2017中考复习之二次函数图像与性质

合集下载

二次函数的图像和性质课件

二次函数的图像和性质课件

03
二次函数的图像与性质的 应用
判断单调性
总结词
通过图像和导数判断二次函数的单调性
详细描述
利用二次函数的导数,可以判断函数的单调区间。导数大于0 时,函数递增;导数小于0时,函数递减。结合函数图像,可 以更直观地判断单调性。
求最值
总结词
利用二次函数的极值点求最值
VS
详细描述
二次函数存在极值点,极值点处的函数值 可能是最大值或最小值。通过求导并令导 数为0,可以找到极值点,从而求得最值 。
二次函数的图像和性质课件
contents
目录
• 二次函数的概念 • 二次函数的性质 • 二次函数的图像与性质的应用 • 实际应用案例 • 总结与回顾
01
二次函数的概念
二次函数的定义
定义
一般地,形如$y = ax^{2} + bx + c(a \neq 0)$的函数叫做二次 函数。
解释
二次函数是包含未知数的二次多
总结二次函数的对称 轴、开口方向、顶点 坐标等性质。
易错点与难点回顾
01
回顾二次函数图像的绘制方法和 易错点,如混淆顶点坐标和对称 轴坐标等。
02
回顾二次函数的性质和易错点, 如错误地认为二次函数总是单调 的等。
学生自我测评与作业布置
设计相关题目,让学生自主检测掌握 情况。
布置相关作业,要求学生完成并提交 。
详细描述
在投资组合理论中,投资者需要根据不同资产的风险和收益特性来构建投资组合。二次函 数可以用来描述风险和收益之间的非线性关系,帮助投资者更好地理解投资组合的风险和 收益特性。
扩展知识点
投资组合理论、风险和收益的关系。
物理运动中的二次函数

初三二次函数的图像与性质

初三二次函数的图像与性质

初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。

在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。

本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。

一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。

它的图像是抛物线,并且开口的方向由$a$的正负决定。

当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。

二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。

其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。

【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。

解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。

由于$a>0$,所以抛物线开口向上。

考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。

首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。

代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。

因此,对称轴的方程为$x=\frac{3}{4}$。

接下来,我们需要计算抛物线的顶点坐标。

顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。

将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。

因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。

它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

二次函数图像与性质

二次函数图像与性质

二次函数图像与性质函数定义是数学的基础,其中二次函数的定义和性质是比较重要的知识点,甚至广泛应用于其他领域如物理学和经济学。

下面将介绍二次函数的定义、图像特点及性质,以及它在实际应用中的意义。

一、二次函数的定义二次函数是指其函数表达式中的次幂最高为二的多项式函数。

它一般用y = ax^2 + bx + c(a≠0)的标准型表示,其中a,b,c为常数。

二、二次函数图像二次函数的图像一般为抛物线,其形状受a参数的影响。

当a>0时,抛物线顶点在x轴的坐标是-b/2a,抛物线开口向上;当a<0时,抛物线顶点在x轴的坐标是-b/2a,抛物线开口向下。

另外,二次函数外部接近x轴一段距离为4|a|/(4a)。

三、二次函数性质1.值二次函数一般有且只有一个极值点,它的横坐标为-b/2a,而纵坐标则是f(-b/2a)。

2.程解对于 y = ax^2+bx+c(a≠0),它的根可以通过公式求解,即X1,X2=-b±√(b^2-4ac)/2a。

3.称性若一个函数的自变量a与因变量f(x)的变化,能满足y=f(x)=f(2a-x)的对称性,则该函数称为关于y轴对称函数,它的图象关于y轴对称,即为一个对称的抛物线。

四、二次函数的应用二次函数是数学中比较重要的函数,其实际应用也比较广泛,以下将简单介绍它在物理学和经济学中的应用。

1.理学在力学方面,二次函数可用来描述两个物体之间的相互作用力,例如,一个球如果以固定的速度投掷,受到的空气阻力的变化情况可用二次函数来描述。

2.济学二次函数在经济学中也有重要的应用,例如,关于产品的需求变化可用二次函数来描述,由此可以更有效地进行价格调整。

总之,二次函数是数学中比较实用的函数,它的定义、图像特点及性质以及实际应用都比较重要。

未来,它在科学、物理学和经济学等领域的应用也会更加广泛,期待它在这些领域取得更多成就。

二次函数图像的性质与解析

二次函数图像的性质与解析

二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。

2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。

二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。

2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。

3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。

4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。

三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。

2.求对称轴:对称轴为x=h。

3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。

4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。

5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。

四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。

2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。

3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。

五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。

二次函数的图像与性质中考复习

二次函数的图像与性质中考复习

解 解 :: 解 解
• • •• •• • • •• • ••• •
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3 B y= - 2 x2 + 3
C y= - x2 – 3x
D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x 轴交点情况是( C ) A 无交点 C 有两个交点 B 只有一个交点 D不能确定
3.如果关于x的一元二次方程 x2-2x+m=0有两个相等 1 的实数根,则m=____ ,此时抛物线 y=x2-2x+m与 1 x轴有____个交点 .
4.已知抛物线 y=x2 – 8x +c的顶点在 x轴上, 16 则c=____ .
巩固练习:
1、填空:
2-x-6的图象顶点坐标 (1)二次函数 y=x 25 1 1 x= — (—,-— 2 是___________ 对称轴是_________ 。 4) 2 (2)抛物线y=-2x2+4x与x轴的交点坐标 (0,0)(2,0) 是___________ 1 2 (3)已知函数y=—x -x-4,当函数值y随 2 x的增大而减小时,x的取值范围是 x<1 ___________ (4)二次函数y=mx2-3x+2m-m2的图象 2 。 经过原点,则m= ____
y y y y
O
x O x O
x O x
A
B
C
D
(3)已知y=ax +bx+c的图象如图所示,则下 列说法正确的是( ) A abc>0
2
y
B
a>0,b2-4ac<0

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质在我们学习数学的过程中,二次函数是一个非常重要的概念。

它不仅在数学领域有着广泛的应用,在实际生活中,比如物理、经济等方面也经常能看到它的身影。

今天,咱们就来好好聊聊二次函数的图像与性质。

二次函数的一般形式是 y = ax²+ bx + c(其中 a、b、c 是常数,且a ≠ 0)。

当 a > 0 时,函数图像开口向上;当 a < 0 时,函数图像开口向下。

这就好像一个碗,如果开口向上,就能往里装东西;开口向下,东西就容易掉出来。

先来说说二次函数图像的对称轴。

对称轴的方程是 x = b / 2a 。

这条对称轴把二次函数的图像分成了两个对称的部分,就像镜子里的反射一样。

比如说,对于函数 y = x² 2x + 1 ,其中 a = 1 ,b =-2 ,那么对称轴就是 x =(-2) /(2×1) = 1 。

接下来看看顶点。

顶点就是二次函数图像的最高点或者最低点。

当a > 0 时,顶点是图像的最低点;当 a < 0 时,顶点是图像的最高点。

顶点的坐标可以通过把对称轴的 x 值代入函数中求得。

还是以 y = x²2x + 1 为例,对称轴 x = 1 ,把 x = 1 代入函数,得到 y = 1² 2×1 +1 = 0 ,所以顶点坐标就是(1, 0) 。

再说说二次函数的截距。

当 x = 0 时,y = c ,这个 c 就是函数在y 轴上的截距。

比如函数 y = 2x²+ 3x 1 ,这里的 c =-1 ,也就是说函数图像与 y 轴的交点是(0, -1) 。

二次函数的图像还与判别式Δ = b² 4ac 有着密切的关系。

如果Δ> 0 ,函数图像与 x 轴有两个交点;如果Δ = 0 ,函数图像与 x 轴有一个交点;如果Δ < 0 ,函数图像与 x 轴没有交点。

比如说,对于函数 y = x² 2x 3 ,其中 a = 1 ,b =-2 ,c =-3 ,那么Δ =(-2)² 4×1×(-3) = 16 > 0 ,所以函数图像与 x 轴有两个交点。

2017年中考数学复习专题12:二次函数的图象和性质

2017年中考数学复习专题12:二次函数的图象和性质

2017年中考数学专题复习第十二讲 二次函数的图象和性质【基础知识回顾】一、 二次函数的定义:一般地如果y= (a 、b 、c 是常数a≠0)那么y 叫做x 的二次函数。

【名师提醒:1、二次函数y=ax 2+bx+c(a≠0)的结构特征是:等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是 , 2、强调二次项系数a 0】二、二次函数的图象和性质: 1、二次函数y=kx 2+bx+c(a≠0)的图象是一条 ,其定点坐标为 ,对称轴是 。

2、在抛物y=ax 2+bx+c(a≠0)中:①、当a>0时,开口向 ,当x<-2b a 时,y 随x 的增大而 ,当x 时,y 随x 的增大而增大,②、当a<0时,开口向 ,当x<-2b a 时,y 随x 增大而增大,当x 时,y 随x 增大而减小【名师提醒:注意几个特殊形式的抛物线的特点1、y=ax 2 ,对称轴 顶点坐标2、y= ax 2 +k ,对称轴顶点坐标3、y=a(x-h) 2对称轴 顶点坐标4、y=a(x-h) 2 +k 对称轴 顶点坐标 】三、二次函数图象的平移【名师提醒:二次函数的平移本质可看作是顶点间的平移,因此要掌握整条抛物线的平移,只需抓住关键的顶点平移即可】四、二次函数y= ax 2+bx+c 的图象与字母系数之间的关系:a:开口方向:向上则a 0,向下则a 0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用左 右 判断,当b=0时,对称轴是c:与y 轴的交点:交点在y 轴正半轴上,则c 0,在y 轴负半轴上则c 0,当c=0时,抛物线过 点【名师提醒:在抛物线y= ax 2+bx+c 中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判断a+b+c 和a-b+c 的符号】考点一:二次函数图象上点的坐标特点2y)对应值列表如下:则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0【考点】二次函数的图象.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.跟踪训练1.(2016•泰安)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为()A.25B.15C.14D.12考点二:二次函数的图象和性质例2 (2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2 B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【考点】二次函数图象上点的坐标特征;二次函数的最值.【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.例3 (2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.来说,对称轴x=2b a>0,应在y 轴的右侧,故不合题意,图形错误;B 、对于直线y=ax+b 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=2b a <0,应在y 轴的左侧,故不合题意,图形错误;C 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向上,对称轴x=2b a>0,应在y 轴的右侧,故符合题意; D 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误;故选:C .【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a 、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.跟踪训练 2. (2016•新疆)已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .c <0C .3是方程ax 2+bx+c=0的一个根D .当x <1时,y 随x 的增大而减小3.(2016•毕节市)一次函数y=ax+b(a≠0)与二次函数y=ax 2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .考点三:抛物线的特征与a 、b 、c 的关系例4 (2016•兰州)二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc >0;②4ac <b 2;③2a+b=0;④a ﹣b+c >2.其中正确的结论的个数是( )A .1B .2C .3D .4【分析】由抛物线开口方向得到a <0,由抛物线的对称轴方程得到为b=2a<0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;根据抛物线与x 轴交点个数得到△=b 2﹣4ac >0,则可对②进行判断;利用b=2a 可对③进行判断;利用x=﹣1时函数值为正数可对④进行判断.【解答】解:∵抛物线开口向下,∴a <0, ∵抛物线的对称轴为直线x=﹣2b a =﹣1,∴b=2a <0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以②正确;∵b=2a ,∴2a ﹣b=0,所以③错误;∵抛物线开口向下,x=﹣1是对称轴,所以x=﹣1对应的y 值是最大值,∴a ﹣b+c >2,所以④正确.故选C .【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c);抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.跟踪训练4.(2016•常德)二次函数y=ax 2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c >0;③a+c <b ;④b 2﹣4ac >0,其中正确的个数是( )A .1B .2C .3D .4考点四:抛物线的平移例5 (2016•眉山)若抛物线y =x 2﹣2x +3不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A .y =(x ﹣2)2+3B .y =(x ﹣2)2+5C .y =x 2﹣1D .y =x 2+4【考点】二次函数图象与几何变换.【分析】思考写出抛物线y =x 2﹣2x +3的顶点式并判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.【解答】解:将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y =(x ﹣1)2+2,∴原抛物线图象的解析式应变为y =(x ﹣1+1)2+2﹣3=x 2﹣1,故答案为C .【点评】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.跟踪训练5.(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x 2+5x+6,则原抛物线的解析式是( )A .y=﹣(x ﹣25)2﹣411B .y=﹣(x+25)2﹣411C .y=﹣(x ﹣25)2﹣41D .y=﹣(x+25)2+41 6.(2016•舟山)把抛物线y=x 2先向右平移2个单位,再向上平移3个单位,平移后抛物线的表达式是 .【备考真题过关】1. (2016上海)如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y =(x -1)2+2B. y =(x +1)2+2C. y =x 2+1D. y =x 2+32. (2016马鞍山市二模)下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A. y =(x -2)2+1B. y =(x +2)2+1C. y =(x -2)2-3D. y =(x +2)2-33. (2016贺州)抛物线y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 与反比例函数y =c x 在同一平面直角坐标系内的图象大致为( )4. (2016滨州)抛物线y=2x2-22x+1与坐标轴的交点个数是()A. 0B. 1C. 2D. 35. (2016宿迁)若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax +c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=16. (沪科九上P27习题T8改编)若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5图象上的三点,则y1,y2,y3的大小关系是________.(用<号连接)7. (2016牡丹江)已知抛物线y=ax2-3x+c(a≠0)经过点(-2,4),则4a+c-1=________.8. (2016益阳)某学习小组为了探究函数y=x2-|x|的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=________.顶点坐标是________.10. (2016荆州)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a 的值为________.11. (12分)(2016大连)如图,抛物线y=x2-3x+54与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC 相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.12. (12分)(2016宁波)如图,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.13. (12分)如图,已知抛物线y =ax 2+52x +c 经过A (4,0),B (1,0)两点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大?若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.14. (12分)(2016阜阳市颍泉区二模)如图,直线y =-2x +4与x 、y 轴分别交于A 、B 两点,把△AOB 绕着点O 逆时针旋转90°得到△DOC .(1)请直接写出C 、D 两点的坐标;(2)求出经过A 、B 、C 三点抛物线的解析式;(3)点P 是第(2)问中抛物线对称轴上的一个动点,当点△P AB 的周长最小时,求点P的坐标.(难)15. (12分)(2015天津)已知二次函数y =x 2+bx +c (b ,c 为常数).(1)当b =2,c =-3时,求二次函数的最小值;(2)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3)当c =b 2时,若在自变量x 的值满足b ≤x ≤b +3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.(难)16. (14分)(2016长沙)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L 具有“一带一路”关系.此时直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=6x的图象上,它的“带线”l的解析式为y=2x-4,求此“路线”L的解析式;(3)当常数k满足12≤k≤2时,求抛物线L:y=ax2+(3k2-2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.(难)【江西中考题】1.(2010•江西)如图,已知经过原点的抛物线y=﹣2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);(2)在x轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;(3)设△CDP的面积为S,求S关于m的关系式.2.(1 分)(2011•江西)将抛物沿c1:y=﹣x2+沿x轴翻折,得拋物线c2,如图所示.(1)请直接写出拋物线c2的表达式.(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.3.(1 分)(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.4.(3 分)(2013•江西)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为)5.(3 分)(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()6.(9 分) 如图1,抛物线2(0)y ax bx c a =++>的顶点为M ,直线y=m 与x 轴平行,且与抛物线交于点A ,B ,若三角形AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高。

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数是中学数学中的重要内容之一,它在数学中有着广泛的应用。

本文将围绕二次函数的图像与性质展开讨论,帮助读者更好地理解和应用二次函数。

1. 二次函数的基本形式二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为实数且a≠0。

其中,a决定了二次函数的开口方向,正值表示开口向上,负值表示开口向下;b决定了二次函数的对称轴位置,对称轴的方程为x = -b/2a;c决定了二次函数与y轴的交点。

2. 二次函数的图像特点(1)开口方向:根据a的正负值可以判断二次函数的开口方向,a>0时开口向上,a<0时开口向下。

(2)对称轴:对称轴是二次函数图像的一条特殊直线,其方程为x = -b/2a。

对称轴将图像分为两个对称的部分。

(3)顶点:二次函数图像的最高点或最低点称为顶点,顶点的横坐标为对称轴的横坐标,纵坐标可以通过代入计算得到。

(4)零点:二次函数与x轴的交点称为零点,即函数值为0的点。

零点可以通过求解二次方程ax^2 + bx + c = 0得到。

3. 二次函数的平移通过对二次函数进行平移,可以改变其图像的位置。

平移的方式有两种:平移横坐标和平移纵坐标。

(1)平移横坐标:将二次函数的横坐标都加上一个常数h,可以使得图像向左平移h个单位;将横坐标都减去一个常数h,可以使得图像向右平移h个单位。

(2)平移纵坐标:将二次函数的纵坐标都加上一个常数k,可以使得图像向上平移k个单位;将纵坐标都减去一个常数k,可以使得图像向下平移k个单位。

4. 二次函数的最值二次函数的最值即为顶点的纵坐标,最大值对应开口向下的二次函数,最小值对应开口向上的二次函数。

最值可以通过求解二次函数的顶点坐标得到。

5. 二次函数的应用二次函数在现实生活中有着广泛的应用。

例如,抛物线的形状可以用二次函数来描述,因此可以应用于物体的抛射运动问题;二次函数也可以用于建模和预测,如根据历史数据拟合二次函数,预测未来的趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.抛物线y=2(x ﹣3)2+1的顶点坐标是( )
A .(3,1)
B .(3,﹣1)
C .(﹣3,1)
D .(﹣3,﹣1)
2.二次函数y=x 2﹣2x +4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )
A .y=(x ﹣1)2+2
B .y=(x ﹣1)2+3
C .y=(x ﹣2)2+2
D .y=(x ﹣2)2+4
3.点P 1(﹣1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=﹣x 2+2x +c 的图象上,则y 1,
y 2,y 3的大小关系是( )
A .y 3>y 2>y 1
B .y 3>y 1=y 2
C .y 1>y 2>y 3
D .y 1=y 2>y 3
4.对于二次函数y =-14
x 2+x -4,下列说法正确的是( ) A 、当x>0,y 随x 的增大而增大 B 、当x=2时,y 有最大值-3
C 、图像的顶点坐标为(-2,-7)
D 、图像与x 轴有两个交点
5.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x 2+5x+6,则原抛物线的解析式是( )
A .y=﹣(x ﹣)2﹣
B .y=﹣(x+)2﹣
C .y=﹣(x ﹣)2﹣
D .y=﹣(x+)2+
6.已知二次函数y=ax 2+bx +c (a >0)的图象经过点A (﹣1,2),B (2,5),顶点坐标为(m ,n ),则下列说法错误的是( )
A .c <3
B .m ≤
C .n ≤2
D .b <1
7.已知二次函数22y ax bx =--(0a ≠)的图象的顶点在第四象限,且过点(-1,0),当a b -为整数时,ab 的值为 A.34或1 B.14或1 C. 34或12 D. 14或34
8.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A (x 1,m )、B (x 1+n ,m )两点,则m 、n 的关系为( )
A .m=n
B .m=n
C .m=n 2
D .m=n 2
9.已知二次函数错误!未找到引用源。

(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为
(A )1或 -5 (B )-1或5
(C )1或 -3 (D )1或3
10. 在同一平面直角坐标系中,函数y =ax +b 与y =ax 2—bx 的图象可能是( )
11.一次函数y=ax+b (a ≠0)与二次函数y=ax 2+bx+c (a ≠0)在同一平面直角坐标系中的图
象可能是( )
A .
D
. B.
A.B.C.D.
12.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()
A.B.C.D.
13.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()
A.B.C.D.
14.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b 的图象可能是()
A .
B .
C .
D .
15.如图,抛物线y=﹣x 2+x +与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC 上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )
A .(4,3)
B .(5,)
C .(4,)
D .(5,3)
16. 二次函数y=ax ²+bx+c (a ≠0) 和正比例函数y=
32x 的图象。

如图5所示,则 方程 ax ²+(b-3
2)x+c=0 (a ≠0)的两根和( ) (A )大于0 (B )等于0 (C )小于0 (D )不能确定
17.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a+c <b ;④b 2﹣4ac >0,其中正确的个数是( )
A .1
B .2
C .3
D .4
18.二次函数y=ax2+bx+c的图象如图所示,下列结论:
①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()
A.①②B.①③C.②③D.①②③
19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()
A.1个B.2个C.3个D.4个
20.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()
A.y1<y2B.y1>y2
C.y的最小值是﹣3 D.y的最小值是﹣4
21.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c ﹣m=0有两个不相等的实数根,下列结论:
①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正确的个数有()
A.1 B.2 C.3 D.4
22.二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正确结论的个数是()
A.1 B.2 C.3 D.4
23.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;
②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()
24.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①c>0;
②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;
③2a﹣b=0;
④<0,
其中,正确结论的个数是()
A.1 B.2 C.3 D.4
25.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:
①b <0,c >0;②a +b +c <0;③方程的两根之和大于0;④a ﹣b +c <0,其中正确的个数是( )
A .4个
B .3个
C .2个
D .1个
26.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a ﹣c=0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )
A .1
B .2
C .3
D .4
27.如图,二次函数y = ax 2 +bx +c (a #O)的图像与x 轴正半轴相交于A 、B
两点,与y 轴相交于点C ,对称轴为直线x =2,且OA =OC 。

则下列结论:
①abc >0 ②9a +3b +c <0 ③c >-l ④关于x 的方程 ax 2+bx +c =0(a ≠
o)有一个根为1a
-其中正确的结论个数有( ) A .1个 B.2个 C.3个
D.4个
其中正确结论的个数是
A .1
B .2
C .3
D .4
)10(题第x )
1(n ,1=x 342
29.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、
点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x
﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()
A.2个B.3个C.4个D.5个
30.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()
A.②③④ B.①②④ C.①③④ D.①②③
31.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)
和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;
(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).
其中正确结论的个数是()
A.2 B.3 C.4 D.5。

相关文档
最新文档