式除法的运算法则及其运用.难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则.教学准备卡片及多媒体课件.教学设计情境引入教科书第161页问题:木星的质量约为1.901024吨,地球的质量约为5.981021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1.901024)(5.981021)怎样进行计算,目的是给出下面两个单项式相除的模型.注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程.探究新知(1)计算(1.901024)(5.981021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a32a;6x3y3xy;12a3b2x33ab2.(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述.单项式的除法法则的推导,应按从具体到一般的步骤进行.探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行.在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展.重视算理算法的渗透是新课标所强调的.归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯.应用新知例2 计算:(1)28x4y27x3y;(2)-5a5b3c15a4b.首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号.对本例可以采用学生口述,教师板书的形式完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东服务.摇头B.活动C.饮酒D.饥饿E.睡眠 自动控制系统的必须是。A、具有被调参数负反馈的闭环系统B、开环系统C、具有被调参数正反馈的闭环系统D、闭环系统 提倡使用或更改抗菌药物应采集标本作病原学检查,力求做到有样必采,住院病人有样可采送检率力争达到以上。 小脑幕上部的神经支配来自A.迷走神经B.舌咽神经C.颈2~3神经D.三叉神经E.面神经 乙型肝炎慢性化的原因中下列哪项可除外A.病毒发生变异,导致免疫逃逸B.母婴传播或幼儿期感染,导致免疫耐受C.病毒基因整合于宿主基因组中D.乙型肝炎病毒是血液体液传播E.病毒感染宿主免疫细胞,导致免疫功能下降 不属于高度危险性医用物品的是A.输液器材B.透析器C.膀胱镜D.导尿管E.喉镜 DN600球铁管最高水压试验压力为MPa。A.3.2B.4C.8D.10 恙虫病的特征性体征是A.玫瑰疹B.瘀斑C.皮肤紫红色结节D.焦痂E.红斑 血液透析常见并发症A.心衰B.低血压C.出血D.腹痛E.感染 急性肺栓塞抗凝治疗的常用药物有。A.普通肝素B.抗血小板药物C.尿激酶D.链激酶E.rt-PA 下列属于医院感染的是A.新生儿出生后48小时内出现的水痘B.非生物因子刺激产生的炎症表现C.创伤产生的炎症表现D.原有的慢性感染在医院内急性发作E.自入院时起超过平均潜伏期后发生的感染 关于慢性胃体萎缩性胃炎,不正确的描述是A.血清壁细胞抗体阳性B.血清内因子抗体阳性C.维生素B12吸收试验阳性D.血清促胃液素水平下降E.固有腺体减少 下述哪一点不符合神经内分泌的细胞特征A.属于一些特化的神经细胞B.通过胞突接受神经冲动C.由轴突释放神经递质D.由轴突释放激素物质E.释放的激素经血运输后,发挥作用 钻除焊接式车门铰链的焊点时,要用mm直径的钻头。A.8B.10C.12 电缆应按哪些要求进行敷设? 统计量和参数 患者,男性,28岁,2周来上前牙咬物不适,喝冷、热水引起疼痛。近2日来,夜间痛影响睡眠,并引起半侧头、面部痛,痛不能定位。检查时见右侧上、下前牙见多个充填体。当日最有效的治疗措施是()A.局麻下开髓,封失活剂B.局麻封闭止痛C.口服消炎止痛药D.针灸合谷穴、平安穴E.以 局域网的主要功能和特点是。A.设备之间相距较远B.相互之间可以传输数据C.网内设备实现资源共享D.用特定的设备和传输媒体相连E.有特定的软件管理 肾血管性高血压时,巯甲丙脯酸介入的肾图较无介入时A.改善B.明显好转C.无变化D.变差E.伴ERPF值增高 儿童精神分析研究的代表人物为。A.比奈B.格塞尔C.赫伯特·斯宾塞D.弗洛伊德E.特曼 关于破伤风,正确的描述是。A.颈部肌肉强烈收缩最早出现B.光线不能诱发全身肌肉抽搐C.严重者神志不清D.可出现尿潴留E.不会发生骨折 两辆机动车在一条车行道上对向行驶,保证安全的最短视线距离称为会车视距,此时驾驶人员视点高度离路面。A.1.2mB.1.0mC.0.6mD.0.8m 饲养标准 合同双方应该在合同专用条款第26条中选定两种结算方式中的一种,作为进度款的结算方式。两种结算方式是按月结算于支付和。A.按季结算与支付B.按年结算与支付C.分段结算与支付D.目标结算与支付 患者反复头痛,突发上睑下垂,眼球不能向上、向内运动,向下运动也受到很大限制。出现复视、瞳孔散大。最可能的诊断是A.面神经麻痹B.动眼神经麻痹C.外展神经麻痹D.眼神经麻痹 根据《公路工程标准施工招标文件》(2009年版)合同文件范本,关于计量支付管理的说法,错误的有A.承包人应对已完成的分项工程向业主申请质量认证B.承包人应在协议约定的时间内向监理工程师申请计量C.监理工程师应对实际完成的工程量进行计量,并签发计量证书给承包人D.承包人可凭 患者,女,35岁,卵巢癌晚期,自知不久于人世,常常一人呆坐,泪流满面,懒于梳理,十分悲哀,下列护理措施哪一项是错误的()A.给予同情和照顾B.允许家属陪伴C.尽量不让患者流露失落、悲哀的情绪D.尽可能满足患者需要E.加强安全保护 客服中心统计分析工作主要分为运营类、及管理类。 确定肺结核是否为传染源的主要依据是A.X线检查B.结核菌素实验C.血沉检查D.血结核抗体检查E.痰结核菌检查 何谓马赫数?飞行速度是如何划分的? 患者男性,63岁,右耳垂前肿性长大8个月。近期肿物增长较快,痛向耳颞部放散。检查发现肿物约3.5cm、质地硬、有触痛、边界不清。活动度差,右眼睑闭合较对侧迟钝。以下哪项辅助检查对患者来说是不恰当的()A.CT检查B.胸部X线片C.腮腺造影D.细针吸细胞学检查E.切除活组织检查 下列不属于缺氧舱室的是.A、压载舱B、用惰性气体灭火后的舱室C、空气中含有蒸汽的舱室D、靠港后未经充分通风的驾驶台 臭阈值法检验水中臭时,其检验人员的嗅觉敏感程度可用或测试。 施行口头医嘱时做法不妥的是()A.一般情况下不执行B.抢救、手术时可执行C.执行时,护士应向医生复述一遍D.执行后无异常,不必补写医嘱E.双方确认无误后执行 国际货运代理行业在社会产业结构中属于A.第一产业B.第二产业C.第三产业D.第四产业
相关文档
最新文档