二叉树的基本操作
二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
实验三二叉树的基本操作

实验三二叉树的基本运算一、实验目的1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容题目一:二叉树的基本操作实现(必做题)[问题描述]建立一棵二叉树,试编程实现二叉树的如下基本操作:1. 按先序序列构造一棵二叉链表表示的二叉树T;2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;3. 求二叉树的深度/结点数目/叶结点数目;(选做)4. 将二叉树每个结点的左右子树交换位置。
(选做)[基本要求]从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立),[测试数据]如输入:ABCффDEфGффFффф(其中ф表示空格字符)则输出结果为先序:ABCDEGF中序:CBEGDFA后序:CGEFDBA层序:ABCDEFG[选作内容]采用非递归算法实现二叉树遍历。
三、算法设计1、主要思想:根据二叉树的图形结构创建出二叉树的数据结构,然后用指针对树进行操作,重点掌握二叉树的结构和性质。
2、本程序包含四个模块:(1)结构体定义(2)创建二叉树(3)对树的几个操作(4)主函数四、调试分析这是一个比较简单程序,调试过程中并没有出现什么问题,思路比较清晰五、实验结果六、总结此次上机实验对二叉树进行了以一次实际操作,让我对二叉树有了更深的了解,对二叉树的特性有了更熟悉的认知,让我知道了二叉树的重要性和便利性,这对以后的编程有更好的帮助。
七、源程序#include<iostream>#include<queue>using namespace std;#define TElemType char#define Status int#define OK 1#define ERROR 0typedef struct BiTNode{TElemType data;struct BiTNode * lchild, *rchild;}BiTNode,* BiTree;Status CreateBiTree(BiTree &T){TElemType ch;cin >> ch;if (ch == '#')T = NULL;else{if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))exit(OVERFLOW);T->data = ch;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}Status PreOrderTraverse(BiTree T){if (T){cout << T->data;if (PreOrderTraverse(T->lchild))if (PreOrderTraverse(T->rchild))return OK;return ERROR;}elsereturn OK;}Status InOrderTraverse(BiTree T){if (T){InOrderTraverse(T->lchild);cout << T->data;InOrderTraverse(T->rchild);}return OK;}Status PostOrderTraverse(BiTree T) {if (T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);cout << T->data;}return OK;}Status leOrderTraverse(BiTree T){std::queue<BiTree> Q;if (T == NULL)return ERROR;else{Q.push(T);while (!Q.empty()){T = Q.front();Q.pop();cout << T->data;if (T->lchild != NULL)Q.push(T->lchild);if (T->rchild != NULL)Q.push(T->rchild);}}return OK;}Status change(BiTree T){BiTree temp = NULL;if (T->lchild == NULL && T->rchild == NULL) return OK;else{temp = T->lchild;T->lchild = T->rchild;T->rchild = temp;}if (T->lchild)change(T->lchild);if (T->rchild)change(T->rchild);return OK;}int FindTreeDeep(BiTree T){int deep = 0;if (T){int lchilddeep = FindTreeDeep(T->lchild);int rchilddeep = FindTreeDeep(T->rchild);deep = lchilddeep >= rchilddeep ? lchilddeep + 1 : rchilddeep + 1;}return deep;}int main(){BiTree T;CreateBiTree(T);cout << "先序遍历顺序为:";PreOrderTraverse(T);cout << endl;cout << "中序遍历顺序为:";InOrderTraverse(T);cout << endl;cout << "后序遍历顺序为:";PostOrderTraverse(T);cout << endl;cout << "层序遍历顺序为:";leOrderTraverse(T);cout << endl;cout << "二叉树深度为:" << FindTreeDeep(T)<<endl;cout << "左右子树交换后:";change(T);cout << "先序遍历顺序为:";PreOrderTraverse(T);cout << endl;return 0;}。
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
二叉树的基本操作课件-浙教版(2019)高中信息技术选修1

1.前序遍历
前序遍历的规则是:若二叉树为空,则空操作返回;否则,先访问 根节点,再访问左子树,最后访问右子树。
A BC
前序遍历顺序为:A-B-D-H-E-C-F-I-G-J-K
D EF G
HIJ K
2.中序遍历
中序遍历的规则是:若二叉树为空,则空操作返回;否则,先访问 左子树,再访问根节点,最后访问右子树。
练一练
a
1.有如图所示的二叉树。用list表示该二叉树为: D A.[‘a’,’b’,’d’,’c’,’e’]
bd ce
B.[‘a’,[‘b’,[‘c’,None,None],None],[‘d’,[‘e’]]]
C.[‘a’,[‘b’,[‘c’]],[‘d’,[‘e’,None,None]]]
D.[‘a’,[‘b’,[‘c’,None,None]],[‘d’,[‘e’,None,None]]]
这样就可以把二叉树映射到一种分层的list结构,每棵二叉 树都有与之对应的(递归结构的)list。
A
[‘A’,[‘B’,None,None],
[‘C’,[‘D’,[‘F’,None,None],
B
C
[‘G’,None,None]], [‘E’,[‘H’,None,None],
D
E
[‘I’,None,None]]]]
A
01
23
45
6
7
A BCDE
B
C
D
E
甲 完全二叉树
乙 数组表示示意图
(2)非完全二叉树 对于非完全二叉树,先将它补充为一棵完全二叉树,补上的节点 及分支用虚线表示,如下图图甲所示的一棵非完全二叉树补全为 图乙所示的完全二叉树。然后将补全后的完全二叉树,从它的根 节点开始,按从上而下、自左往右的顺序对n个节点进行编号, 根节点的编号为0,最后一个节点的编号为n-1。如图丙所示,依 次把完全二叉树中原二叉树的节点用一维数组的各个元素来表示, 节点编号与数组的下标一一对应。
(完整版)C++二叉树基本操作实验报告

一、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1------建立一棵二叉树2------前序遍历递归算法3------前序遍历非递归算法4------中序遍历递归算法5------中序遍历非递归算法6------后序遍历递归算法7------后序遍历非递归算法8------求树高9------求叶子总数10-----输出二叉树11-----退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组3、递归前序遍历void BL1(ECS_data *t){if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t){if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}7、递归后序遍历void BL3(ECS_data *t){if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t){if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}五、运行结果附:完整程序源代码://二叉树链式存储的实现#include<iostream>#include<cstring>#include <stack>using namespace std;struct ECS_data //先定义好一个数据的结构{char data;ECS_data *l;ECS_data *r;};class ECS{private://int level; //树高int n; //表示有多少个节点数int n1; //表示的是数组的总长度值,(包括#),因为后面要进行删除判断ECS_data *temp[1000];public:ECS_data *root;ECS() //初始化{ECS_data *p;char t[1000];int i;int front=0,rear=1; //front表示有多少个节点,rear表示当前插入的点的父母cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组//cout<<t<<" "<<endl;int n1=strlen(t); //测量数据的长度n=0;for(i=0;i<n1;i++){if(t[i]!='#'){p=NULL;if(t[i]!=',') //满足条件并开辟内存{n++;p=new ECS_data;p->data=t[i];p->l=NULL;p->r=NULL;}front++;temp[front]=p;if(1 == front){root=p;}else{if((p!=NULL)&&(0==front%2)){temp[rear]->l=p;//刚开始把这里写成了==}if((p!=NULL)&&(1==front%2)){temp[rear]->r=p;}if(1==front%2)rear++; //就当前的数据找这个数据的父母}}}}~ECS() //释放内存{int i;for(i=1;i<=n;i++)if(temp[i]!=NULL)delete temp[i];}void JS() //记录节点的个数{int s;s=n;cout<<"该二叉树的节点数为:"<<s<<endl;}void BL1(ECS_data *t)//递归前序遍历{if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}void BL2(ECS_data *t)//递归中序遍历{if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}void BL3(ECS_data *t)//递归后序遍历{if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}void postOrder3(ECS_data *t) //非递归后序遍历{stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}};int main(){ECS a;a.JS();cout<<"递归前序遍历:";a.BL1(a.root);cout<<endl;cout<<"非递归前序遍历:";a.preOrder2(a.root);cout<<endl;cout<<"递归中序遍历:";a.BL2(a.root);cout<<endl;cout<<"非递归中序遍历:";a.inOrder2(a.root);cout<<endl;cout<<"递归后序遍历:";a.BL3(a.root);cout<<endl;cout<<"非递归后序遍历:";a.postOrder3(a.root);cout<<endl;cout<<"树高为:"<<a.Height(a.root)<<endl;cout<<"叶子总数为:"<<a.CountLeaf(a.root)<<endl;return 0;}。
二叉树基本操作经典实例

二叉树基本操作经典实例二叉树是一种常见的数据结构,它由节点和指向左右子节点的指针组成。
二叉树的基本操作包括插入节点、删除节点、查找节点和遍历节点等。
在实际应用中,我们经常需要对二叉树进行基本操作,下面将介绍一些经典的例子。
一、插入节点插入节点是指向二叉树中添加一个新的节点。
在二叉树中插入节点的基本操作可以使用递归或者迭代的方法来实现。
下面是一个使用递归方法的示例代码:```public class TreeNodeint val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }public TreeNode insertNode(TreeNode root, int val)if (root == null)return new TreeNode(val);}if (val < root.val)root.left = insertNode(root.left, val);} else if (val > root.val)root.right = insertNode(root.right, val);}return root;```在上述代码中,通过递归的方式判断要插入的值和当前节点的大小关系,并将值插入到左子树或者右子树中,最后返回根节点。
二、删除节点删除节点是从二叉树中移除一个节点。
删除节点的基本操作可以分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。
(1)删除叶子节点:如果要删除的节点是叶子节点,直接将该节点的父节点的指针指向空即可。
(2)删除只有一个子节点的节点:如果要删除的节点只有一个子节点,将该节点的子节点连接到该节点的父节点即可。
(3)删除有两个子节点的节点:如果要删除的节点有两个子节点,可以使用该节点右子树中的最小节点或者左子树中的最大节点来替代。
下面是一个使用递归方法的示例代码:```public TreeNode deleteNode(TreeNode root, int key) if (root == null)return root;}if (key < root.val)root.left = deleteNode(root.left, key);} else if (key > root.val)root.right = deleteNode(root.right, key);} elseif (root.left == null)return root.right;} else if (root.right == null)return root.left;}TreeNode minNode = findMin(root.right);root.val = minNode.val;root.right = deleteNode(root.right, minNode.val); }return root;private TreeNode findMin(TreeNode node)while (node.left != null)node = node.left;}return node;```在上述代码中,通过递归的方式判断要删除的值和当前节点的大小关系,并根据不同情况进行处理。
(完整版)C++二叉树基本操作实验报告

、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1 -- 建立一棵二叉树2 -- 前序遍历递归算法3 -- 前序遍历非递归算法4 -- 中序遍历递归算法5 -- 中序遍历非递归算法6 ---- 后序遍历递归算法7 ---- 后序遍历非递归算法8 ---- 求树高9 -- 求叶子总数10 - 输出二叉树11 - 退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据coutvv"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t 数组3、递归前序遍历void BL1(ECS_data *t) {if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){ stack<ECS_data*> s; ECS_data *p=t; while(p!=NULL||!s.empty()) { while(p!=NULL){cout<<p->data<<" ";s.push(p); p=p->l;} if(!s.empty()){p=s.top(); s.pop(); p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t) {if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t; while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top(); cout<<p->data<<" "; s.pop();p=p->r;}7、递归后序遍历void BL3(ECS_data *t) {if(NULL!=t){BL3(t->l);BL3(t->r); cout<<t->data<<",";8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; // 前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t) {if(t==NULL) return 0; else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1); }10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=O;//叶子初始数目为0,使用静态变量if(t)// 树非空{if(t->l==NULL&&t->r==NULL)// 为叶子结点LeafNum++;// 叶子数目加 1 else//不为叶子结点{Cou ntLeaf(t->l);//递归统计左子树叶子数目 Cou ntLeaf(t->r);//递归统计右子树叶子数目 }}return LeafNum; }五、运行结果附:完整程序源代码: 〃二叉树链式存储的实现#in cludeviostream> #in clude<cstri ng>#in elude <stack> using n ames pace std; struct ECS_data //先定义好一个数据的结构 {char data;ECS_data *l; ECS_data *r; };" //树高//表示有多少个节点数〃表示的是数组的总长度值,(包括#),因为后面要class ECS {P rivate://in t level; int n; int n1;} }ECS_data *temp[1000];public: ECS_data *root; ECS() // 初始化 {ECS_data *p; char t[1000];int i; int front=0,rear=1;入的点的父母 //front 表示有多少个节点, rear 表示当前插 coutvv"请按正确顺序输入二叉树的数据:"; cin.getline(t,1000); //cout<<t<<" "<<endl;int n1=strlen(t); n=0; for(i=0;i<n1;i++) {if(t[i]!='#') {//先把输入的数据输入到一个 t 数组 //测量数据的长度p=NULL;if(t[i]!=',') {n++;p=new ECS_data; p->data=t[i]; p->l=NULL; p->r=NULL; } front++;temp[front]=p; if(1 ==front){root=p;} else{//满足条件并开辟内存if((p!=NULL)&&(0==front%2)) {temp[rear]->l=p;// 刚开始把这里写成了 == }if((p!=NULL)&&(1==front%2)) {temp[rear]->r=p; }if(1==front%2)rear++;//就当前的数据找这个数据的父母}} }}~ECS(){int i;for(i=1;i<=n;i++) if(temp[i]!=NULL) delete temp[i]; } void JS() {int s; s=n;coutvv"该二叉树的节点数为:"vvsvvendl; }void BL1(ECS_data *t)// 递归前序遍历 {if(NULL!=t){cout<<t->data<<","; BL1(t->l); BL1(t->r);}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s; ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" "; s.push(p); p=p->l;}if(!s.empty()){p=s.top(); s.pop(); p=p->r;//释放内存//记录节点的个数if(NUL匚丛)宀BL2(e_)-coufAvdafaAfr BL2(g-voidino ‘de ‘2(Ecslda応J )二卅融丘甘甸壷逗宀sfackAECSIdafa*vs 八 ECSIdafa *P H Cwhi-e(p一 hnul匚-一 s.empfyo) 宀wh=e(p一"NULL)宀s.push(p)八PHP —vrif (一s.empfyo)宀PHSlopucoufAAP —vdafaAAs.popwPHP*voidBL3(Ecsldafa *U 1融&训引筍已宀if(NUL匚丛)宀BL3(e_)- BL3(g- coufAAf —vdafaAdrvoidposfo ‘de ‘3(Ecsldafa *0&可甸壷逗 宀sfackAECSIdafa*vs 八ECSIdafa*cucm 遡璋、的ECSIdafa*p‘eHNUF二遡—舟曲亘兼叫、的s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){ cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop(); pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0; else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)// 为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);// 递归统计左子树叶子数目Cou ntLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum; }};int main(){ECS a;a.JS();coutvv"递归前序遍历:";a.BL1(a.root);cout<<endl;coutvv"非递归前序遍历:";a.preOrder2(a.root);coutvvendl;coutvv"递归中序遍历:";a.BL2(a.root);coutvvendl;coutvv"非递归中序遍历:";a.inOrder2(a.root);coutvvendl;coutvv"递归后序遍历:";a.BL3(a.root);coutvvendl;coutvv"非递归后序遍历:";a.postOrder3(a.root);coutvvendl;coutvv"树高为:"vva.Height(a.root)vvendl;coutvv"叶子总数为:"vva.CountLeaf(a.root)vvendl; return 0; }。
二叉树教案

二叉树教案一、教学目标:1.了解二叉树的定义和性质。
2.学会二叉树的遍历算法(前序遍历、中序遍历、后序遍历)。
3.掌握二叉树的基本操作(创建二叉树、插入节点、删除节点)。
二、教学重点和难点:1.二叉树的定义和性质。
2.二叉树的遍历算法。
3.二叉树的基本操作。
三、教学准备:1.教师准备:PPT、计算机、投影仪。
2.学生准备:课前预习、纸笔。
四、教学过程:Step 1 导入新课教师通过提问的方式,引导学生回顾树的基本概念,并激发学生对二叉树的兴趣。
Step 2 二叉树的定义和性质教师给出二叉树的定义,并带领学生讨论二叉树的性质(每个节点最多有两个子节点,左子树和右子树)。
Step 3 二叉树的遍历算法1.前序遍历:先访问根节点,然后递归遍历左子树,再递归遍历右子树。
2.中序遍历:先递归遍历左子树,然后访问根节点,再递归遍历右子树。
3.后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
Step 4 二叉树的基本操作1.创建二叉树:教师通过示例向学生展示二叉树的创建过程。
2.插入节点:教师通过示例向学生展示如何插入节点,并解释插入节点的规则。
3.删除节点:教师通过示例向学生展示如何删除节点,并解释删除节点的规则。
Step 5 练习与拓展1.教师设计练习题,让学生运用所学知识进行练习。
2.鼓励学生拓展二叉树的其他应用领域,并进行讨论。
五、教学反思本节课通过讲解二叉树的定义和性质,以及二叉树的遍历算法和基本操作,使学生对二叉树有了基本的了解和掌握。
通过练习和拓展,巩固了学生的学习成果,并培养了学生的分析和解决问题的能力。
但是,由于时间有限,学生的实际操作机会较少,可以在课后布置相关的作业,加深学生的理解和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/*1.输入字符序列,建立二叉链表。
2.中序遍历二叉树:递归算法。
3.中序遍历二叉树:非递归算法。
4.求二叉树的高度。
5.求二叉树的叶子个数。
6.借助队列实现二叉树的层次遍历。
7.在主函数中设计一个简单的菜单,分别调试上述算法。
*8.综合训练:为N个权值设计哈夫曼编码。
*/#include<stdio.h>#include<stdlib.h>#define STACKSIZE 100#define STACKINCREMENT 10#define ElemType chartypedef struct BiTNode{ ElemType data;struct BiTNode *lchild,*rchild; //二叉树的存储结构}BiTNode,*BiTree;typedef struct{BiTree *base;BiTree *top;int stacksize;}SqStack; //顺序栈typedef struct QNode{BiTree data;struct QNode * next;}QNode,*QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}LinkQueue; //链队int InitStack(SqStack &S) //初始化栈{S.base=(BiTree *)malloc(STACKSIZE * sizeof(BiTree));if(!S.base) exit(-2);S.top=S.base; //空栈标志S.stacksize=STACKSIZE;return 1;}int InitQueue(LinkQueue &Q) //初始化队{Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));if(!Q.front) exit (-2);Q.front->next=NULL; //空队return 1;}int DestroyQueue(LinkQueue &Q) //消除队{QueuePtr p;while(Q.front->next){p=Q.front->next;Q.front->next=p->next;free(p);}free(Q.front);return 1;}int QueueIsEmpty(LinkQueue Q) //判断队列是否为空{if (Q.front->next==NULL) return 1;return 0;}int EnQueue(LinkQueue &Q, BiTree e) //将数据元素e插入到队列Q的队尾{QueuePtr p;p=( QueuePtr ) malloc ( sizeof( QNode ) );if( p==NULL ) return 0;p->data=e;p->next=NULL; //创建新结点Q.rear->next=p;Q.rear=p; //插入return 1;}int DeQueue(LinkQueue &Q, BiTree &e) //将队列Q的队头元素出队,并存放到e中{QueuePtr p;if( Q.front==Q.rear ) return 0; //空队出错p=Q.front->next; //记住要删除的结点Q.front->next=p->next; //队头元素p出队if( Q.rear==p ) Q.rear=Q.front; //如果队中只有一个元素p,则p出队后成为空队e=p->data;free(p); //释放存储空间return 1;}int Push(SqStack &s,BiTree e) //入栈{if(s.top-s.base>=s.stacksize){s.base=(BiTree *)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(BiTree));if(!s.base) exit(0);s.top=s.base+s.stacksize;s.stacksize+=STACKINCREMENT;}*s.top++=e;return 1;}int Pop(SqStack &s,BiTree &e) //出栈{if(s.top==s.base){return 0;}e=*--s.top;return 1;}int getTop(SqStack s,BiTree &e) //取栈顶元素{if(s.base==s.top)return 0;e=*(s.top-1);return 1;}int StackEmpty(SqStack s) //判断栈是否为空{if(s.base==s.top)return 1;elsereturn 0;}int MidTraverse1(BiTree T) //中序非递归算法{SqStack S;BiTree p;InitStack(S);Push(S,T);while(!StackEmpty(S)){while(getTop(S,p)&&p){Push(S,p->lchild);}Pop(S,p);if(!StackEmpty(S)){Pop(S,p);printf("%c",p->data);Push(S,p->rchild);}}return 1;}//先序建立二叉树void create(BiTree &T){char ch;scanf("%c",&ch);if(ch=='#') T=NULL;else{if(!(T = (BiTNode * )malloc(sizeof(BiTNode)))) return;T->data=ch;create(T->lchild);create(T->rchild);}}//先序遍历二叉树(递归算法)int fdisplay_1(BiTree T){if(!T) return 0;printf("%c",T->data);fdisplay_1(T->lchild);fdisplay_1(T->rchild);return 1;}//中序遍历二叉树(递归算法)int mdisplay_1(BiTree T){if(!T) return 0;mdisplay_1(T->lchild);printf("%c",T->data);mdisplay_1(T->rchild);return 1 ;}//后序遍历二叉树(递归算法)int ldisplay_1(BiTree T){if(!T) return 0;ldisplay_1(T->lchild);ldisplay_1(T->rchild);printf("%c",T->data);return 1;}//层次遍历int LevelTraverseBiTree(BiTree T) //利用队列层次遍历二叉树。
{LinkQueue Q;InitQueue(Q);EnQueue(Q,T);printf("%c",T->data);while(QueueIsEmpty(Q)!=1){DeQueue(Q,T);if(T->lchild){printf("%c",T->lchild->data);EnQueue(Q,T->lchild);}if(T->rchild){printf("%c",T->rchild->data);EnQueue(Q,T->rchild);}}DestroyQueue(Q);return 1;}int max(int m,int n){if(m>n)return m;elsereturn n;}//求二叉树的高度int high(BiTree T){if(!T){return 0;}else{return 1+max(high(T->lchild),high(T->rchild));}}//求叶子个数int leaf(BiTree T){int m,n;if(!T) return 0;if(!T->lchild&&!T->rchild) return 1;m=leaf(T->lchild);n=leaf(T->rchild);return (m+n);}//主函数void main(){BiTree T;int i,j;printf("按先序序列建立二叉树,如果没有左或右孩子则输入#:\n");create(T);printf("先序遍历递归算法:\n");fdisplay_1(T);printf("\n");printf("中序遍历递归算法:\n");mdisplay_1(T);printf("\n");printf("后序遍历递归算法:\n");ldisplay_1(T);printf("\n");printf("中序遍历非递归算法:\n");MidTraverse1(T);printf("\n");printf("层次遍历:\n");LevelTraverseBiTree(T);printf("\n");printf("二叉树的高度:");i=high(T);printf("%d",i);printf("\n");printf("二叉树叶子数:");j=leaf(T);printf("%d",j);printf("\n");}。