(人教A版)必修1同步练习题:第1章 1.1.1 第1课时 集合的含义
新编人教A版数学必修1练习:第一章 1.1 1.1.1 集合的含义与表示 Word版含解析

[课时作业][A组基础巩固]1.已知集合M={3,m+1},且4∈M,则实数m等于( )A.4 B.3C.2 D.1解析:由题设可知3≠4,∴m+1=4,∴m=3.答案:B2.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是( )A.梯形B.平行四边形C.菱形D.矩形解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边.答案:A3.集合{x∈N+|x-3<2}用列举法可表示为( )A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5},∴x=1,2,3,4.解析:∵x-3<2,∴x<5,又∵x∈N+答案:B4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )A.5 B.4C.3 D.2解析:利用集合中元素的互异性确定集合.当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x+y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y∈B}={-1,1,3},即元素个数为3.答案:C5.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为( )A.2个B.3个C.4个D.5个解析:确定集合中元素的个数,应从集合中元素的互异性入手考虑.若是相同的元素,则在集合中只能出现一次.因为x2=|x|,-3x3=-x,所以当x=0时,这几个数均为0.当x>0时,它们分别是x,-x,x,x,-x.当x<0时,它们分别是x,-x,-x,-x,-x.均最多表示两个不同的数,故所组成的集合中的元素最多有2个.故选A.答案:A6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________.解析:由题设知a≠0,则a+b=0,a=-b,所以ba=-1,∴a=-1,b=1,故b-a=2.答案:27.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________.解析:由-5∈{x|x2-ax-5=0}得(-5)2-a×(-5)-5=0,所以a=-4,所以{x|x2-4x+4=0}={2},所以集合中所有元素之和为2.答案:28.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P ={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.解析:∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11. ∴P+Q={1,2,3,4,6,7,8,11},故P+Q中有8个元素.答案:89.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.解析:(1)当k=0时,原方程变为-8x+16=0,x=2.此时集合A={2}.(2)当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根.只需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A={4},满足题意.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值.解析:(1)因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1.此时集合A含有两个元素-4,-3,符合题意,综上所述,满足题意的实数a的值为0或-1.(2)因为a∈A,所以a=a-3或a=2a-1.当a=a-3时,有0=-3,不成立.当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上知a=1.[B组能力提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集.其中正确说法是( )A.①④B.②C.②③D.以上说法都不对解析:0∈{0};方程(x-1)2(x-2)=0的解集为{1,2};集合{x|4<x<5}是无限集;只有②正确.答案:B2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是( )A.-1∈P B.-2∈P C.0∈P D.2∈P解析:(1)a>0,b>0时,x=a|a|+b|b|=1+1=2;(2)a<0,b<0时,x=a|a|+b|b|=-1-1=-2;(3)a,b异号时,x=0. 答案:A3.已知集合M={a|a∈N,且65-a∈N},则M=________.解析:5-a整除6,故5-a=1,2,3,6,a∈N所以a=4,3,2.答案:{4,3,2}4.当x∈A时,若x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,所有孤立元素组成的集合称为“孤星集”,则集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为________.解析:由“孤立元素”的定义知,对任意x∈A,要成为A的孤立元素,必须是集合A中既没有x-1,也没有x+1,因此只需逐一考查A中的元素即可.0有1“相伴”,1,2则是前后的元素都有,3有2“相伴”,只有5是“孤立的”,从而集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为{5}.故填{5}.答案:{5}5.已知集合A={x|ax2+2x+1=0,a∈R}.(1)若1∈A,求a的值;(2)若集合A中只有一个元素,求实数a组成的集合;(3)若集合A中含有两个元素,求实数a组成的集合.解析:(1)因为1∈A,所以a×12+2×1+1=0,所以a=-3.(2)当a=0时,原方程为2x+1=0,解得x=-12,符合题意;当a≠0时,方程ax2+2x+1=0有两个相等实根,即Δ=22-4a=0,所以a=1.故当集合A只有一个元素时,实数a组成的集合是{0,1}.(3)由集合A中含有两个元素知,方程ax2+2x+1=0有两个不相等的实根,即a≠0且Δ=22-4a>0,所以a≠0且a<1.故当集合A中含有两个元素时,实数a组成的集合是{a|a≠0且a<1}.6.设S是由满足下列条件的实数所构成的集合:①1∉S;②若a∈S,则11-a∈S.请解答下列问题:(1)若2∈S,则S中必有另外两个数,求出这两个数;(2)求证:若a∈S,且a≠0,则1-1a∈S.解析:(1)∵2∈S,2≠1,∴11-2=-1∈S.∵-1∈S,-1≠1,∴11-(-1)=12∈S.又∵12∈S,12≠1,∴11-12=2∈S.∴集合S中另外两个数为-1和12.(2)由a∈S,则11-a∈S,可得11-11-a∈S,即11-11-a=1-a1-a-1=1-1a∈S.∴若a∈S,且a≠0,则1-1a∈S.。
人教A版高中数学必修一1.1.1《集合的含义与表示》同步练习题 答案和解析

人教A 版高中数学必修一1.1.1《集合的含义与表示》同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉AC .a∈AD .a =A2.设x ∈N ,且1x∈N ,则x 的值可能是( ) A .0 B .1 C .-1D .0或13.下面四个关系式:π∈{x|x 是正实数},0.3∈Q,0∈{0},0∈N,其中正确的个数是( ) A .4 B .3 C .2D .14.集合{x∈N|-1<x<112}的另一种表示方法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.已知集合A ={x∈N *|,则必有( ) A .-1∈A B .0∈AC .D .1∈A6.集合M ={(x ,y)|xy<0,x∈R,y∈R}是( ) A .第一象限内的点集 B .第三象限内的点集 C .第四象限内的点集D .第二、四象限内的点集7.若集合{},,a b c 中的三个元素可构成某个三角形的三条边长,则此三角形一定不是( ) A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形8.已知A ={x|3-3x>0},则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A二、填空题9.集合A ={x|x∈N 且42x-∈Z},用列举法可表示为A =________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.11.点(1,3)P 和集合},)(2{|Ax y y x =+=之间的关系是________. 12.用列举法表示集合A ={(x ,y)|x +y =3,x∈N,y∈N *}为________. 13.若{}2,2,3,4A =-,{}2|,B x x t t A ==∈,用列举法表示B = .14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)| 31x y x y +=⎧⎨-=⎩},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个.三、解答题15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.16.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 17.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a∈A,b∈A 且a≠b,写出集合B .19.已知集合S 满足条件:若a S ∈,则1(0,1)1aS a a a+∈≠≠±-.若3S ∈,试把集合S 中的所有元素都求出来. 20.集合A ={x|2y x y x=⎧⎨=⎩ }可化简为___以下是两位同学的答案,你认为哪一个正确?试说明理由. 学生甲:由2y xy x=⎧⎨=⎩得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}.参考答案1.C 【解析】分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种. 2.B 【解析】首先x≠0,排除A ,D ;又x∈N,排除C ,故选B. 3.A 【解析】本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确.选A. 4.C 【解析】 ∵x∈N,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C. 点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集.列举法应用于有限集,特别为单元素集合. 5.D 【解析】∵x∈N *1,2,即A ={1,2},∴1∈A.选D. 6.D 【解析】根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集7.D 【分析】根据集合中元素的互异性可知,D 正确;给,,a b c 取特值可知,,,A B C 不正确. 【详解】根据集合中元素的互异性可知,a b c ≠≠,所以此三角形一定不是等腰三角形,故D 正确; 当3,4,5a b c ===时,三角形为直角三角形,故A 不正确; 当 6.8.9a b c ===时,三角形为锐角三角形,故B 不正确; 当6,8,11a b c ===时,三角形为钝角三角形,故C 不正确; 故选:D. 【点睛】本题考查了集合中元素的互异性,属于基础题. 8.C 【解析】因为A ={x|3-3x>0}={x|x<1},所以0∈A.选C. 9.{0,1,3,4,6} 【解析】 注意到42x-∈Z,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x∈N,∴x=0,1,3,4,6. 10.1 【解析】这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 11.P A ∈ 【详解】在2y x =+中,当1x =时,3y =, 因此点P 是集合A 的元素,故P A ∈. 故答案为:P A ∈.12.{(0,3),(1,2),(2,1)} 【解析】集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}. 13.{}4,9,16 【分析】解决该试题的关键是对于t 令值,分别得到x 的值,然后列举法表示. 【详解】因为集合{}2,2,3,4A =-,而集合B 中的元素是将集合A 中的元素一一代入,通过平方得到的集合,即{}2|,B x x t t A ==∈,2,4t x ∴=±=;3,9t x ==;4,16t x ==,{}4,9,16B ∴=,那么用列举法表示B ={}4,9,16.本试题主要是考查了集合的描述法与列举法的准确运用,属于基础题. 14.2 【解析】因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合. 15.{60,120,180}. 【解析】试题分析:先判断三女相会的日数必为5,4,3的公倍数,再求最小的三个整数,并用集合形式表示试题解析:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}. 16.a =0或1. 【解析】 试题分析:试题解析:∵a∈A 且3a∈A,∴a<6且3a<6,∴a<2. 又∵a 是自然数∴a =0或1. 17.a =-1.【解析】试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 18.B ={0,10,20,50}. 【解析】试题分析:先按是否取零进行讨论,再根据乘积结果,利用集合元素互异性进行取舍 试题解析:解析 当或时,x =0;当或时,x =10; 当或时,x =20; 当或时,x =50.所以B ={0,10,20,50}.点睛:常利用集合元素的互异性确定集合中的元素,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数. 19.113,2,,32-- 【分析】由条件“若a S ∈,则11aS a+∈-”可进行一步步推导,根据所得值循环出现可得答案. 【详解】∵3S ∈,∴13213S +=-∈-,从而1(2)11(2)3S +-=-∈--,则11131213S ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭, ∴1123112S +=∈-,出现循环,根据集合中元素的互异性可得集合S 中的所有元素为113,2,,32--.【点睛】本题考查了集合中元素的互异性,属于基础题. 20.甲正确 【解析】试题分析:先解方程组得解集,再根据集合代表元素得应为数集,不是点集,因此选甲 试题解析:同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对故同学甲正确.。
(人教a版)数学必修一课时训练:1.1.1(第1课时)集合的含义(含答案)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
课时提升卷(一)集合的含义(45分钟 100分)一、选择题(每小题6分,共30分)1.下列各项中,不能组成集合的是( )A.所有的正整数B.等于2的数C.接近于0的数D.不等于0的偶数2.(2013·冀州高一检测)若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是( )A.1B.0C.-2D.24.已知2a∈A,a2-a∈A,若A只含这2个元素,则下列说法中正确的是( )A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D.a可取除去0和3以外的所有实数5.下列四种说法中正确的个数是( )①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合.A.0B.1C.2D.3二、填空题(每小题8分,共24分)6.(2013·天津高一检测)设集合A中含有三个元素2x-5,x2-4x,12,若-3∈A,则x的值为.7.(2013·济宁高一检测)若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a= .8.若a,b∈R,且a≠0,b≠0,则+的可能取值所组成的集合中元素的个数为.三、解答题(9题,10题14分,11题18分)9.集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素只有一个,求k的值.10.数集M满足条件,若a∈M,则∈M(a≠±1且a≠0),已知3∈M,试把由此确定的集合M的元素全部求出来.11.(能力挑战题)设P,Q为两个数集, P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的个数.答案解析1.【解析】选C.怎样才是接近于0的数没有统一的标准,即不满足集合元素的确定性,故选C.2.【解析】选D.由集合元素的互异性可知,a,b,c三个数一定全不相等,故△ABC一定不是等腰三角形.3.【解析】选C.∵-1∈M,∴2×(-1)∈M,即-2∈M.4.【解析】选D.由集合元素的互异性可知,2a≠a2-a,解得a≠0且a≠3,故选D.5.【解析】选A.①中最小数应为0;②中a=0时,- a∈N;③中a+b的最小值应为0;④中“小的正数”不确定.因此①②③④均不对.6.【解析】∵-3∈A,∴-3=2x-5或-3=x2-4x.①当-3=2x-5时,解得x=1,此时2x-5=x2-4x=-3,不符合元素的互异性,故x≠1;②当-3=x2-4x时,解得x=1或x=3,由①知x≠1,且x=3时满足元素的互异性.综上可知x=3.答案:37.【解析】由于P,Q相等,故a2=2,从而a=±.答案:±8.【解题指南】对a,b的取值情况分三种情况讨论求值,即同正,一正一负和同负,以确定集合中的元素,同时注意集合元素的互异性.【解析】当a>0,b>0时,+=2;当ab<0时,+=0;当a<0,b<0时,+=-2.所以集合中的元素为2,0,-2.即集合中元素的个数为3.答案:39.【解析】由题知A中元素即方程kx2-3x+2=0(k∈R)的解,若k=0,则x=,知A中有一个元素,符合题意;若k≠0,则方程为一元二次方程.当Δ=9-8k=0即k=时,kx2-3x+2=0有两个相等的实数解,此时A中有一个元素.综上所述,k=0或.10.【解析】∵a=3∈M,∴==-2∈M,∴=-∈M,∴=∈M,∴=3∈M.再把3代入将重复上面的运算过程,由集合中元素的互异性可知M中含有元素3,-2,-,.【拓展提升】集合中元素互异性的应用集合中的元素是互异的,它通常被用作检验所求未知数的值是否符合题意.只要组成两个集合的元素是一样的,这两个集合就是相等的,与两个集合中元素的排列顺序无关.11.【解析】∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6; 当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11,共8个.。
第1章 1.1 1.1.1 第1课时 集合的含义

集合1.1.1 集合的含义与表示第一课时集合的含义[新知初探]1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.[点睛] 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.元素与集合的关系[点睛] 对元素和集合之间关系的两点说明(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.常用的数集及其记法[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合.( )(2)新课标数学人教A版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )答案:(1)√(2)×(3)×2.下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.2∈Q D.-1∉Z答案:A3.已知集合A中含有两个元素1,x2,且x∈A,则x的值是( )A.0 B.1C.-1 D.0或1答案:A4.方程x2-1=0与方程x+1=0所有解组成的集合中共有________个元素.答案:2集合的基本概[例1] 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④[解析] ①中“成绩优秀”没有明确的标准,所以不能构成一个集合;②③④中的对象都满足确定性,所以能构成集合.[答案] B1.给出下列说法:①中国的所有直辖市可以构成一个集合; ②高一(1)班较胖的同学可以构成一个集合; ③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合. 其中正确的有________.(填序号)解析:②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,所以④错误.答案:①③[例2] (1)下列关系中,正确的有( ) ①12∈R ;② 2∉Q ;③|-3|∈N ;④|-3|∈Q. A .1个 B .2个 C .3个D .4个(2)集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0. [答案] (1)C (2)0,1,2元素与集合的关系[活学活用]2.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ∉B ,则a 的值为( ) A .0 B .1 C .2D .3解析:选D ∵a ∈A ,a ∉B ,∴由元素与集合之间的关系知,a =3. 3.用适当的符号填空:已知A ={x|x =3k +2,k ∈Z},B ={x|x =6m -1,m ∈Z},则有:17________A ;-5________A ;17________B.解析:令3k +2=17得,k =5∈Z. 所以17∈A.令3k +2=-5得,k =-73∉Z.所以-5∉A.令6m -1=17得,m =3∈Z , 所以17∈B. 答案:∈ ∉ ∈[例3] 已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________.集合中元素的特性及应用[解析] 若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,不符合元素的互异性,∴a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性.∴a=-1.[答案] -1[一题多变]1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.解:因2∈A,则a=2或a2=2即a=2,或a=2,或a=- 2.2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?解:因A中有两个元素a和a2,则由a≠a2解得a≠0且a≠1.3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.解:由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1.当a=a2时,a=0或1(舍去).综上可知,a=0.根据集合中元素的特性求解字母取值(范围)的3个步骤层级一学业水平达标1.下列说法正确的是( )A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈AC.0∈A D.-1∉A解析:选C 很明显3,1不满足不等式,而0,-1满足不等式.3.下面几个命题中正确命题的个数是( )①集合N*中最小的数是1;②若-a∉N*,则a∈N*;③若a∈N*,b∈N*,则a+b最小值是2;④x2+4=4x的解集是{2,2}.A.0 B.1 C.2 D.3解析:选C N*是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N*,且a∉N*,故②错;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4C .4D .0解析:选B 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A.故选B.5.由实数-a ,a ,|a|,a 2所组成的集合最多含有的元素个数是( ) A .1 B .2 C .3 D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a≠0时,a 2=|a|=⎩⎪⎨⎪⎧a ,a>0,-a ,a<0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.6.下列说法中:①集合N 与集合N +是同一个集合; ②集合N 中的元素都是集合Z 中的元素; ③集合Q 中的元素都是集合Z 中的元素; ④集合Q 中的元素都是集合R 中的元素. 其中正确的有________(填序号).解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b________A ,ab________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A. 答案:∉ ∈8.已知集合P 中元素x 满足:x ∈N ,且2<x<a ,又集合P 中恰有三个元素,则整数a =________. 解析:∵x ∈N,2<x<a ,且集合P 中恰有三个元素, ∴结合数轴知a =6. 答案:69.设A 是由满足不等式x<6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N ,∴a =0或1.10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值. 解:因为集合A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.层级二 应试能力达标1.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.2.若以集合A 的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选A 由于a ,b ,c ,d 四个元素互不相同,故它们组成的四边形的四条边都不相等. 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,ba ,b.若集合A 与集合B 相等,则b-a =( )A .1B .-1C .2D .-2解析:选C 由题意可知a +b =0且a≠0,∴a =-b , ∴ba=-1.∴a =-1,b =1,故b -a =2. 4.已知a ,b 是非零实数,代数式|a|a +|b|b +|ab|ab 的值组成的集合是M ,则下列判断正确的是( )A .0∈MB .-1∈MC .3∉MD .1∈M解析:选B 当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.5.不等式x -a≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析:因为3∉A ,所以3是不等式x -a<0的解,所以3-a<0,解得a>3. 答案:a>36.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:(1)若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由(2)知不合题意.综上可知:a=0或a=1.答案:0或17.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.解:∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,满足条件的a存在,且a=-3.8.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.11 又∵2∈A ,∴11-2=-1∈A.∵-1∈A ,∴11--1=12∈A.∵12∈A ,∴11-12=2∈A.∴A 中必还有另外两个元素,且为-1,12.(2)若A 为单元素集,则a =11-a ,即a 2-a +1=0,方程无解. ∴a≠11-a ,∴集合A 不可能是单元素集.。
人教版A数学必修一第1章 1.1.1 集合的含义

人教版A数学必修一第1章 1.1.1 集合的含义解答题若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.【答案】(1)不是(2)A={1,2,}或{-1,2,}或{1,3,}【解析】试题分析:(1)根据定义,由于2的倒数为不在集合A 中,故集合A不是可倒数集.(2)若两个倒数互不相等,则“可倒数集”元素个数为偶数,因此必有一个元素的倒数等于其本身,即必有1或-1,再取其它两个互为倒数的数即得含3个元素的可倒数集.试题解析:(1)由于2的倒数为不在集合A中,故集合A不是可倒数集.(2)若a∈A,则必有∈A,现已知集合A中含有3个元素,故必有一个元素有a=,即a=±1,故可以取集合A={1,2,}或{-1,2,}或{1,3,}等.填空题已知P={x|2<x<k,x∈N,k∈R},若集合P中恰有3个元素,则实数k的取值范围是__________.【答案】【解析】x只能取3,4,5,故5<k≤6.选择题下列集合中,不同于另外三个集合的是()A. {x|x=1}B. {x|x2=1}C. {1}D. {y|(y-1)2=0}【答案】B【解析】{x|x2=1}={-1,1},另外三个集合都是{1},选B.填空题设a,b∈R,集合{1,a+b,a}=,则b-a=_________.【答案】【解析】显然a≠0,则a+b=0,a=-b,=-1,所以a=-1,b=1,b-a=2.解答题.用适当的方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负质数的集合;(2)大于10的所有自然数的集合.【答案】(1);(2)【解析】试题分析:(1)可用列举法写出所求集合;(2)可用描述法表示所求集合.试题解析:(1)不超过10的非负质数有2,3,5,7,用列举法表示为{2,3,5,7},是有限集.(2)大于10的所有自然数有无限个,故可用描述法表示为{x|x>10,x∈N},是无限集.选择题设A,B为两个实数集,定义集合A+B={x|x1+x2,x1∈A,x2∈B},若A={1,2,3},B={2,3},则集合A+B中元素的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】当x1=1时,x1+x2=1+2=3或x1+x2=1+3=4;当x1=2时,x1+x2=2+2=4或x1+x2=2+3=5;当x1=3时,x1+x2=3+2=5或x1+x2=3+3=6.∴A+B={3,4,5,6},共4个元素.故选B.选择题已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. -4∉MD. 4∈M【答案】D【解析】当x>0,y>0,z>0时,代数式的值为4,所以4∈M,故选D.填空题用列举法写出集合=___________.【答案】【解析】∵∈Z,x∈Z,①∴3-x为3的因数.∴3-x=±1,或3-x=±3.∴=±3,或=±1.∴-3,-1,1,3满足题意.选择题在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”中,能够构成集合的是()A. ②B. ③C. ②③D. ①②③【答案】C【解析】①高一数学中的难题的标准不确定,因而构不成集合;②而正三角形标准明确,能构成集合;③方程x2-2=0的解也是确定的,能构成集合,故选C.选择题用列举法表示集合{x|x2-2x+1=0}为()A. {1,1}B. {1}C. {x=1}D. {x2-2x+1=0}【答案】B【解析】试题分析:集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.解答题已知集合A={x|ax2-3x+2=0}.(1)若A是单元素集合,求集合A;(2)若A中至少有一个元素,求a的取值范围.【答案】(1)当时,,当时,;(2)【解析】试题分析:将求集合中元素问题转化为方程根问题.(1)集合A为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax2-3x+2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.试题解析:(1)因为集合A是方程ax2-3x+2=0的解集,则当a =0时,A={},符合题意;当a≠0时,方程ax2-3x+2=0应有两个相等的实数根,则Δ=9-8a=0,解得a=,此时A={},符合题意.综上所述,当a=0时,A={},当a=时,A={}.(2)由(1)可知,当a=0时,A={}符合题意;当a≠0时,要使方程ax2-3x+2=0有实数根,则Δ=9-8a≥0,解得a≤且a≠0.综上所述,若集合A中至少有一个元素,则a≤.选择题已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为()A. 2B. 3C. 0或3D. 0或2或3【解析】因为2∈A,所以m=2或m2-3m+2=2,解得m =0或m=2或m=3.又集合中的元素要满足互异性,对m的所有取值进行一一检验可得m=3,故选B.选择题方程组的解集是()A. B. {x,y|x=3且y=-7}C. {3,-7}D. {(x,y)|x=3且y=-7}【答案】D【解析】解方程组得,用描述法表示为{(x,y)|x=3且y=-7},用列举法表示为{(3,-7)},故选D选择题已知集合S={a,b,c}中的三个元素是△ABC的三边长,那么△ABC一定不是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【解析】由集合中元素的互异性知a,b,c互不相等,故选D.选择题下列六种表示法:①{x=-1,y=2};②{(x,y)|x=-1,y=2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x,y)|x=-1或y=2}.能表示方程组的解集的是()A. ①②③④⑤⑥B. ②③④⑤C. ②⑤D. ②⑤⑥【答案】C【解析】方程组的解是故选C.选择题已知集合A={x|x≤10},a=,则a与集合A的关系是()A. a∈AB. a∉AC. a=AD. {a}∈A【答案】A【解析】由于+<10,所以a∈A.故选A.。
【基础知识篇】-高中数学人教A版必修一同步练测:1.1.1集合的含义与表示.docx

1.1.1 集合的含义与表示(必修1人教A 版)建议用时 实际用时满分 实际得分45分钟100分一、选择题(本大题共6小题,每小题6分,共36分)1.下列几组对象可以构成集合的是( ) A .充分接近π的实数的全体 B .善良的人C .某校高一所有聪明的同学D .某单位所有身高在1.7 m 以上的人 2.下列四个说法中正确的个数是( ) ①集合N 中最小数为1; ②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,a ≠b ,则a +b 的最小值 为2;④所有小的正数组成一个集合. A .0 B .1 C .2 D .33.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ),选项中元素与集合的关系都正确的是( ) A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B4.已知集合S 的三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 5.已知x 、y 、z 为非零实数,代数式x |x |+y|y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正 确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M 6. 若集合}044|{2=++=x kx x A 中有且仅有一个元素,则实数k 的值为( )A.{0}k ∈B.{1}k ∈C.{1,0}k ∈D.{1,1}k ∈ 二、填空题(本大题共3小题,每小题6分,共18分)7.用“∈”或“∉”填空.(1)-3 ______N ; (2)3.14 ______Q ; (3)13 ______Z ; (4)-12 ______R ;(5)1 ______N *; (6)0 _______N . 8.定义集合运算A *B ={M |M =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B的所有元素之和为________.9.由下列对象组成的集体属于集合的是________(填序号). ①不超过3的正整数;②高一数学课本中所有的难题; ③中国的大城市; ④平方后等于自身的数;⑤某校高一(2)班中考数学成绩在90分以上的学生.三、解答题(本大题共3小题,共46分) 10.(14分)已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .11.(15分)下面三个集合:A={x|y=x2+1};B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?12.(17分)设A为实数集,且满足条件:若a∈A,则a11∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.1.1 集合的含义与表示(必修1人教A版)得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. 8. 9.三、解答题10.11.12.1.1.1 集合的含义与表示(必修1人教A 版)一、选择题1. D 解析:A 、B 、C 都不满足元素的确定性,故不能构成集合.2. A 解析:N 是自然数集,最小的自然数是0,故①错;当a 为0时,−a 也为0,是自然数,故②错;③中最小值应为1,故③错;所有“小的正数”范围不明确,不满足几何元素的确定性,故不能构成集合,故④错.故选A.3.C 解析:集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以A 错.4. D 解析:由元素的互异性知a ,b ,c 均不相等,故一定不是等腰三角形.5. D 解析 当x 、y 、z 中三个为正,两个为正,一个为正,全为负时代数式的值分别为:4,0,0,-4,∴4∈M .6.C 解析:(1)若0=k ,则{1}A =-;(2)若0≠k,16160k ∆=-=,1k =,∴ {1,0}.k ∈二、填空题7. (1) ∉ (2)∈ (3) ∉ (4)∈ (5)∈ (6)∈解析:理解各符号的意义是关键.N 是自然数集,N *是正整数集,Q 是有理数集,Z 是整数集,R 是实数集. 8. 6 解析: ∵A *B ={0,2,4},所以集合A *B 的所有元素之和为6.9.①④⑤ 解析:②中“难题”标准不明确,不满足确定性,③中“大城市”标准不明确,不满足确定性. 三、解答题10.解:当3x 2+3x -4=2时,3x 2+3x -6=0,x 2+x -2=0,x =-2或x =1.经检验,x =-2,x =1均不合题意.当x 2+x -4=2时,x 2+x -6=0,x =-3或a =2.经检验,x =-3或x =2均合题意. ∴x =-3或x =2.11.解:(1)在a 、a 、a 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合a 的代表元素是x ,满足a =a 2+1,故a ={a |a =a 2+1}=a .集合a 的代表元素是a ,满足a =a 2+1的a ≥1,故a ={a |a =a 2+1}={a |a ≥1}. 集合a 的代表元素是(a ,a ),满足条件a =a 2+1,即表示满足a =a 2+1的实数对(a ,a );也可认为满足条件a =a 2+1的坐标平面上的点.12.证明:(1)若a ∈A ,则a -11∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11-(-1)=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =a-11,即a 2-a +1=0,方程无解. ∴a ≠a-11,∴A 不可能为单元素集.。
高中数学人教A版必修一练习:1.1.1 集合的含义与表示 第一课时 集合的含义.doc

第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示第一课时集合的含义【选题明细表】1.(2018·山东省邹平双语学校月考)在“①高一数学课本中的难题;②所有的正三角形;③方程x2+2=0的实数解.”中,能表示成集合的是( C )(A)② (B)③ (C)②③(D)①②③解析:“高一数学课本中的难题”不确定,不能表示成集合;“正三角形”“方程x2+2=0的实数解”都是确定的,所以能表示成集合.故选C.2.若由a2,2 018a组成的集合M中有两个元素,则a的取值可以是( C )(A)0 (B)2 018(C)1 (D)0或2 018解析:若集合M中有两个元素,则a2≠2 018a.即a≠0且a≠2 018.故选C.3.下列表示的关系中正确的个数有( A )①0∉N ②3.14∉Q ③π∈R ④3∈{x|x≤}(A)1个(B)2个(C)3个(D)4个解析:①0∈N,②3.14是有理数,所以3.14∈Q,③π∈R显然正确,④3=,所以3∉{x|x≤},所以正确的只有③.4.(2018·杨浦区高一期中)由实数x,-x,|x|,,-所组成的集合,最多含元素( A )(A)2个(B)3个(C)4个(D)5个解析:当x>0时,x=|x|=,-=-x<0,此时集合共有2个元素,当x=0时,x=|x|==-=-x=0,此时集合共有1个元素,当x<0时,=|x|=-x,-=-x,此时集合共有2个元素,综上,此集合最多有2个元素,故选A.5.下列各组中集合P与Q,表示同一个集合的是( A )(A)P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合(B)P是由π构成的集合,Q是由3.14159构成的集合(C)P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合(D)P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集解析:由于A中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C,D中P,Q的元素不相同,所以P与Q不能表示同一个集合.故选A.6.设A是方程x2-ax-5=0的解集,且-5∈A,则实数a的值为( A )(A)-4 (B)4 (C)1 (D)-1解析:因为-5∈A,所以(-5)2-a×(-5)-5=0,所以a=-4.故选A.7.已知集合A含有三个元素1,0,x,若x2∈A,则实数x= .解析:因为x2∈A,所以x2=1,或x2=0,或x2=x,所以x=±1,或x=0,当x=0,或x=1时,不满足集合中元素的互异性,所以x=-1.答案:-18.(2018·钦州高一月考)已知集合A满足条件:当p∈A时,总有∈A(p≠0且p≠-1),已知2∈A,则集合A的元素个数至少为.解析:若2∈A,则=-∈A,=-∈A,=2∈A,即A={2,-,-}共有3个元素.答案:39.(2018·徐州高一期中)设A是由一些实数构成的集合,若a∈A,则∈A,且1∉A,(1)若3∈A,求A;(2)证明:若a∈A,则1-∈A;(3)A能否只有一个元素,若能,求出集合A,若不能,说明理由.(1)解:因为3∈A,所以=-∈A,所以=∈A,所以=3∈A,所以A={3,-,}.(2)证明:因为a∈A,所以∈A,所以==1-∈A.(3)解:假设集合A只有一个元素,记A={a},则a=,即a2-a+1=0有且只有一个解,又因为Δ=(-1)2-4=-3<0,所以a2-a+1=0无实数解.与a2-a+1=0有且只有一个实数解矛盾.所以假设不成立,即集合A不能只有一个元素.10.已知集合M={m|m=a+b,a,b∈Q},则下列元素中属于集合M的元素个数是( B )①m=1+π②m=③m=④m=+(A)0 (B)1 (C)2 (D)3解析:①m=1+π,π∉Q,故m∉M;②m==2+∉M;③m==1-∈M;④m=+=∉M.故选B.11.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是( C )(A)1∈M (B)0∈M (C)-1∈M (D)-2∈M解析:法一由2∈M知2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2.所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一根为-1.选C.法二由2∈M知2为方程x2-x+m=0的一个解,设另一解为x0,则由韦达定理得解得x0=-1,m=-2.故选C.12.设A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},已知5∈A且5∉B.求a的值.解:因为5∈A,5∉B,所以即所以a=-4.13.某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为若x号同学去,则8-x号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去?(2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M,则有x ∈M,8-x∈M.若只有一个名额,即M中只有一个元素,必须满足x=8-x,故x=4,所以应该派学号为4的同学去.(2)若有两个名额,即M中有且仅有两个不同的元素x和8-x,从而全部含有两个元素的集合M应含有1,7或2,6或3,5.也就是有两个名额的分派方法有3种.。
人教新课标版数学高一-A版必修一课后训练 1.1.1.1集合的含义

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课后提升训练一集合的含义(30分钟60分)一、选择题(每小题5分,共40分)1.(2017·安庆高一检测)关于集合下列正确的是( )A.-1∉NB.∈QC.π∉RD.Q∈Z【解析】选A.由N,Q,Z,R的意义知,A正确.2.方程x2-2x+1=0的解集中元素个数为( )A.0B.1C.2D.3【解析】选B.方程x2-2x+1=0有两个相等的实数根x1=x2=1,根据元素的互异性知其解集中有1个元素.3.(2017·中山高一检测)下列各组对象中不能构成集合的是( )A.某校高一(2)班的全体男生B.某校全体学生的家长C.李明的所有家人D.王明的所有好朋友【解析】选D.A,B,C中的元素都是确定的,而D中元素不确定,故构不成集合.4.已知集合A由元素1和a2组成,实数a不能取的值是( )A.1B.-1C.1或-1D.不能确定【解析】选C.因为1和a2是集合A中的元素,故a2≠1,即a≠1或a≠-1.5.(2017·菏泽高一检测)由形如x=3k-1,k∈Z的数组成集合A,则下列表示正确的是( )A.-1∉AB.-11∈AC.3k+2∉AD.3k2-1∈A【解析】选D.A中,当k=0时,x=-1,所以-1∈A;B中,令-11=3k-1,得k=-∉Z,所以-11∉A;C中,3k+2=3(k+1)-1,因为k+1∈Z,所以3k+2∈A;D中,由于3k2-1,k2∈Z,所以3k2-1∈A.6.若以集合A中的四个元素a,b,c,d为边长构成一个四边形,那么这个四边形可能是( )A.梯形B.平行四边形C.菱形D.矩形【解题指南】根据集合中元素的互异性判断.【解析】选A.由于a,b,c,d四个元素互不相同,故它们构成的四边形的四条边互不相等,因此选A.【误区警示】解答本题易忽视集合中元素必须具有“互异性”这一特征而错选答案,因此集合元素的特性是分析解决该类问题的切入点. 【补偿训练】若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【解析】选D.根据集合中元素的互异性知,集合M中任何两个元素都不相同,即对于三角形而言任何两边都不相等,故△ABC一定不是等腰三角形.7.若集合A中含有三个元素1,a+b,a;集合B中含有三个元素0,,b,若集合A与集合B相同,则b-a= ( )A.1B.-1C.2D.-2【解析】选C.由题意知a+b=0且a≠0,即a=-b,=-1,所以b=1,a=-1,故b-a=2.8.已知x,y都是非零实数,z=++可能的取值组成的集合为A,则下列判断正确的是( )A.3∈A,-1∉AB.3∈A,-1∈AC.3∉A,-1∈AD.3∉A,-1∉A【解题指南】对x,y取值的正负分别讨论,去掉绝对值号,从而求出z 的值.【解析】选B.当x>0,y>0时,z=1+1+1=3;当x>0,y<0时,z=1-1-1=-1;当x<0,y>0时,z=-1+1-1=-1;当x<0,y<0时,z=-1-1+1=-1.所以3∈A,-1∈A.二、填空题(每小题5分,共10分)9.(2017·贵阳高一检测)方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.【解析】由x2-2x-3=0,得x=-1或x=3,故集合A中的元素为-1和3,所以a+b=2.答案:210.设y=2x+3上的点集为P,点(1,5)与点集P的关系为(1,5)________P(填“∈”或“∉”).【解析】因为y=2x+3,当x=1时,y=2×1+3=5,所以(1,5)∈P.答案:∈三、解答题11.(10分)(2017·武汉高一检测)已知集合A中含有三个元素a-2,2a2+5a,12,且-3∈A,求a的值.【解析】因为-3∈A,所以a-2=-3或2a2+5a=-3,所以a=-1,或a=-. 当a=-1时,a-2=-3,2a2+5a=-3,集合A不满足元素的互异性,所以a=-1舍去.当a=-时,经检验,符合题意,所以a=-.【延伸探究】本题中若将条件“且-3∈A”去掉,则a的取值范围是什么?【解析】由集合中含有三个元素a-2,2a2+5a,12,得即故a的取值范围是a≠-1且a≠-4且a≠且a≠14.关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评(一)
(建议用时:45分钟)
一、选择题
1.下列对象能构成集合的是()
①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤
C.③④⑤D.②③④
【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.
【答案】 D
2.已知集合A由x<1的数构成,则有()
A.3∈A B.1∈A
C.0∈A D.-1∉A
【解析】∵0<1,∴0是集合A中的元素,故0∈A.
【答案】C
3.下列命题正确的个数有()
①1∈N;②2∈N*;③1
2∈Q;④2+2∉R;⑤
4
2∉Z.
A.1个B.2个
C.3个D.4个
【解析】∵1是自然数,∴1∈N,故①正确;∵2不是正整数,∴2∉N*,故②不正确;
∵1
2
是有理数,∴1
2∈Q,故③正确;∵2+2是实数,∴2+2∈R,所以④
不正确;
∵4
2
=2是整数,∴4
2∈Z,故⑤不正确.
【答案】 B
4.已知集合M中的元素a,b,c是△ABC的三边,则△ABC一定不是() A.锐角三角形B.钝角三角形
C.直角三角形D.等腰三角形
【解析】因为集合中元素具有互异性,所以a,b,c互不相等,因此选D.
【答案】 D
5.由实数x,-x,|x|,x2,-3
x3所构成的集合,最多含()
A.2个元素B.3个元素C.4个元素D.5个元素
【解析】由于|x|=±x,x2=|x|,-3
x3=-x,并且x,-x,|x|之中总有
两个相等,所以最多含2个元素.
【答案】A
二、填空题
6.若1∈A,且集合A与集合B相等,则1________B(填“∈”或“∉”).【解析】由集合相等的定义可知,1∈B.
【答案】∈
7.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是________.【解析】∵1∈A,k2∈A,结合集合中元素的互异性可知k2≠1,解得k≠±1.
【答案】k≠±1
8.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________.
【解析】∵x∈N,2<x<a,且集合P中恰有三个元素,∴结合数轴(略)知a =6.
【答案】 6
三、解答题
9.设A是由满足不等式x<6的自然数构成的集合,若a∈A且3a∈A,求
a 的值.
【解】 ∵a ∈A 且3a ∈A ,
∴⎩⎪⎨⎪⎧
a<6,3a<6,
解得a<2.又a ∈N , ∴a =0或1.
10.已知集合A 是由a -2,2a 2+5a,12三个元素构成的,且-3∈A ,求实数a 的值.
【解】 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,所以a =-1或a =-32.
则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.
当a =-32时,a -2=-72,2a 2+5a =-3,所以a =-32.
[能力提升]
1.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )
A .3.14
B .-5 C.37 D.7 【解析】 由题意知a 应为无理数,故a 可以为7.
【答案】 D
2.集合A 中含有三个元素2,4,6,若a ∈A ,且6-a ∈A ,那么a 为( )
A .2
B .2或4
C .4
D .0
【解析】 若a =2,则6-2=4∈A ;
若a =4,则6-4=2∈A ;
若a =6,则6-6=0∉A.故选B .
【答案】 B
3.不等式x-a≥0的解集为A,若3∉A,则实数a的取值范围是________.【解析】因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3. 【答案】a>3
4.已知数集A满足条件:若a∈A,则
1
1-a
∈A(a≠1),如果a=2,试求出
A中的所有元素.
【解】根据题意,由2∈A可知,1
1-2=-1∈A;由-1∈A可知,1
1-(-1)
=1
2∈A;
由1
2∈A可知,
1
1-
1
2
=2∈A.
故集合A中共有3个元素,它们分别是-1,1
2
,2.。