排序不等式琴生不等式证明
第44讲 排序不等式

第四讲 排序不等式与琴生不等式本节主要内容有排序不等式、琴生不等式、幂平均不等式、切比雪夫不等式及应用.排序不等式(又称排序定理):给定两组实数a 1,a 2,……,a n ;b 1,b 2,……,b n .如果a 1≤a 2≤……≤a n ;b 1≤b 2≤……≤b n .那么a 1b n +a 2b n -1+……+a n b 1(反序和)≤a 11i b +a 22i b +……+a n n i b (乱序和)≤a 1b 1+a 2b 2+……+a n b n (同序和), 其中i 1,i 2,……,i n 是1,2,……,n 的一个排列.该不等式所表达的意义是和式∑=nj i j jba 1在同序和反序时分别取得最大值和最小值.切比雪夫不等式:设有两个有序数组a 1≤a 2≤……≤a n ;b 1≤b 2≤……≤b n .则1n(a 1b n+a 2b n -1+……+a n b 1)≤a 1+a 2+……+a n n ·b 1+b 2+……+b n n ≤1n(a 1b 1+a 2b 2+……+a nb n ), 其中等号仅当a 1=a 2=……=a n 或b 1=b 2=……=b n 时取得.琴生不等式又称凸函数不等式,它建立在凸函数的基础上.定义 设连续函数f (x )的定义域是[a ,b ](开区间(a ,b )或(-∞,+∞)上均可),如果对于区间[a ,b ]内的任意两点x 1,x 2有f (x 1+x 22 )≤12 [f (x 1)+f (x 2)],则称f (x )为[a ,b ]上的下凸函数.如图(1)定理一.若f (x )是下凸函数,则对其定义域中的任意几个点x 1,x 2,……,x n ,恒有f (x 1+x 2+……+x n n )≤1n[f (x 1)+f (x 2)+……+f (x n )].定义 设连续函数f (x )的定义域是[a ,b ](开区间(a ,b )或(-∞,+∞)上均可),如果对于区间[a ,b ]内的任意两点x 1,x 2有f (x 1+x 22 )≥12 [f (x 1)+f (x 2)],则称f (x )为[a ,b ]上的下凸函数.如图(2)x 1x 2M (1)P Q x 1x 2M P Q定理二:若)(x f 是上凸函数,则对其定义域中的任意n 个点n x x x ,...,,21恒有)](...)()([1)...(2121n n x f x f x f n n x x x f +++≥+++,容易验证x x x f 21log ,tan )(=分别是),0(),2,0(+∞π上的下凸函数。
江苏省高中数学竞赛教案 第44讲 排序不等式与琴生不等式

第44讲 排序不等式与琴生不等式本节主要内容有排序不等式、琴生不等式、幂平均不等式、切比雪夫不等式及应用.排序不等式(又称排序定理):给定两组实数a 1,a 2,……,a n ;b 1,b 2,……,b n .如果a 1≤a 2≤……≤a n ;b 1≤b 2≤……≤b n .那么a 1b n +a 2b n -1+……+a n b 1(反序和)≤a 11i b +a 22i b +……+a n ni b (乱序和)≤a 1b 1+a 2b 2+……+a n b n (同序和),其中i 1,i 2,……,i n 是1,2,……,n 的一个排列.该不等式所表达的意义是和式∑=nj i j jb a 1在同序和反序时分别取得最大值和最小值.切比雪夫不等式:设有两个有序数组a 1≤a 2≤……≤a n ;b 1≤b 2≤……≤b n .则1n(a 1b n +a 2b n -1+……+a n b 1)≤a 1+a 2+……+a n n ·b 1+b 2+……+b n n ≤1n(a 1b 1+a 2b 2+……+a n b n ),其中等号仅当a 1=a 2=……=a n 或b 1=b 2=……=b n 时取得. 琴生不等式又称凸函数不等式,它建立在凸函数的基础上.定义 设连续函数f (x )的定义域是[a ,b ] (开区间(a ,b )或(-∞,+∞)上均可),如果对于区间[a ,b ]内的任意两点x 1,x 2有f (x 1+x 22 )≤12[f (x 1)+f (x 2)],则称f (x )为[a ,b ]上的下凸函数.如图(1)x 1x 2M(1)定理一.若f (x )是下凸函数,则对其定义域中的任意几个点x 1,x 2,……,x n ,恒有f (x 1+x 2+……+x n n )≤1n[f (x 1)+f (x 2)+……+f (x n )].定义 设连续函数f (x )的定义域是[a ,b ](开区间(a ,b )或(-∞,+∞)上均可),如果对于区间[a ,b ]内的任意两点x 1,x 2有f (x 1+x 22 )≥12 [f (x 1)+f (x 2)],则称f (x )为[a ,b ]上的下凸函数.如图(2)定理二:若)(x f 是上凸函数,则对其定义域中的任意n 个点n x x x ,...,,21恒有)](...)()([1)...(2121n n x f x f x f n n x x x f +++≥+++,容易验证x x x f 21log ,tan )(=分别是),0(),2,0(+∞π上的下凸函数。
琴生(Jensen)不等式

所以
( ) k+1
k+1
∑
∑
i= 1 λif(xi) ≥ f i= 1 λixi
证毕
Processing math: 100%
3)假设 n = k 时,琴生不等式成立,即
( ) k
k
∑
∑
i= 1λif(xi) ≥ f i= 1λixi ,
k
∑
i= 1λi = 1
则 n = k + 1 时:
∑ ∑ ∑ (∑ ) k+1
k
k λi
k λi
i= 1 λif(xi) = k + 1f(xk + 1) + i= 1λif(xi) = λk + 1f(xk + 1) + Ci= 1 C f(xi)kλi ≥ λk + 1f(xk + 1) + Cf i= 1 C xi
登录后才能查看或发表评论立即登录或者逛逛博客园首页
琴生( Jensen)不等式
若 f(x) 是区间 [a, b] 上的凹函数,则对任意的 x1, x2, . . . , xn ∈ [a, b],且 ∑ni=1λi = 1, λi > 0,有不等式
( ) n
n
∑
∑
i= 1λif(xi) ≥ f i= 1λixi
当且仅当 x1 = x2 = . . . = xn 时等号成立。 证明:
证明过程采用数学归纳法。
1)当 n = 1 时,λ1 = 1,则不等式左侧为 f(x1),不等式右侧为 f(x1),不等式显然成立。
2)当 n = 2 时,λ1 + λ2 = 1,不等式左侧为 λ1f(x1) + λ2f(x2),不等式右侧为 f(λ1x1 + λ2x2),参考博客:,可知不等式成立。
全部的初等不等式证明

初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。
几个重要不等式及其应用

几个重要不等式及其应用一、几个重要不等式以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。
1、算术-几何平均值(AM-GM )不等式设12,,,n a a a L是非负实数,则12n a a a n+++≥L2、柯西(Cauchy )不等式设,(1,2,)i i a b R i n ∈=L ,则222111.n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑等号成立当且仅当存在R λ∈,使,1,2,,.i i b a i n λ==L变形(Ⅰ):设+∈∈R b R a i i ,,则∑∑∑===⎪⎭⎫⎝⎛≥ni in i i ni ii b a b a 12112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===⎪⎭⎫ ⎝⎛≥n i ii n i i ni ii b a a b a 1211。
等号成立当且仅当n b b b ===Λ21 3.排序不等式设n n n j j j b b b a a a ,,,,,212121⋯≤⋯≤≤≤⋯≤≤是n ,,2,1⋯的一个排列,则n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当n a a a ===Λ21或n b b b ===Λ21。
(用调整法证明).4.琴生(Jensen )不等式若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ*()n N ∈有()()()12121().n n x x x f f x f x f x n n +++≤+++⎡⎤⎣⎦L L 等号当且仅当n x x x ===Λ21时取得。
查晓东--不等式

不等式及其应用江苏省天一中学查晓东一.知识准备1.均值不等式111niini ixnnx==≤≤≤∑∑ix R+∈,当仅当12nx x x==⋅⋅⋅=时取“=”。
2.柯西不等式:对于任意实数,(1,2,,)i ix y i n=⋅⋅⋅,有222111()n n ni i i ii i ix y x y===⋅≥∑∑∑当仅当(i ix yλμ=其中,λμ为常数,1,2,3,,i n=⋅⋅⋅)时取“=”。
3.排序不等式:(顺序和≥乱序和≥逆序和)若有序数组{}{},n na b满足:1212,n na a ab b b≤≤⋅⋅⋅≤≤≤⋅⋅⋅,则1111in n ni i i j i n ii i ia b a b a b-+===≥≥∑∑∑,当且仅当12na a a==⋅⋅⋅或12nb b b==⋅⋅⋅取等号。
其中12,,,nj j j⋅⋅⋅是1,2,,n⋅⋅⋅的任一排列。
4.琴生不等式:(1)对于(,)a b内的凸函数()f x,有()nxfnxfniinii∑∑==≤⎪⎪⎪⎪⎭⎫⎝⎛11,当且仅当12nx x x==⋅⋅⋅=取“=”。
注:此即常说的琴生不等式,其中凸函数指下凸函数(2)(加权琴生不等式)对于(,)a b内的凸函数()f x,若11=∑=niia,则()∑∑==≤⎪⎭⎫⎝⎛niiiniiixfaxaf11,当且仅当12nx x x==⋅⋅⋅=取“=”。
二.利用著名不等式处理最值1.(08年全国联赛)254()2x xf xx-+=-在(,2)-∞上的最小值是2.(05年全国联赛)使关于xk有解的实数k的最大值是3.(10年新疆)设0(1,2,,)ia i n>=⋅⋅⋅,且1111,4n nkk k kaa====∑∑,则1_____nkka==∏4.(03年全国联赛)已知,(2,2)x y∈-,且1xy=-,则函数224949ux y=+--的最小值是 。
5.(10年湖北)若,,x y z R +∈,且2221x y z ++=,则2(1)2z xyz+的最小值为 。
6个基本不等式及其推论方法

6个基本不等式及其推论方法
嘿,朋友们!今天咱就来好好唠唠这 6 个基本不等式及其推论方法。
先来说说均值不等式吧,就好比分糖果,一堆糖果要分给几个小朋友,怎么样分才能最公平呢?假设有两个正数 a 和 b,那它们的算术平均值肯定大于等于几何平均值,也就是(a+b)/2≥√(ab)。
你想想看,你和朋友一起做任务,完成的工作量是不是往往会大于等于你们平均水平呀!
还有柯西不等式,这就像是搭积木,只有把各个积木按照合适的方式搭起来,才能搭得又高又稳。
(a²+b²)(c²+d²)≥(ac+bd)²,这不就像团队合作,各自发挥优势,最后成果才能更出色嘛。
排序不等式呢,就像排队买东西,把东西按照一定的顺序排好,才能更高效地买到想要的。
比如 a₁≤a₂≤…≤an,b₁≤b₂≤…≤bn,那顺序和不小于乱序和。
这不就是说,做事得有个先后顺序,不能瞎来呀!
再说三角不等式,那就是三角形的三条边的关系嘛,两边之和肯定大于第三边呀!这在生活中也常见呀,你想去一个地方,肯定走直线更近呀,绕路就远啦。
再看琴生不等式,就好像爬山,坡度平缓的路走起来是不是更轻松呀,函数的凸性就是这样呀。
最后是贝努利不等式,这就像投资,可能会有风险,但只要把握好度,回报就会很不错哦。
哎呀,这 6 个基本不等式及其推论方法真的太重要啦!它们就像是我们解决问题的法宝,能让我们在数学的世界里更加游刃有余。
无论是学习还是生活中,都能派上大用场呢!所以说呀,一定要好好掌握它们哟!。
全国高中数学联赛-不等式专题排序不等式与琴生不等式.pdf

1. ABC 中,求 sin A sin B sin C 的最大值。
2. f (x) ax 2 bx c ,若 a 0 ,证明 f (x) 是下凸的;若 a 0 ,证明 f (x) 是上凸的。
3. 用函数 f (x) lg x 的凸函数性质证明平均值不等式:对 ai 0 ( i 1,2,..., n )有
2
x分
别是 (0,
), (0,)
上的下凸函数。
f
(x)
sin
x, lg
x
分别是 [0,
], (0,)
上的上凸函数。
2
定理一和定理二所表达的不等关系,统称为琴生不等式。
幂平均:
设
a1, a2 ,..., an
是任意
n
个正数,我们称 ( a1r
a2r n
...
an r
1
)r
(r
在命题与逻辑用语的学习过程中,我们常常会列举与不等式性质相关的问题作为范例. 不仅在大纲版人教社教材和课标版各教材的简易逻辑部分,都配有与此相关的例题、练习题 作为逻辑学习的载体,在各类教辅用书和重要考试的考题中, 以不等式性质或其运用作为 素材的逻辑问题也是屡见不鲜的.这不仅是因为不等式的性质具有形式简洁明确、易于体现 逻辑关系的特点,还因为它的工具作用使得我们在以许多其他教学内容作为题材提出围绕命 题与逻辑用语的问题时,也与不等式的性质相关.
高一对函数单调性的证明, 由于学生对不等式相关知识和方法的掌握方面还很欠缺,所以
我们将证明 f (x1 )与f (x2 ) 的大小关系,转化为判断 f (x1 ) f (x2 ) 的符号问题,从而以 f (x1 ) f (x2 ) 的恒等变形作为主要步骤,避免了对运用不等式性质进行变形的依赖.