2017年春中考数学专题总复习课件+练习(三)阅读理解题
2017年中考数学复习考点解密 阅读理解型问题含11真题带解析

A B P 1 P 2 P 3 P 4阅读理解型问题一、专题诠释阅读理解型问题在近几年地全国中考试题中频频“亮相”,特别引起我们地重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查地知识也灵活多样,既考查学生地阅读能力,又考查学生地解题能力地新颖数学题. 二、解题策略与解法精讲解决阅读理解问题地关键是要认真仔细地阅读给定地材料,弄清材料中隐含了什么新地数学知识、结论,或揭示了什么数学规律,或暗示了什么新地解题方法,然后展开联想,将获得地新信息、新知识、新方法进行迁移,建模应用,解决题目中提出地问题.三、考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题<2018连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: <1)有一条边对应相等地两个三角形面积之比等于这条边上地对应高之比; <2)有一个角对应相等地两个三角形面积之比等于夹这个角地两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.<S 表示面积) 问题1:如图1,现有一块三角形纸板ABC ,P1,P2三等分边AB ,R1,R2三等分边AC .经探究知=错误!S △ABC ,请证明. 问题2:若有另一块三角形纸板,可将其与问题1中地拼合成四边形ABCD ,如图2,Q1,Q2三等分边DC .请探究与S 四边形ABCD 之间地数量关系. 问题3:如图3,P1,P2,P3,P4五等分边AB ,Q1,Q2,Q3,Q4五等分边DC .若 S 四边形ABCD =1,求.问题4:如图4,P1,P2,P3四等分边AB ,Q1,Q2,Q3四等分边DC ,P1Q1,P2Q2,P3Q3将四边形ABCD 分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4地一个等式.【分析】问题1:由平行和相似三角形地判定,再由相似三角形面积比是对应边地比地平方地性质可得.A B C 图1P 1 P 2 R 2 R 1 AB图2P 1 P 2R 2R 1D Q 1Q 2AP 1 P 2 P 3BS 1 S 2 S 3S 4问题2:由问题1地结果和所给结论<2)有一个角对应相等地两个三角形面积之比等于夹这个角地两边乘积之比,可得. 问题3:由问题2地结果经过等量代换可求.问题4:由问题2可知S1+S4=S2+S3=.解:问题1:∵P1,P2三等分边AB ,R1,R2三等分边AC ,∴P1R1∥P2R2∥BC .∴△AP1 R1∽△AP2R2∽△ABC ,且面积比为1:4:9. ∴=错误!S △ABC =错误!S △ABC 问题2:连接Q1R1,Q2R2,如图,由问题1地结论,可知∴=错误!S △ABC ,=错误!S △ACD∴+=错误!S 四边形ABCD由∵P1,P2三等分边AB ,R1,R2三等分边AC ,Q1,Q2三等分边DC , 可得P1R1:P2R2=Q2R2:Q1R1=1:2,且P1R1∥P2R2,Q2R2∥Q1R1. ∴∠P1R1A =∠P2R2A ,∠Q1R1A =∠Q2R2A .∴∠P1R1Q1=∠P2R2 Q2. 由结论<2),可知=. ∴=+=错误!S 四边形ABCD . 问题3:设=A ,=B ,设=C ,由问题2地结论,可知A =错误!,B =错误!.A +B =错误!(S 四边形ABCD +C>=错误!(1+C>. 又∵C =错误!(A +B +C>,即C =错误![错误!(1+C>+C]. 整理得C =错误!,即=错误!问题4:S1+S4=S2+S3.【点评】该种阅读理解题给出新地定理,学生需要学会新定理,借助于试题告诉地信息<结论1、2)来解决试题考点二、阅读试题信息,归纳总结提炼数学思想方法 <2018北京)阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若梯形ABCD 地面积为1,试求以AC ,BD ,地长度为三边长地三角形地面积.ABC图2P 1 P 2R 2R 1DQ 1Q 2C小伟是这样思考地:要想解决这个问题,首先应想办法移动这些分散地线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移地方法,发现通过平移可以解决这个问题.他地方法是过点D 作AC 地平行线交BC 地延长线于点E ,得到地△BDE 即是以AC ,BD ,地长度为三边长地三角形<如图2).参考小伟同学地思考问题地方法,解决下列问题: 如图3,△ABC 地三条中线分别为AD ,BE ,CF.<1)在图3中利用图形变换画出并指明以AD ,BE ,CF 地长度为三边长地一个三角形<保留画图痕迹);<2)若△ABC 地面积为1,则以AD ,BE ,CF 地长度为三边长地三角形地面积等于_______.【分析】:根据平移可知,△ADC ≌△ECD ,且由梯形地性质知△ADB 与△ADC 地面积相等,即△BDE 地面积等于梯形ABCD 地面积.<1)分别过点F 、C 作BE 、AD 地平行线交于点P ,得到地△CFP 即是以AD 、BE 、CF 地长度为三边长地一个三角形.<2)由平移地性质可得对应线段平行且相等,对应角相等.结合图形知以AD ,BE ,CF 地长度为三边长地三角形地面积等于△ABC 地面积地.解答:解:△BDE 地面积等于1.<1)如图.以AD、BE 、CF 地长度为三边长地一个三角形是△CFP .<2)以AD 、BE 、CF 地长度为三边长地三角形地面积等于.【点评】:本题考查平移地基本性质:①平移不改变图形地形状和大小;②经过平移,对应点所连地线段平行且相等,对应线段平行且相等,对应角相等.考点三、阅读相关信息,通过归纳探索,发现规律,得出结论<2009河北)如图9-1至图9-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻地位置,⊙O 地周长为c .阅读理解:<1)如图9-1,⊙O 从⊙O 1地位置出发,沿AB 滚动到⊙O 2地位置,当AB = c 时,⊙O 恰好自转1周.<2)如图9-2,∠ABC 相邻地补角是n °,⊙O 在∠ABC 外部沿A -B-C 滚动,在点B 处,必须由⊙O 1地位置旋转到图9-1 ABDAB C图9-3⊙O 2地位置,⊙O 绕点B 旋转地角∠O 1BO 2 =n °,⊙O 在点B 处自转周.实践应用:<1)在阅读理解地<1)中,若AB =2c ,则⊙O 自转周;若AB = l ,则⊙O 自转周.在阅读理解地<2)中,若∠ABC =120°,则⊙O 在点B 处自转周;若∠ABC =60°,则⊙O 在点B 处自转_____周.<2)如图9-3,∠ABC=90°,AB=BC=c .⊙O 从⊙O 1地位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 4地位置,⊙O 自转周.拓展联想:<1)如图9-4,△ABC 地周长为l ,⊙O 从与AB 相切于点D 地位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 地位置,⊙O 自转了多少周?请说明理由.<2)如图9-5,多边形地周长为l ,⊙O 从与某边相切于点D 地位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D 地位置,直接..写出⊙O 自转地周数.【分析】:<1)当AB = c 时,⊙O 恰好自转1周.<2)如图9-2,∠ABC 相邻地补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由⊙O 1地位置旋转到⊙O 2地位置,⊙O 绕点B 旋转地角∠O 1BO 2 =n °,⊙O 在点B 处自转周,通过上面可以知道圆地转动规律.解:实践应用<1)2;.;.<2).拓展联想<1)∵△ABC 地周长为l ,∴⊙O 在三边上自转了周.又∵三角形地外角和是360°, ∴在三个顶点处,⊙O 自转了<周).∴⊙O 共自转了<+1)周. <2)+1.【评析】:本题以课题学习地形式呈现,从简单地“圆在直线段和角外部滚动地周数”地数学事实出发,循序渐进,层层深入,引导学生在解决问题地过程中,不断产生认知发展,进而在不知不觉中提炼归纳出一般性地结论,使自己对知识地认识得到升华考点四、阅读试题信息,借助已有数学思想方法解决新问题<2018南京)问题情境:已知矩形地面积为a<a 为常数,a >0),当该矩形地长为多少时,它地周长最小?最小值是多少?数学模型:设该矩形地长为x ,周长为y ,则y 与x 地函数关系式为.A图9-4图9-5探索研究:⑴我们可以借鉴以前研究函数地经验,先探索函数地图象性质.②观察图象,写出该函数两条不同类型地性质;③在求二次函数y=ax2+bx+c<a≠0)地最大<小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0>地最小值.解决问题:⑵用上述方法解决“问题情境”中地问题,直接写出答案.【分析】⑴将x值代入函类数关系式求出y值, 描点作图即可. 然后分析函数图像.⑵仿⑴③===所以, 当=0,即时,函数地最小值为解答:⑴①函数地图象如图.②本题答案不唯一,下列解法供参考.当时,随增大而减小;当时,随增大而增大;当时函数地最小值为2.③===当=0,即时,函数地最小值为2.⑵仿⑴③===当=0,即时,函数地最小值为.⑵当该矩形地长为时,它地周长最小,最小值为.【点评】:画和分析函数地图象,借助图像分析函数性质.类比一元二次方程地配方法求函数地最大(小>值.考点五、阅读图表等统计资料,提供有关信息解决相关问题(2018无锡>十一届全国人大常委会第二十次会议审议地个人所得税法修正案草案(简称“个税法草案”>,拟将现行个人所得税地起征点由每月2000元提高到3000元,并将9级500注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分地金额.“速算扣除数”是为快捷简便计算个人所得税而设定地一个数.例如:按现行个人所得税法地规定,某人今年3月地应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元>.方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元>.(1>请把表中空缺地“速算扣除数”填写完整;(2>甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3>乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴地税款恰好不变,那么乙今年3月所缴税款地具体数额为多少元?【分析】(1> 当1500<x≤4500时, 应缴个人所得税为当4500<x≤9000时, 应缴个人所得税为(2> 缴了个人所得税1060元, 要求应缴税款, 只要求出其适应哪一档玩税级, 直接计算即可.(3> 同(2>, 但应清楚“月应纳税额”为个人每月收入中超出起征点应该纳税部分地金额, 而“个税法草案”拟将现行个人所得税地起征点由每月2000元提高到3000元, 依据此可列式求解.解答:(1>75, 52575因为1060元在第3税级, 所以有20%x-525=1060, x=7925(元> 答: 他应缴税款7925元.(3>缴个人所得税3千多元地应缴税款适用第4级, 假设个人收入为k, 刚有20%(k-2000> -375=25%(k-3000>-975 k=19000所以乙今年3月所缴税款地具体数额为(19000-2000>×20%-375=3025(元>【考点】统计图表地分析,并借助于事例理解数量之间地关系,解决实际问题.一、真题演练1、(2018菏泽市>定义一种运算☆,其规则为a☆b=错误!+错误!,根据这个规则、计算2☆3地值是< ) A. B. C.5 D.62、<2018达州)18、<6分)给出下列命题:命题1:直线与双曲线有一个交点是<1,1);命题2:直线与双曲线有一个交点是<,4);命题3:直线与双曲线有一个交点是<,9);命题4:直线与双曲线有一个交点是<,16);……………………………………………………<1)请你阅读、观察上面命题,猜想出命题<为正整数);<2)请验证你猜想地命题是真命题.3、(2018德州>观察计算当,时,与地大小关系是_________________.当,时,与地大小关系是_________________.探究证明如图所示,为圆O地内接三角形,为直径,过C作于D,设,BD=b.<1)分别用表示线段OC,CD;<2)探求OC与CD表达式之间存在地关系<用含a,b地式子表示).归纳结论根据上面地观察计算、探究证明,你能得出与地大小关系是: ____________.实践应用要制作面积为1平方M地长方形镜框,直接利用探究得出地结论,求出镜框周长地最小值.第二部分练习部分一、选择题1.为了求地值,可令S =,则2S=,因此2S-S=,所以=仿照以上推理计算出地值是< )A. B. C. D.2.阅读材料,解答问题.例用图象法解一元二次不等式:.解:设,则是地二次函数.抛物线开口向上.又当时,,解得.由此得抛物线地大致图象如图所示.A BCO D观察函数图象可知:当或时,.地解集是:或.<1)观察图象,直接写出一元二次不等式:地解集是____________;<2)仿照上例,用图象法解一元二次不等式:.<大致图象画在答题卡上)3.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰地距离分别为,腰上地高为h,连结AP ,则即:<定值)<1)理解与应用如图,在边长为3地正方形ABC中,点E为对角线BD上地一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN地长.<2)类比与推理如果把“等腰三角形”改成“等到边三角形”,那么P地位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P 到各边地距离分别为,等边△ABC地高为h ,试证明:<定值).<3)拓展与延伸若正n边形A1A2…An内部任意一点P到各边地距离为,请问是否为定值,如果是,请合理猜测出这个定值.4.阅读材料:如图1,过△ABC 地三个顶点分别作出与水平线垂直地三条直线,外侧两条直线之间地距离叫△ABC 地“水平宽”(a>,中间地这条直线在△ABC 内部线段地长度叫△ABC 地“铅垂高(h>”.我们可得出一种计算三角形面积地新方法:,即三角形面积等于水平宽与铅垂高乘积地一半.xC Oy ABD11AB P Ch r 1r 2r 3 P B M C解答下列问题:如图2,抛物线顶点坐标为点C(1,4>,交x轴于点A(3,0>,交y轴于点B.<1)求抛物线和直线AB地解读式;<2)点P是抛物线(在第一象限内>上地一个动点,连结PA,PB,当P点运动到顶点C 时,求△CAB地铅垂高CD及;<3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点地坐标;若不存在,请说明理由.5.阅读下面地材料:在平面几何中,我们学过两条直线平行地定义.下面就两个一次函数地图象所确定地两条直线,给出它们平行地定义:设一次函数地图象为直线,一次函数地图象为直线,若,且,我们就称直线与直线互相平行.解答下面地问题:<1)求过点且与已知直线平行地直线地函数表达式,并画出直线地图象;<2)设直线分别与轴、轴交于点、,如果直线:与直线平行且交轴于点,求出△地面积关于地函数表达式.真题演练答案1、A2、解:<1)命题:直线与双曲线有一个交点是<,)…………………………………………3分<2)将<,)代入直线得:右边=,左边=,∴左边=右边,∴点<,)在直线上,同理可证:点<,)在双曲线上,∴直线与双曲线有一个交点是<,)3、观察计算:>,=. 探究证明: <1),∴AB 为⊙O 直径,∴.ABCO D,,∴∠A=∠BCD.∴△∽△.∴.即,∴.<2)当时,,=;时,,>.结论归纳:.实践应用设长方形一边长为M,则另一边长为M,设镜框周长为lM,则≥.当,即<M)时,镜框周长最小.此时四边形为正方形时,周长最小为4M.第二部分练习部分答案1、D2、<1).<2)解:设,则是地二次函数.抛物线开口向上.又当时,,解得.由此得抛物线地大致图象如图所示.观察函数图象可知:当或时,.地解集是:或.3、解:<1)如图,连接AC交BD于O,在正方形ABCD中,AC⊥BD∵BE=BC.∴CO为等腰△BCE腰上地高,∴根据上述结论可得 FM+FN=CO而CO=AC=∴FM+FN=<2)如图,设等边△ABC地边长为,连接PA,BP,PC,则S△BCP+S△ACP+S△ABP=S△ABC即∴<3)…+是定值.…+<为正边形地边心距)4、(1>设抛物线地解读式为:把A<3,0)代入解读式求得所以设直线AB地解读式为:由求得B点地坐标为把,代入中解得:所以(2>因为C点坐标为(1,4>所以当x=1时,y1=4,y2=2所以CD=4-2=2(平方单位>(3>假设存在符合条件地点P,设P点地横坐标为x,△PAB地铅垂高为h,则由S△PAB =S△CAB得:化简得:解得,将代入中,解得P 点坐标为5、解:<1)设直线l地函数表达式为y=k x+b.∵直线l与直线y=—2x—1平行,∴k=—2.∵直线l过点<1,4),∴—2+b =4,∴b =6.∴直线l地函数表达式为y=—2x+6.直线地图象如图.(2>∵直线分别与轴、轴交于点、,∴点、地坐标分别为<0,6)、<3,0).∵∥,∴直线为y=—2x+t.∴C 点地坐标为.∵t>0,∴.∴C点在x轴地正半轴上.当C点在B 点地左侧时,;当C点在B点地右侧时,.∴△地面积关于地函数表达式为<5题)申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
2017年春中考数学总复习 第二轮 中考题型专题 专题复习(三)阅读理解题试题

专题复习(三) 阅读理解题1.(2016·湖州)定义:若点P(a ,b)在函数y =1x 的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y =ax 2+bx 称为函数y =1x 的一个“派生函数”.例如:点(2,12)在函数y =1x 的图象上,则函数y =2x 2+12x 称为函数y =1x的一个“派生函数”.现给出以下两个命题:(1)存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧;(2)函数y =1x 的所有“派生函数”的图象都经过同一点.下列判断正确的是(C)A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题 提示:(1)∵P(a,b)在y =1x 上,∴a 和b 同号.∴对称轴在y 轴左侧.∴存在函数y =1x 的一个“派生函数”,其图象的对称轴在y 轴的右侧,是假命题;(2)∵函数y =1x 的所有“派生函数”为y =ax 2+bx ,∴x =0时,y =0.∴所有“派生函数”的图象都经过原点.∴函数y =1x的所有“派生函数”的图象都经过同一点,是真命题.故选C.2.(2016·永州)我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:指数运算 21=222=423=8 (31)=332=933=27 … 新运算log 22=1 log 24=2 log 28=3 …log 33=1 log 39=2log 327=3…根据上表规律,某同学写出了三个式子:①log 216=4;②log 525=5;③log 212=-1.其中正确的是(B)A .①②B .①③C .②③D .①②③3.(2016·益阳)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(1,-3).4.(2016·雅安)P 为正整数,现规定P !=P(P -1)(P -2)×…×2×1,若m !=24,则正整数m =4. 5.(2016·凉山)阅读下列材料并回答问题:材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a +b +c2,那么三角形的面积为S =p (p -a )(p -b )(p -c ).①古希腊几何学家海伦(Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202—约1261),曾提出利用三角形的三边求面积的秦九韶公式:S =14[a 2b 2-(a 2+b 2-c 22)2].②下面我们对公式②进行变形: 14[a 2b 2-(a 2+b 2-c 22)2] =(12ab )2-(a 2+b 2-c 24)2 =(12ab +a 2+b 2-c 24)(12ab -a 2+b 2-c 24) =2ab +a 2+b 2-c 24·2ab -a 2-b 2+c24=(a +b )2-c 24·c 2-(a -b )24=a +b +c 2·a +b -c 2·a +c -b 2·b +c -a 2=p (p -a )(p -b )(p -c ).这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦—秦九韶公式.问题:如图,在△ABC 中,AB =13,B C =12,AC =7,⊙O 内切于△ABC,切点分别是D 、E 、F.(1)求△ABC 的面积; (2)求⊙O 的半径.解:(1)∵AB=13,BC =12,AC =7, ∴p =13+12+72=16.∴S =p (p -a )(p -b )(p -c )=16×(16-12)×(16-7)×(16-13) =24 3.(2)连接OE 、OF 、OD 、OB 、OC 、OA.设⊙O 的半径为r. ∵BC 切⊙O 于E 点,∴OE ⊥BC. ∴S △OBC =12BC·OE=12ar.同理:S △OAC =12br ,S △OAB =12cr.∴S △ABC =S △OBC +S △OAC +S △OAB =12r(a +b +c).∴12r(12+7+13)=243,解得r =332.6.(2016·重庆)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n|=0,∴n ×n 是m 的最佳分解. ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 为“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=18. ∴y -x =2,即y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79. ∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179. ∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F(t)的最大值是57.7.(2015·遂宁改编)阅读下列材料,并用相关的思想方法解决问题. 计算:(1-12-13-14)×(12+13+14+15)-(1-12-13-14-15)×(12+13+14).令12+13+14=t ,则 原式=(1-t)×(t+15)-(1-t -15)×t=t +15-t 2-15t -t +t 2+15t=15. 问题:(1)计算:(1-12-13-14-…-12 015)×(12+13+14+…+12 016)-(1-12-13-14-…-12 016)×(12+13+14+…+12 015); (2)解方程:(x 2+5x +1)(x 2+5x +7)=7. 解:(1)令12+13+14…+12 015=t ,则原式=(1-t )×(t+12 016)-(1-t -12 016)×t=t +12 016-t 2-12 016t -t +t 2+12 016t=12 016. (2)令x 2+5x =t ,则原方程化为(t +1)(t +7)=7.整理,得t 2+8t =0,解得t =0或t =-8.①当t =0时,x 2+5x =0,解得x =0或x =-5;②当t =-8时,x 2+5x =-8,即x 2+5x +8=0.∵Δ=b 2-4ac =52-4×1×8=-7<0, ∴此方程无解.因此原方程的解是x =0或x =-5.8.(2016·郴州)设a 、b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a⊕b=⎩⎪⎨⎪⎧b a (a >0),a -b (a≤0),例如:1⊕(-3)=-31=-3,(-3)⊕2=(-3)-2=-5,(x 2+1)⊕(x-1)=x -1x 2+1(因为x 2+1>0).参照上面材料,解答下列问题: (1)2⊕4=2,(-2)⊕4=-6;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x),求x 的值.解:∵x>12,∴2x -1>0.∴(2x -1)⊕(4x 2-1)=4x 2-12x -1=(2x +1)(2x -1)2x -1=2x +1.∵-4<0,∴(-4)⊕(1-4x)=-4-(1-4x)=-4-1+4x =-5+4x.∴2x +1=-5+4x ,解得x =3.9.(2016·咸宁)阅读理解:我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sin α的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120°,则这个平行四边形的变形度是233;猜想证明:(2)若矩形的面积为S 1,其变形后的平行四边形面积为S 2,试猜想S 1,S 2,1sin α之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD 中,E 是AD 边上的一点,且AB 2=AE·AD,这个矩形发生变形后为平行四边形A 1B 1C 1D 1,E 1为E 的对应点,连接B 1E 1,B 1D 1,若矩形ABCD 的面积为4m(m >0),平行四边形A 1B 1C 1D 1的面积为2m(m >0),试求∠A 1E 1B 1+∠A 1D 1B 1的度数.图1 图2 图3解:(2)猜想:1sin α=S 1S 2.理由如下:如图3,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h. 则S 1=ab ,S 2=ah ,sin α=hb.∴S 1S 2=ab ah =b h ,1sin α=b h .∴1sin α=S 1S 2. (3)由AB 2=AE·AD,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1.又∵∠B 1A 1E 1=∠D 1A 1B 1,∴△B 1A 1E 1∽△D 1A 1B 1.∴∠A 1B 1E 1=∠A 1D 1B 1. ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1.∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1.由(2)中1sin α=S 1S 2,可知1sin ∠A 1B 1C 1=4m2m =2.∴sin ∠A 1B 1C 1=12.∴∠A 1B 1C 1=30°.∴∠A 1E 1B 1+∠A 1D 1B 1=30°.10.(2016·邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF ,BE 是△ABC 的中线,且AF⊥BE,垂足为P ,设BC =a ,A C =b ,AB =c.求证:a 2+b 2=5c 2. 该同学仔细分析后,得到如下解题思路:先连接EF ,利用EF 为△ABC 的中位线得到△EPF∽△BPA,故EP BP =PF PA =EF BA =12,设PF =m ,PE =n ,用m ,n 把PA ,PB分别表示出来,再在Rt △APE ,Rt △BPF 中利用勾股定理计算,消去m ,n 即可得证. (1)请你根据以上解题思路帮尤秀同学写出证明过程; (2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图2所示,求MG 2+MH 2的值.解:(1)连接EF ,设PF =m ,PE =n. ∵AF ,BE 是△ABC 的中线,∴EF 为△ABC 的中位线,AE =12b ,BF =12a.∴EF ∥AB ,EF =12c.∴△EPF ∽△BPA. ∴EP BP =PF PA =EF BA =12,即n PB =m PA =12. ∴PB =2n ,PA =2m.在Rt △AEP 中,∵PE 2+PA 2=AE 2, ∴n 2+4m 2=14b 2.①在Rt △BFP 中,∵PF 2+PB 2=BF 2, ∴m 2+4n 2=14a 2.②①+②,得5(n 2+m 2)=14(a 2+b 2).在Rt △EFP 中,∵PE 2+PF 2=EF 2, ∴n 2+m 2=14c 2.∴5·14c 2=14(a 2+b 2),即a 2+b 2=5c 2.(2)连接EF.∵四边形ABCD 为菱形, ∴AD ∥BC ,AD =BC ,BD ⊥AC.∵E ,F 分别为线段AO ,DO 的中点, ∴EF ∥AD ,EF =12AD.∴EF ∥BC ,EF =12BC.∴E ,F 分别是BM ,CM 的中点.由(1)的结论得MB 2+MC 2=5BC 2=5×32=45. ∵AG ∥BC ,∴△AEG ∽△CEB. ∴AG BC =AE CE =13.∴AG=1. 同理可得DH =1.∴GH =AD -AG -DH =1. 又∵GH∥BC,∴MG MB =MH MC =GH BC =13.∴MB =3GM ,MC =3MH.∴9MG 2+9MH 2=45,即MG 2+MH 2=5.11.(2016·永州)问题探究: 1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”). 2.解决问题已知等边△ABC 的边长为2.(1)如图1,若AD⊥BC,垂足为D ,试说明AD 是△ABC 的一条面径,并求AD 的长; (2)如图2,若M E∥BC,且ME 是△ABC 的一条面径,求面径ME 的长;(3)如图3,已知D 为BC 的中点,连接AD ,M 为AB 上的一点(0<AM <1),E 是DC 上的一点,连接ME ,ME 与AD 交于点O ,且S △MOA =S △DOE .①求证:ME 是△ABC 的面径; ②连接AE ,求证:MD∥AE;(4)请你猜测等边三角形ABC 的面径长l 的取值范围(直接写出结果).提示:x 2+y 2≥2xy. 解:(1)∵AB=AC =BC =2,AD ⊥BC , ∴BD =DC =1,∴S △ABD =S △ACD . ∴线段AD 是△ABC 的面径. 又∵∠B=60°,∴AD =B D·tanB = 3.(2)∵ME∥BC,且ME 是△ABC 的一条面径, ∴△AME ∽△ABC ,S △AME S △ABC =12.∴ME BC =12. ∴ME = 2.(3)①证明:∵D 为BC 的中点,∴S △ABD =S △ACD . ∴S 四边形BDOM +S △MOA =S 四边形ACEO +S △DOE . 又S △MOA =S △DOE ,∴S 四边形BDOM +S △DOE =S 四边形ACEO +S △MOA , 即S △BME =S 四边形ACEM . ∴ME 是△ABC 的面径.②作MN⊥AE 于N ,DF ⊥AE 于F , 则MN∥DF. ∵S △MOA =S △DOE ,∴S △MOA +S △AOE =S △DOE +S △AOE , 即S △AEM =S △AED .∴12AE·MN=12AE·DF.∴MN=DF. 又∵MN∥DF,∴四边形MNFD 是平行四边形. ∴DM ∥AE.(4)作MH⊥BC 于H ,设BM =x ,BE =y , ∵DM ∥AE ,∴BM BA =BD BE .∴x 2=1y.∴xy=2.在Rt △MBH 中,∵∠MHB =90°,∠B =60°,BM =x , ∴BH =12x ,MH =32x.∴ME =MH 2+EH 2=(32x )2+(y -12x )2=x 2+y 2-xy ≥2xy -xy , 即ME≥ 2.∵ME 、AD 都是等边△ABC 的面径,∴等边△ABC 的面径长l 的取值范围是2≤l≤ 3.。
2017年数学中考专题《阅读理解题》

2017年数学中考专题《阅读理解题》D(3)由2AB AE AD=⋅,可得2111111A BA E A D =⋅,即11111111A B A E ADA B =,可证明111B A E ∆∽111D A B ∆,则111111A B EA DB ∠=∠,再证明111111111111A EB A D BC B E A B E ∠+∠=∠+∠=111A B C ∠,由(2)121sin S S α=,可知111142sin 2mA B Cm==∠,可知1111sin 2A B C ∠=,得出11130A B C ∠=︒,从而证明11111130A E B A D B ∠+∠=︒.【全解】(1)根据新定义,平行四边形相邻两个内角中较小的一个内角α为:18012060α=︒-︒=︒,∴1123sin sin 6033α===︒.(2) 121sin S S α=,理由如下:如图(1),设矩形的长和宽分别为,a b ,其变形后的平行四边形的高为h .则12,,sin hSab S ah bα===,121,sin S ab b b S ah h hα∴===,∴121sin S S α=.(3)由2AB AE AD=⋅,可得2111111A BA E A D =⋅,即11111111A BA E ADA B =.又111111B A ED A B ∠=∠,∴111B A E ∆∽111D A B ∆.111111A B E A D B ∴∠=∠.1111//A D B C ,111111A EBC B E ∴∠=∠.111111111111111A EB A D BC B E A B EA B C ∴∠+∠=∠+∠=∠, 由(2)121sin S S α=,可知11112sin A B C==∠.1111sin 2A B C ∴∠=.11130A B C ∴∠=︒.11111130A E B A D B ∴∠+∠=︒.1.(2016·浙江舟山)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形” (1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图(1),在等邻角四边形ABCD中,,,DAB ABC AD BC∠=∠的中垂线恰好交于AB 边上一点P ,连接,AC BD ,试探究AC 与BD 的数量关系,并说明理由;(3)应用拓展;如图(2),在Rt ABC ∆与Rt ABD ∆中,90C D ∠=∠=︒,3,5BC BD AB ===,将Rt ABD ∆绕着点A 顺时针旋转角(0)BAC αα︒<∠<∠得到Rt AB D ''∆ (如图 (3)),当凸四边形AD BC '为等邻角四边形时,求出它的面积.【考情小结】此题属于几何变换综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,垂直平分线定理,等腰三角形性质,以及矩形的判定与性质,熟练掌握判定与性质是解本题的关键.正确理解题目中的定义是关键.类型二 解题示范与新知模仿型(改错) 典例2 (2016·浙江湖州)定义:若点(,)P a b 在函数1y x=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数2y axbx=+称为函数1y x=的一个“派生函数”.例如:点1(2,)2在函数1y x=的图象上,则函数2122y xx =+称为函数1y x=的一个“派生函数”.现给出以下两个命题:(1)存在函数1y x =的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数1y x =的所有“派生函数”的图象都经过同一点,下列判断正确的是( ). A.命题(1)与命题(2)都是真命题 B.命题(1)与命题(2)都是假命题 C.命题(1)是假命题,命题(2)是真命题 D.命题(1)是真命题,命题(2)是假命题 【解析】(1)根据二次函数2y axbx=+的性质,a b同号对称轴在y 轴左侧,,a b 异号对称轴在y 轴右侧即可判断.(2)根据“派生函数” 2,0y ax bx x =+=时,0y =,经过原点,不能得出结论.【全解】(1)(,)P a b 在1y x=上, ∴a 和b 同号,所以对称轴在y 轴左侧,∴存在函数1y x=的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题.(2)函数1y x=的所有“派生函数”为2y ax bx=+,x ∴=时,0y =,∴所有“派生函数”为2y axbx=+经过原点,∴函数1y x =的所有“派生函数”的图象都进过同一点,是真命题. 故选C. 2.(2014·湖南永州)在求1+6+62+63+64+65+66+67+68 + 69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69.①然后在①式的两边都乘以6,得 6S =6+62+63+64+65 +66 +67+68 +69+610.② ②-①,得6S -S =610-1,即5S = 610-1,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(0a ≠且1a ≠),能否求出23420141a a a a a +++++⋯+的值?你的答案是( ). A.201411a a -- B.201511a a -- C.20141a a-D.20141a-3. (2015·广西南宁)对于两个不相等的实数,a b ,我们规定符号max {},a b 表示,a b 中的较大值,如:max {}2,4=4,按照这个规定,方程max {}21,x x x x +-=的解为( )A.1 B.2 C.1+1 D.1或-14. (2015·浙江湖州)如图,已知抛物线21111:C y a x b x c =++和22222:Cy a x b x c =++都经过原点,顶点分别为,A B ,与x 轴的另一个交点分别为,M N ,如果点A 与点B ,点M 与点N 都关于原点O 成中心对称,则抛物线C和2C为姐妹抛物线,请你1写出一对姐妹抛物线C和2C,使四边形ANBM恰1好是矩形,你所写的一对抛物线解析式是和.【考情小结】弄清题中的技巧是解题的关键.我们只要按照示例中的思路技巧去类比、模仿,一般不会做错,做题时要克服思维定势的影响和用“想当然”代替现实的片面意识.类型三迁移探究与拓展应用型典例3 (2016·江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称OAB∠为“叠弦角”,AOP∆为“叠弦三角形”.【探究证明】(1)请在图(1)和图(2)中选择其中一个证明:“叠弦三角形”(AOP ∆)是等边三角形; (2)如图(2),求证: OAB OAE '∠=∠.【归纳猜想】(3)图(1)、图(2)中的“叠弦角”的度数分别为 , ;(4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”)(5)图n 中,“叠弦角”的度数为 (用含n 的式子表示)【全解】(1)如图(1), 四边形ABCD 是正方形, 由旋转知:,90,AD AD D D ''=∠=∠=︒60DAD OAP '∠=∠=︒,DAP D AO '∴∠=∠. APD AOD '∴∆≅∆( ASA) . AP AO ∴=.60OAP ∠=︒,AOP ∴∆是等边三角形. (2)如图(2),作AM DE ⊥于M ,作AN CB ⊥于N . 五边形ABCDE 是正五边形,由旋转知:,108,60AE AE E E EAE OAP '''=∠=∠=︒∠=∠=︒, EAP E AO '∴∠=∠. APE AOE '∴∆≅∆( ASA). OAE PAE '∴∠=∠.在Rt AEM ∆和Rt ABN ∆中,72AEM ABN AE AB∠=∠=︒⎧⎨=⎩,Rt AEM Rt ABN∴∆≅∆(AAS).,EAM BAN AM AN∴∠=∠=.在Rt APM ∆和Rt AON ∆中,AP AO AM AN=⎧⎨=⎩,Rt APM Rt AON ∴∆≅∆(HL).PAM OAN ∴∠=∠.PAE OAB∴∠=∠.OAE OAB'∴∠=∠(等量代换).(3)由(1)有,APD AOD '∆≅∆, DAP D AO '∴∠=∠在AD O '∆和ABO ∆中,AD AB AO AO'=⎧⎨=⎩,AD O ABO'∴∆≅∆. D AO BAO'∴∠=∠.由旋转,得60DAD '∠=︒,90DAB ∠=︒,30D AB DAB DAD ''∴∠=∠-∠=︒. 1152D AD D AB ''∴∠=∠=︒.同理可得,24E AO '∠=︒, 故答案为:15°,24°. (4)如图(3),六边形ABCDEF 和六边形A B C D E F ''''''是正六边形,120F F '∴∠=∠=︒.由旋转,得,AF AF EF E F '''==,APF AE F ''∴∆≅∆. PAF E AF ''∴∠=∠. 由旋转,得60,FAF AP AO '∠=︒=.60PAO FAO ∴∠=∠=︒.PAO∴∆是等边三角形.故答案为:是(5)图n 中是正n 边形.同(3)的方法得,[]180(2)18060260OAB n n n︒∠=-⨯︒÷-︒÷=︒-. 故答案:18060n︒︒-.5. (2016·广东梅州)如图,在平面直角坐标系中,将ABO ∆绕点A 顺时针旋转到11AB C ∆的位置,点,B O分别落在点11,B C 处,点1B 在x 轴上,再11AB C ∆绕点1B顺时针旋转到12AB C ∆的位置,点2C 在x 轴上,将12AB C ∆绕点2C 顺时针旋转到222A B C ∆的位置,点2A 在x轴上,依次进行下去.…若点3(,0),(0,2)2A B ,则点2016B 的坐标为 .6. (2016·湖北荆州)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:1,3,2,4x y y x y x ===+=-+.问题与探究:如图,在平面直角坐标系中有正方形OABC , 点B 在第一象限, ,A C分别在x 轴和y轴上,抛物线21()4y x m n=-+,经过,B C 两点,顶点D在正方形内部.(1)直接写出点(,)D m n 所有的特征线;(2)若点D 有一条特征线是1y x =+,求此抛物线的解析式;(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将OAP ∆沿着OP 折盛,点A 落在点A '的位置,当点A '在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?7. (2915·溯南郴州)阅读下面的材料:如果函数()y f x =满足:对于自变量x 的取值范围内的任意12,x x .(1)若12x x <,都有12()()f x f x <,则称()f x 是增函数;(2)若12x x <,都有12()()f x f x >,则称()f x 是减函数.例题:证明函数2()(0)f x x x =>是减函数. 证明:假设12x x <,且120,0x x >>,212112121212222()22()()x x x x f x f x x x x x x x ---=-==,12x x <且120,0x x>>,21120,0x x x x ∴->>.21122()0x x x x -∴>,即12()()0f x f x ->. 12()()f x f x ∴>.∴函数2()(0)f x x x=>是减函数. 根据以上材料,解答下面的问题: (1)函数2221111()(0),(1)1,(2)124f x x f f x =>====.计算:(3)f = ,(4)f = , 猜想21()(0)f x x x=>是 函数(填“增”或“减”);(2)请仿照材料中的例题证明你的猜想.【考情小结】解答本类题要仔细审题,理解题意所给的方法,达到学以致用的目的.例3主要考查了锐角三角函数关系知识,根据已知得出边,AC AB的长是解题关键.举一反三考查了一道关于不等式的新型题和一道正误辨析型阅读理解题.提供的阅读材料中,在进行开方时,没有注意一个正数的平方根有两个.本题考查的知识点是用配方法解一元二次方程.参考答案1.(1)矩形或正方形;(2)AC BD=,理由为:连接,PD PC,如图(1)所示:PE是AD的垂直平分线,PF是BC的垂直平分线,,∴==,PA PD PC PB∴∠=∠∠=∠,,PAD PDA PBC PCB∴∠=∠∠=∠,DPB PAD APC PBC2,2即PAD PBC∠=∠,∴∠=∠.APC DPB∴∆≅∆(SAS),APC DPBAC BD∴=;(3)分两种情况考虑:(i)当AD B D BC ''∠=∠时,延长,AD CB '交于点E , 如图(2)所示,ED B EBD ''∴∠=∠,EB ED '∴=.设EB ED x '==. 由勾股定理,得2224(3)(4)x x ++=+,解得 4.5x =.过点D '作D F CE '⊥于F ,//D F AC'∴.ED F'∴∆∽EAC ∆. D F ED AC AE''∴=, 即4.544 4.5D F '=+,解得3617D F '=. 11(3 4.5)1522ACE S AC EC ∆∴=⨯=⨯4⨯+=;113681221717BED S BE D F '∆'=⨯=⨯4.5⨯=,则81415101717ACE BED ACBD SS S ''∆∆=-=-=四边形,(ii)当90D BC ACB '∠=∠=︒时,过点D '作D E AC '⊥于点E , 如图(3)所示,∴四边形ECBD '是矩形.3ED BC '∴==.在Rt AED '∆中,根据勾股定理,得22437AE =-=1137322AED S AE D '∆'∴=⨯E =7=, (47)1237ECBD S CE CB '=⨯=⨯3=-矩形373712312AED ECBD ACBD S S S '''∆=+=-7=矩形四边形2. B3. D4.答案不唯一,比如233y x x=+和233y x x=+.5. (6 048,2)6. (1)点(,)D m n ,∴点(,)D m n 的特征线是,,,x m y n y x n m y x m n ===+-=-++;(2)点D 有一条特征线是1y x =+, 1n m ∴-=.1n m ∴=+.抛物线解析式为21()4y x m n=-+,21()14y x m m ∴=-++.四边形OABC 是正方形,且D 点为正方形的对称轴,(,)D m n ,(2,2)B m m ∴.21(2)24m m n m ∴-+=.将1n m =+带入得到2,3m n ==.(2,3)D ∴.∴抛物线解析式为21(2)34y x =-+.(3)如图,当点A '在平行于y 轴的D 点的特征线时,根据题意,得(2,3)D ,4,2OA OA OM '∴===,60A OM '∴∠=︒.30A OP AOP '∴∠=∠=︒,233MN ∴==.∴抛物线需要向下平移的距离23923333-=-=.如图,当点A '在平行于x 轴的D 点的特征线时,设(,3)A p ',则224,3,437OA OA OE EA ''====-=47A F '∴=设(4,)(0)P c c >, 在Rt A FP '∆中,222(47)(3)c c +-=,1647c -∴=1647P -∴.∴直线OP 解析式为473y x -=,827(2,3N -∴.∴抛物线需要向下平移的距离81333-+=-=,即抛物线向下平移93-或13+距离,其顶点落在OP 上. 7.(1)19116减(2)假设12x x <,且120,0x x>>,2221122222121211()()x x f x f x x x x x --=-=21212212()()x x x x x x +-=.z} z2 zl.z212x x <,且120,0x x>>, 222121120,0,0x x x x x x ∴+>->>.21212212()()x x x x x x +-∴>,即12()()0f x f x ->.12()()f x f x ∴>.∴函数21()(0)f x x x =>是减函数.。
专题14 阅读理解问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)

一、选择题二、填空题1.(2017河北省)对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = .三、解答题2.(2017四川省达州市)设A =223121a a a a a a -⎛⎫÷- ⎪+++⎝⎭. (1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);… 解关于x 的不等式:()()()27341124x xf f f ---≤+++ ,并将解集在数轴上表示出来.3.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:()()22122121PP x x y y =-+-他还利用图2证明了线段P 1P 2的中点P (x ,y )P 的坐标公式:122x x x +=,122y y y +=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;②直接写出以点A (2,2),B (﹣2,0),C (3,﹣1),D 为顶点的平行四边形顶点D 的坐标: ; 拓展:(3)如图3,点P (2,n )在函数43y x =(x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值. 4.(2017山东省枣庄市)我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.5.(2017山东省济宁市)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA 中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线33yx(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(3,3),点N的坐标是(3,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,3),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.6.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE 、EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .【拓展应用】如图②,在△ABC 中,BC =a ,BC 边上的高AD =h ,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示) 【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 7.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S四边形EFGH =S矩形ABCD +S.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由. 迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH=11,HF =29,求EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG =10,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.8.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?9.(2017浙江省绍兴市)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.10.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=() ()F sF t,当F(s)+F(t)=18时,求k的最大值.。
2017年中考数学真题分类解析 阅读理解型问题

一、选择题1. (2017甘肃庆阳,10,3分)如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止,过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示,当点P 运动2.5秒时,PQ 的长是( ) A.22cmB.32cmC.42cmD.52cm答案:B ,解析:当点P 运动2.5秒时,如图所示:AB CDPQ则PB =1 cm ,因为BC =4 cm ,所以PC =3 cm ;由题意可知,CQ =3 cm ,所以PQ =32cm .故选:B .二、填空题1. (2017广西百色,18,3分)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=⨯;(2)常数项3131(3)-=-⨯=⨯-,验算:“交叉相乘之和”;ABCD Q Px (秒)y (cm )O 2图②图① 第10题图(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 答案:(x+3)(3x -4).解析:如图.2. (2017贵州毕节)观察下列运算过程: 计算:1+2+22+...+210.. 解:设S =1+2+22+ (210)①①⨯2得2S =2+22+23+…+211,②②-①,得 S =211-1.所以,1+2+22+…+210=211-1.运用上面的计算方法计算:1+3+32+…+32017=______________.答案:2018312-,解析:设S =1+3+32+ (32017)①①⨯3得3S =3+32+33+…+32018,②②-①,得 2S =32018-1.所以,1+3+32+ (32017)2018312-.3. (2017湖南湘潭,16,3分)阅读材料:设),,(),,(2211y x b y x a ==如果b a //,则x 1·y 2=x 2·y 1.根据该材料填空:已知),4(),3,2(m ==,且b a //,则m=_________.答案:6,由材料可以得到:2m=3×4,从而求得m=6.三、解答题1. 20.(2017湖南张家界)(本小题满分6分)阅读理解题:i.2.△ABC2S△ABC=12ac sin∠B,aDBC+S 4.60°S 4S 3S 2S 1B'A'ABC3. (2017•日照,21,12分)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By C A B+++.例如:求点P 0(0,0)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知,A =4,B =3,C =-3, ∴点P 0(0,0)到直线4x +3y -3=0的距离为d =224030343⨯+⨯-+=35. 根据以上材料,解决下列问题: 问题1:点P 1(3,4)到直线y =-34x +54的距离为 4 ; 问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y =-34x +b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x +4y +5=0上的两点,且AB =2,请求出S △ABP 的最大值和最小值.【思路分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.解:(1)点P 1(3,4)到直线3x +4y -5=0的距离d 223344534⨯+⨯-+,故答案为4.(2)∵⊙C 与直线y =-34x +b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x +4y -b =0的距离d =1,解得b =5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d,∴4.- ((为图1思路分析:(1)将tan75°转化为tan (45°+30°),根据公式计算即可; (2)根据(1)中tan75°的值及AC 的值,先求出BE ,然后加上AE 的值也就是CD 即可.解:(1)tan75°= tan (45°+30°)= tan45tan301tan45tan30+-ooo o g 1+33=2(2)依题有DE=CA=5.7,∴BE=DE×tan75°=5.7×(2 5.7×3.732≈21.3,∴AB=BE+AE=BE +CD=21.27+1.72≈23(米)。
中考数学分项解析3--阅读理解问题2017版

中考数学分项解析3--阅读理解问题(2017版)专题14阅读理解问题1.(2017河北省)对于实数,,我们用符号表示,两数中较小的数,如,因此;若,则.【答案】;2或-1.考点:1.新定义;2.实数大小比较;3.解一元二次方程-直接开平方法.三、解答题2.(2017四川省达州市)设A=.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:,并将解集在数轴上表示出来.【答案】(1);(2)x≤4.【解析】试题分析:(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集.试题解析:(1)A=====;(2)∵a=3时,f(3)=,a=4时,f(4)=,a=5时,f(5)=,…∴,即∴,∴,∴,解得,x≤4,∴原不等式的解集是x≤4,在数轴上表示如下所示:.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.3.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.【答案】(1)答案见解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【解析】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ 的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;试题解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ==,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案为:;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB 为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则=,=,解得x=,y=,∴M(,),∴MN==,即△PEF的周长的最小值为.考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题;5.探究型;6.压轴题.4.(2017山东省枣庄市)我们知道,任意一个正整数n 都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3).【解析】试题分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.5.(2017山东省济宁市)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P 是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【答案】(1)P(,);(2)(1,)或(2,);(3)存在,M(,3),N(,0).【解析】试题分析:(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD==,求出∠AON=60°,由点M 和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作ME⊥x轴于H,由勾股定理求出OM=,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(2)作ME⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=x得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(,0);理由如下:∵M(,3),N(,0),∴OM==ON,∠MON=60°,∴△MON 是等边三角形,∵点P在△ABC的内部,∴∠PBC≠∠A,∠PCB≠∠ABC,∴存在点M和点N,使△MON无自相似点.考点:1.反比例函数综合题;2.阅读型;3.新定义;4.存在型;5.分类讨论;6.压轴题.6.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC 上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】1944.【拓展应用】:由△APN∽△ABC知,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQPN═,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC 于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.试题解析:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQPN=x(a﹣x)==,∴当PQ=时,S 矩形PQMN最大值为,故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵∠FAE=∠DHE,AE=AH,∠AEF=∠HED,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI=(AB+AF)=24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BGBF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵ta nB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BCEH=1944cm2.答:该矩形的面积为1944cm2.考点:1.四边形综合题;2.阅读型;3.探究型;4.最值问题;5.压轴题.7.(2017江苏省连云港市)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:.(S表示面积)实验探究:某数学实验小组发现:若图1中AH≠BF,点G 在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S.如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.【答案】问题呈现:;实验探究:;迁移应用:(1)EG=;(2).【解析】试题分析:问题呈现:只要证明S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,由此可得S四边形EFGH=S△HGE+S△EFG=S矩形BEGC;实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.根据=,=,=,=,即可证明;迁移应用:(1)利用探究的结论即可解决问题.(2)分两种情形探究即可解决问题.试题解析:问题呈现:证明:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∠A=90°,∵AE=DG,∴四边形AEGD是矩形,∴S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,∴S四边形EFGH=S△HGE+S△EFG=S矩形BEGC.实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.理由:∵=,=,=,=,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S四边形EFGH=S矩形ABCD﹣.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣,∴=25﹣2×11=3=A1B1A1D1,∵正方形的面积为25,∴边长为5,∵A1D12=HF2﹣52=29﹣25=4,∴A1D1=2,A1B1=,∴EG2=A1B12+52=,∴EG=.(2)∵2S四边形EFGH=S矩形ABCD+,∴四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.①如图5﹣1中,当G与C重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.此时矩形A1B1C1D1面积=1×(﹣2)=②如图5﹣2中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.此时矩形A1B1C1D1面积=21=2,∵2>,∴矩形EFGH的面积最大值=.考点:1.四边形综合题;2.最值问题;3.阅读型;4.探究型;5.压轴题.8.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m就是方程的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程(a≠0,≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P (m1,n1),Q(m2,n2)就是符合要求的一对固定点?【答案】(1)作图见解析;(2)证明见解析;(3)A (0,1),B(﹣,)或A(0,),B(﹣,c)等;(4),=.【解析】试题分析:(1)根据“第四步”的操作方法作出点D即可;(3)方程(a≠0)可化为,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x,根据三角形相似可得,进而得到,再根据,可得,最后比较系数可得m1,n1,m2,n2与a,b,c之间的关系.试题解析:(1)如图所示,点D即为所求;(2)如图所示,过点B作BD⊥x轴于点D,根据∠AOC=∠CDB=90°,∠ACO=∠CBD,可得△AOC∽△CDB,∴,∴,∴m(5﹣m)=2,∴,∴m是方程的实数根;(4)如图,P(m1,n1),Q(m2,n2),设方程的根为x,根据三角形相似可得,上式可化为,又∵,即,∴比较系数可得,=.考点:1.三角形综合题;2.一元二次方程的解;3.相似三角形的判定与性质;4.阅读型;5.操作型;6.压轴题.9.(2017浙江省绍兴市)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC 于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【答案】(1)①;②证明见解析;(2)5或6.5.【解析】试题分析:(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;试题解析:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD 是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴BF=PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.考点:1.四边形综合题;2.分类讨论;3.新定义;4.压轴题.10.(2017重庆市B卷)对任意一个三位数n,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y (1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2).【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5,∴或或,∴或或,∴k==或k==1或k==,∴k的最大值为.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.。
中考数学专题复习(阅读理解)

中考数学专题复习:阅读理解题【知识梳理】阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.【课前预习】1、计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如(1101)表示二进制数,转换为十进制形式是,那么将二进制(1111)转换为十进制形式是数( )A、8B、15C、20D、302、阅读下面材料并完成填空。
你能比较两个数和的大小吗?为了解决这个问题,先把问题一般化,即比较的大小(n≥1的整数)。
然后,从分析n=1,n=2,n=3,……,从这些简单情形入手,从中发现规律,经过归纳,猜想出结论。
⑴通过计算,比较下列①~③各组两个数的大小(在横线上填“>”“<”或“=” )1 ____2 ②____3 ③____④> ⑤ ⑥ ⑦⑵从第⑴小题的结果经过归纳,可以猜想出的大小关系是______________________________________⑶根据上面归纳猜想得到的一般结论,可以得到____(填“>”、“=”或“<”3、阅读下列材料:FEDCBA(图1) (图2) (图3) (图4)如图1,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置;如图2,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图3,以点A为中心,把△ABC旋转180°,可以变到△AED的位置。
2017年春中考数学总复习单元测试三函数试题

单元测试(三) 函数(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分) 1.(2016·娄底)函数y =x x -2的自变量x 的取值范围是( A ) A .x ≥0且x≠2 B .x ≥0 C .x ≠2 D .x >22.已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( A ) A .5 B .6 C .7 D .83.(2016·苏州)已知点A(2,y 1)、B(4,y 2)都在反比例函数y =k x(k<0)的图象上,则y 1、y 2的大小关系为( B ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .无法比较4.对于函数y =k 2x(k 是常数,k ≠0)的图象,下列说法不正确的是( C )A .是一条直线B .过点(1k,k) C .经过一、三象限或二、四象限 D .y 随着x 增大而增大5.(2016·新疆)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( B )6.如图,已知二次函数y 1=23x 2-43x 的图象与正比例函数y 2=23x 的图象交于点A(3,2),与x 轴交于点B(2,0),若0<y 1<y 2,则x 的取值范围是( C )A .0<x <2B .0<x <3C .2<x <3D .x <0或x >37.(2016·威海)已知二次函数y =-(x -a)2-b 的图象如图所示,则反比例函数y =ab x与一次函数y =ax +b 的图象可能是( B )8.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1.其中正确的是( C )A .①②③B .①③④C .①③⑤D .②④⑤二、填空题(每小题4分,共16分)9.(2016·淮安)点A(3,-2)关于x 轴对称的点的坐标是(3,2).10.(2016·广安)若反比例函数y =k x(k≠0)的图象经过点(1,-3),则一次函数y =kx -k(k≠0)的图象经过一、二、四象限.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y =3x经过点D ,则正方形ABCD 的面积是12.12.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是y =-19(x +6)2+4. 三、解答题(共52分)13.(12分)如图,已知反比例函数y =m x的图象与一次函数y =ax +b 的图象相交于点A(1,4)和点B(n ,-2). (1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.解:(1)∵反比例函数y =m x 的图象过点A(1,4), ∴m =4.∴反比例函数解析式为y =4x. ∵反比例函数y =4x过点B(n ,-2), ∴4n=-2,即n =-2. ∴B 点坐标为(-2,-2).∵直线y =ax +b 经过点A(1,4)和点B(-2,-2),∴⎩⎪⎨⎪⎧a +b =4,-2a +b =-2.解得⎩⎪⎨⎪⎧a =2,b =2. ∴一次函数解析式为y =2x +2.(2)x<-2或0<x<1.14.(12分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多长时间?(2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3 000÷10=300(米/分),在超市逗留的时间为40-10=30(分).(2)设返回家时,y 与x 的函数表达式为y =kx +b ,把(40,3 000),(45,2 000)代入,得⎩⎪⎨⎪⎧40k +b =3 000,45k +b =2 000.解得⎩⎪⎨⎪⎧k =-200,b =11 000. ∴y 与x 的函数表达式为y =-200x +11 000.令y =0,得-200x +11 000=0,解得x =55.∴小敏8点55分返回到家.15.(14分)某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y =60+2x ,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为62元/千克,获得的总利润为10_340元;(2)设批发商将这批水果保存x 天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.解:(2)由题意,得w =(60+2x)(500-10x)-40x -500×40=-20x 2+360x +10 000(0≤x≤8,且x 为整数).(3)w =-20x 2+360x +10 000=-20(x -9)2+11 620.∵0≤x ≤8,x 为整数,当x<9时,w 随x 的增大而增大,∴当x =8时,w 取最大值,w 最大=11 600.答:批发商所获利润最大为11 600元.16.(14分)(2015·临沂改编)在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C.(1)求过点A 、B 、C 三点的抛物线的解析式;(2)P 为抛物线上一点,它关于原点的对称点为Q.当四边形PBQC 为菱形时,求点P 的坐标.解:(1)由题意,得⎩⎪⎨⎪⎧y =-2x -1,y =-x.解得⎩⎪⎨⎪⎧x =-1,y =1.∴B(-1,1).∵点B 关于原点的对称点为点C ,∴C(1,-1).∵直线y =-2x -1与y 轴交于点A ,∴A(0,-1).设抛物线解析式为y =ax 2+bx +c ,∵抛物线过A ,B ,C ,∴⎩⎪⎨⎪⎧c =-1,a -b +c =1,a +b +c =-1.解得⎩⎪⎨⎪⎧a =1,b =-1,c =-1.∴抛物线解析式为y =x 2-x -1.(2)∵对角线互相垂直平分的四边形为菱形,已知点B 关于原点的对称点为点C ,点P 关于原点的对称点为点Q ,且与BC 垂直的直线为y =x ,∴P(x ,y)需满足⎩⎪⎨⎪⎧y =x ,y =x 2-x -1. 解得⎩⎨⎧x 1=1+2,y 1=1+2,⎩⎨⎧x 2=1-2,y 2=1- 2.∴P 点坐标为(1+2,1+2)或(1-2,1-2).。