改善单片机系统用电效率的微控制器
基于单片机控制的智能路灯控制系统设计

基于单片机控制的智能路灯控制系统设计一、本文概述随着科技的不断进步和城市化进程的加速,城市照明系统作为城市基础设施的重要组成部分,其智能化改造已成为提升城市管理水平和节能减排的重要措施。
智能路灯控制系统作为城市照明系统的核心,其设计和实现对于提高路灯的运行效率、降低能耗、增强城市照明的智能化水平具有重要意义。
本文旨在探讨基于单片机控制的智能路灯控制系统的设计方法和实现策略。
本文将介绍智能路灯控制系统的基本概念和功能需求,阐述其在城市照明中的作用和意义。
将详细分析单片机控制系统的工作原理及其在智能路灯控制中的应用,包括单片机的选型、外围设备的选择、控制算法的设计等关键技术问题。
接着,本文将重点介绍智能路灯控制系统的设计流程,包括硬件设计、软件编程、系统测试等环节,并结合实际案例,展示该系统在实际应用中的效果和优势。
本文将对智能路灯控制系统的发展趋势进行展望,探讨未来可能的技术革新和应用拓展。
通过本文的研究和分析,期望能够为相关领域的工程技术人员和研究人员提供有益的参考和启示,推动智能路灯控制系统的发展,为建设更加智能、节能、环保的城市照明系统贡献力量。
二、智能路灯控制系统总体设计本节将详细介绍基于单片机控制的智能路灯控制系统的总体设计。
该系统设计旨在实现路灯的智能化管理,提高能源利用效率,同时确保道路照明质量。
能效优化:通过精确控制路灯的开关和亮度,减少能源浪费,实现节能减排。
单片机控制单元:作为系统的核心,负责处理传感器数据,控制路灯的开关和亮度。
传感器单元:包括光强传感器和运动传感器,用于检测环境光线强度和行人车辆流动情况。
单片机根据传感器数据,通过预设的控制算法,决定路灯的开关和亮度。
通信协议:采用稳定可靠的通信协议,确保数据传输的实时性和安全性。
三、单片机控制模块设计单片机控制模块是整个智能路灯控制系统的核心部分,负责接收传感器信号、执行控制逻辑、以及驱动路灯的开关。
在本设计中,我们采用了广泛应用的STC89C52单片机作为核心控制器。
全国大学生电子设计大赛题目

238. 超声波在超声波测距中的应用
239. 出租车多功能计费器的设计
240. 出租车计费器设计与实现
241. 出租车计价器
242. 出租车计价器
243. 出租车计价器程序
244. 出租车计价器论文
245. 串行接口键盘控制器SK5278及其在单片机系统中的应用
60. 光纤通信复用技术的研究
61. 合泰杯资料
62. 红外遥控电路设计
63. 华苑杯2008
64. 基于AT89S52单片机和DS1302的电子万年历设计
65. 基于CPLD的三相多波形函数发生器
66. 基于IGBT的变频电源设计
67. 基于PLL信号发生器的设计
68. 基于两个单片机串行通信的电子密码锁
91. 图书馆资料
92.ቤተ መጻሕፍቲ ባይዱ万年历
93. 危险气体泄露报警器设计
94. 微型打印机控制电路的设计
95. 温度测量
96. 温湿显示系统
97. 无线电制作精汇
98. 无线调频发射器的设计
99. 无线视频监控系统设计
100. 无线数据收发系统
101. 无线遥控设计
10. AVR单片机+程序+书籍+教案+应用设计
11. AVR可用程序
12. cd4094串口扫描
13. CMOS 4000系列60钟常用集成电路的应用
14. CPLD
15. danpianjichengxu
16. DS18B20控制风扇转速
17. ds1302时钟芯片应用万年历
154. DownPaper
单片机系统的低功耗设计策略

优化算法和软件
采用低功耗算法和 优化软件,降低系 统运行时的功耗。
加强散热设计
采用合理的散热设 计,防止过热导致 的功耗增加。
低功耗设计挑战与展望
面临的挑战
技术限制:低功耗设计需要采用更先进的芯片制造技术和设计方法,可能受到技术 限制。
系统复杂性:低功耗设计需要对系统进行全面的优化,系统复杂性较高。
低功耗设计挑战与展望
• 测试和验证:低功耗设计的测试和验证需 要采用特殊的工具和方法,增加了测试和 验证的难度。
低功耗设计挑战与展望
01
未来展望
02
发展新的低功耗器件和架构:随着技术的不断发展,未来将开发出更 加高效的低功耗器件和架构。
03
完善低功耗设计方法学:未来将进一步完善低功耗设计方法学,提供 更加全面的低功耗设计解决方案。
单片机系统的低功耗设计策 略
汇报人: 2023-12-15
目录
• 单片机系统低功耗设计概述 • 硬件低功耗设计策略 • 软件低功耗设计策略 • 综合低功耗设计策略 • 低功耗设计实践案例分析 • 总结与展望
01
单片机系统低功耗设计概述
低功耗设计的重要性
01
02
03
延长系统工作时间
低功耗设计可以显著降低 单片机系统的功耗,从而 延长系统的连续工作时间 。
低功耗模式切换策略
空闲模式
关闭不使用的模块和接口,降低 系统的功耗;设置系统时钟频率 和电压,以适应系统的需求。
工作模式
根据系统需求,开启相应的模块 和接口,保证系统的正常运行; 合理分配系统资源,避免资源的 浪费。
动态功耗管理策略
动态电压调整
根据系统负载的变化,动态调整系统的电压,以降低 系统的功耗。
单片机控制技术

单片机控制技术随着科技的快速发展,单片机控制技术在现代电子设备中的应用已经越来越广泛。
这种技术为各种设备的智能化、自动化和高效化提供了强大的支持,提升了设备的性能和效率。
一、单片机控制技术的概述单片机,或者称为微控制器,是一种高度集成的芯片,内部包含了处理器、存储器、定时器/计数器、输入/输出接口等多种功能模块。
通过编程,我们可以将这些功能模块有机地组合起来,实现特定的控制逻辑。
单片机控制技术就是利用单片机的这些功能,实现对硬件设备的智能化控制。
二、单片机控制技术的应用单片机控制技术的应用领域非常广泛,如工业自动化、智能家居、医疗设备、无人机等。
在这些领域中,单片机控制技术主要被用于实现以下功能:1、设备自动化:在工业生产线上,通过单片机控制技术,可以实现设备的自动化操作,提高生产效率。
2、智能家居:在智能家居系统中,单片机控制技术可以用于实现设备的互联互通,通过中央控制器实现对家居设备的智能控制。
3、医疗设备:在医疗设备中,单片机控制技术可以用于实现设备的精确控制和智能化操作,提高设备的诊疗准确性和效率。
4、无人机:在无人机中,单片机控制技术可以用于实现飞行姿态的精确控制、导航、任务执行等重要功能。
三、单片机控制技术的发展趋势随着科技的不断发展,单片机控制技术也在不断地进步。
未来的单片机控制技术将朝着以下几个方向发展:1、更高的性能:随着处理器技术的不断发展,未来的单片机将具有更强的处理能力,能够更好地满足复杂控制逻辑的需求。
2、更多的外设:未来的单片机将具有更多的外设,如更多的输入输出端口、更多的定时器/计数器、更多的通信接口等,以满足更丰富的应用需求。
3、更低的功耗:随着环保意识的不断提高,未来的单片机将具有更低的功耗,以实现更长的使用寿命和更低的能源消耗。
4、更好的互联性:未来的单片机将具有更好的互联性,能够更好地实现设备之间的互联互通,以适应物联网、互联网+等新兴技术的发展需求。
四、总结单片机控制技术是现代电子设备中的重要组成部分,它推动了电子设备的智能化、自动化和高效化发展。
单片机控制可控硅

单片机控制可控硅单片机(Microcontroller)是一种集成了处理器、存储器和各种输入输出接口功能于一体的微型电子电路芯片。
它通过编程,可以实现对其他外部器件的控制。
而可控硅(Silicon-controlled rectifier,简称SCR)是一种电子元件,主要用于电能控制和电能变换。
单片机控制可控硅是一种常见且实用的控制技术。
在控制可控硅时,单片机可以根据需要控制可控硅的导通和断开状态,从而实现对电路中电能的控制和变换。
下面将详细介绍单片机控制可控硅的原理、应用以及优势。
一、单片机控制可控硅的原理单片机控制可控硅的原理是利用单片机的GPIO(General Purpose Input/Output)口来控制可控硅的门控信号。
当单片机的GPIO口输出高电平时,可控硅接收到高电平信号,从而导通;当GPIO口输出低电平时,可控硅接收到低电平信号,从而断开。
具体来说,单片机通过编程设置GPIO口的电平状态,可以控制可控硅的导通和断开时间。
通过控制导通和断开时间的比例,可以控制电路中电能的传输和变换。
二、单片机控制可控硅的应用1. 交流电调光控制在交流电调光控制中,可控硅被用来控制灯光的亮度。
通过单片机控制可控硅的导通时间比例,可以实现灯光的亮度调节。
这种应用常见于家庭、办公室及商业场所的照明系统。
2. 交流电机速度控制可控硅还可以用于交流电机的速度控制。
通过调节可控硅的导通时间比例,可以改变电机的驱动电压,从而实现电机的速度调节。
这在工业自动化、机械控制中得到广泛应用。
3. 直流电源调节单片机控制可控硅还可以用于直流电源的调节。
通过控制可控硅的导通时间,可以实现对直流电源输出电压的精确调节。
这在电子设备、通信设备等领域中非常常见。
三、单片机控制可控硅的优势1. 灵活性强单片机控制可控硅可以灵活调节其导通时间比例,从而实现对电路中电能的精确控制。
通过编程,可以方便地调整控制策略,满足不同需求。
单片机嵌入式系统中的DCDC电源设计技术研究

单片机嵌入式系统中的DCDC电源设计技术研究随着时代的发展,单片机的应用范围越来越广泛,已经渗透到我们生活的方方面面。
嵌入式系统作为单片机的其中一种应用形式,其电源设计则具有非常重要的意义。
在嵌入式系统中,无法在电路板上安装大功率的电源,而采用小型化的DCDC电源总是一个好的解决方案。
因此,本文将讨论单片机嵌入式系统中的DCDC电源设计技术研究。
一、DCDC电源是什么DCDC电源(Direct Current to Direct Current)指直流电源,尤其是用于将一个电压输送到另一个电压的电源。
在DCDC电源中,直流电源的输入电压与输出电压不相同,因此需要采用升压或降压的调节电路来保证电压的稳定性。
在单片机嵌入式系统中,使用DCDC电源降压将高电压降至合适的低电压,以供单片机及其他模块工作正常。
同时,DCDC电源还能提高电路的效率,并且能够适应不同输入电压范围。
二、嵌入式系统中的注意事项在嵌入式系统中,特别是对于功耗比较大的应用,正确的DCDC电源设计至关重要。
以下是在嵌入式系统中需要考虑的一些因素:1.输入电压范围:在嵌入式系统中,并不总是能够保证input电压的稳定性。
因此,DCDC电源需要具有一定的输入电压范围,以确保电路组件正常工作。
2.输出电压范围:输出电压也需要具有可调性,只有这样才能满足单片机等模块的具体要求。
3.高功率元件的散热:在高功率DCDC电源上,实现高效的散热对于电路的有效工作是不可忽视的。
4.电流变化范围:单片机及其他模块的工作电流经常会变化,因此,DCDC电源必须具有适度的电流调节能力。
5.EMI干扰:DCDC电源会在工作期间发出EMI干扰,在电路设计时需采取措施来消除EMI干扰。
三、DCDC电源设计技术DCDC电源技术是一种成体系的电源设计技术,其设计过程经常需要与信号采集、滤波、测量等设计技术紧密结合才能发挥其最佳性能。
常用的DCDC电源设计方法有:1.基于49820升压芯片的DCDC电源设计49820 DCDC升压芯片是一种非常常见的高转换效率DCDC电源芯片。
微控制器原理及应用(原理篇)

微控制器原理及应用第一章 绪论一、 什么是微控制器?微控制器(Microcontroller)俗称单片机(Single-chip Microcomputer),也称为微处理器(Microprocessor)。
它是把微型计算机的主要部件都集成在一块芯片上的单芯片微型计算机。
图1-1 微型计算机系统结构微处理器包括了中央处理器单元(CPU)、程序存储器(ROM)、数字存储器(RAM)、定时器/计数器(Timer/Counter)、输入/输出口(I/O),及中断系统、串行通讯接口。
有些甚至还集成了脉宽调制器(PWM)、DMA控制器、液晶显示驱动器(LCD)、模/数转换器(A/D)、数/模转换器(D/A)等。
因此,微处理器可以看成是一个不带外设的微型计算机。
二、 微控制器的发展概况自从1974年12月美国仙童(Fairchild)公司第一个推出8位微控制器F8以来,以惊人的速度发展,从4位机、8位机发展到16位机、32位机,集成度越来越高,功能越来越强,应用范围越来越广。
到目前为止,微控制器的发展主要可分为以下四个阶段:第一阶段:4位微控制器。
这种微控制器的特点是价格便宜,控制功能强,片内含有多种I/O接口,如并行I/O接口、串行I/O接口、定时器/计数器接口、中断功能接口等。
根据不同用途,还配有许多专用接口,如打印机接口、键盘及显示器接口,PLA(可编程逻辑阵列)译码输出接口,有些甚至还包括A/D、D/A转换,PLL(锁相环),声音合成等电路。
丰富的I/O功能大大地增强了4位微控制器的控制功能,从而使外部接口电路极为简单。
第二阶段:低、中档8位机(1974—1978年)。
这种8位机一般寻址范围通常为4KB。
它是8位机的早期产品,如Mostek公司的3870、hItel公司的8048等微控制器即属此类。
MCS-48系列微控制器是Intel公司1976年以后陆续推出的第一代8位微控制器系列产品。
它包括基本型8048、8748和8035;强化型(高档)8049、8749、8039和8050、8040;简化型(低档)8020、8021、8022:专用型UH。
基于单片机的数控直流稳压电源设计

基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理与信息工程学院课程设计题目:改善单片机系统用电效率的微控制器专业:计算机科学与技术(专升本)班级:056计算机科学与技术姓名:黄王旦学号:05191115指导老师:余水宝成绩:( 2006.6 )目录改善单片机系统用电效率的微控制器 (3)第一节引言 (3)1.1单片机的产生、发展和应用 (3)1.2单片机系统简单介绍 (4)第二节设计步骤 (6)2.1时钟频率 (6)2.2高速内核 (7)2.3集成化 (8)2.3.1内部程序存储器 (8)2.3.2内部数据存储器 (9)2.4时钟源 (9)2.5时钟管理 (10)2.5.1停机模式 (10)2.5.2空闲模式 (11)2.6功率管理模式 (12)2.6.1中断和PMM的使用 (13)2.6.2改进突发工作模式 (13)2.6.3跑跑停停 (14)第三节应用实例 (14)结束语 (15)参考文献 (16)改善单片机系统用电效率的微控制器数理与信息工程学院 05计算机专升本黄王旦指导教师:余水宝第一节引言一种改进架构的高性能8051设计、外围功能集成、选用合适的时钟源以降低功耗;并介绍节省电能的软件技术及采用待机模式降低功耗的技巧。
便携式产品的功能和性能日新月异。
消费者对产品性能的要求也越来越高,需要更强大的运算能力支持;另一方面,希望产品具有更低的功耗。
尽管已经出现了很多功耗处理器,但它们的性能通常很有限。
Dallas公司的系列高速微控制器在性能和功耗之间取得了一个很好的折衷,采用了8051架构——世界上最流行的微控制器之一。
简单易用、丰富的I/O资源使这种微控制器深受设计者的喜爱,并被广泛接受。
它的流行势头已蔓延到了便携式领域,在很多应用中都有其用武之地。
本文旨在探讨使用8051控制器时,如何降低功率的消耗,重点介绍一种改进架构的高性能8051设计。
1.1单片机的产生、发展和应用单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。
不过,这种电脑,通常是指个人计算机,简称PC机。
它由主机、键盘、显示器等组成。
还有一类计算机,大多数人却不怎么熟悉。
这种计算机就是把智能赋予各种机械的单片机。
顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。
因为它体积小,通常都藏在被控机械的“肚子”里。
它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。
现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。
各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。
现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。
究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。
目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录象机、摄象机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
更不用说自动控制领域的机器人、智能仪表、医疗器械了。
因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。
1.2单片机系统简单介绍(一)8051的CPU由运算器和控制器组成。
一、运算器运算器以完成二进制的算术/逻辑运算部件ALU为核心,再加上暂存器TMP、累加器ACC、寄存器B、程序状态标志寄存器PSW及布尔处理器。
1进位标志CY(PSW 7)。
它表示了运算是否有进位(或借位)。
如果操作结果在最高位有进位(加法)或者借位(减法),则该位为1,否则为0。
2辅助进位标志AC。
又称半进位标志,它反映了两个八位数运算低四位是否有半进位,即低四位相加(或减)有否进位(或借位),如有则AC为1状态,否则为0。
3 溢出标志位OV。
MCS-51反映带符号数的运算结果是否有溢出,有溢出时,此位为1,否则为0。
4 奇偶标志P。
反映累加器ACC内容的奇偶性,如果ACC中的运算结果有偶数个1(如11001100B,其中有4个1),则P为0,否则,P=1。
由于PSW存放程序执行中的状态,故又叫程序状态字?运算器中还有一个按位(bit)进行逻辑运算的逻辑处理机(又称布尔处理机)。
二、控制器控制器是CPU的神经中枢,它包括定时控制逻辑电路、指令寄存器、译码器、地址指针DPTR及程序计数器PC、堆栈指针SP等。
这里程序计数器PC是由16位寄存器构成的计数器。
要单片机执行一个程序,就必须把该程序按顺序预先装入存储器ROM的某个区域。
单片机动作时应按顺序一条条取出指令来加以执行。
因此,必须有一个电路能找出指令所在的单元地址,该电路就是程序计数器PC。
当单片机开始执行程序时,给PC装入第一条指令所在地址,它每取出一条指令(如为多字节指令,则每取出一个指令字节),PC的内容就自动加1,以指向下一条指令的地址,使指令能顺序执行。
只有当程序遇到转移指令、子程序调用指令,或遇到中断时,PC才转到所需要的地方去。
8051 CPU碢C指定的地址,从ROM相应单元中取出指令字节放在指令寄存器中寄存,然后,指令寄存器中的指令代码被译码器译成各种形式的控制信号,这些信号与单片机时钟振荡器产生的时钟脉冲在定时与控制电路中相结合,形成按一定时间节拍变化的电平和时钟,即所谓控制信息,在CPU内部协调寄存器之间的数据传输、运算等操作。
三、存储器存储器是单片机的又一个重要组成部分,其中每个存储单元对应一个地址,256个单元共有256个地址,用两位16进制数表示,即存储器的地址(00H~FFH)。
存储器中每个存储单元可存放一个八位二进制信息,通常用两位16进制数来表示,这就是存储器的内容。
存储器的存储单元地址和存储单元的内容是不同的两个概念,不能混淆。
(1)程序存储器程序是控制计算机动作的一系列命令,单片机只认识由“0”和“1”代码构成的机器指令。
如前述用助记符编写的命令MOV A,#20H,换成机器认识的代码74H、20H:(写成二进制就是01110100B和00100000B)。
在单片机处理问题之前必须事先将编好的程序、表格、常数汇编成机器代码后存入单片机的存储器中,该存储器称为程序存储器。
程序存储器可以放在片内或片外,亦可片内片外同时设置。
由于PC程序计数器为16位,使得程序存储器可用16位二进制地址,因此,内外存储器的地址最大可从0000H到FFFFH。
8051内部有4k字节的ROM,就占用了由0000H~0FFFH的最低4k个字节,这时片外扩充的程序存储器地址编号应由1000H开始,如果将8051当做8031使用,不想利用片内4kROM,全用片外存储器,则地址编号仍可由0000H开始。
不过,这时应使8051的第{31}脚(即EA脚)保持低电平。
当EA为高电平时,用户在0000H至0FFFH范围内使用内部ROM,大于0FFFH后,单片机CPU自动访问外部程序存储器。
(2)数据存储器单片机的数据存储器由读写存储器RAM组成。
其最大容量可扩展到64k,用于存储实时输入的数据。
8051内部有256个单元的内部数据存储器,其中00H~7FH为内部随机存储器RAM,80H~FFH为专用寄存器区。
实际使用时应首先充分利用内部存储器,从使用角度讲,搞清内部数据存储器的结构和地址分配是十分重要的。
因为将来在学习指令系统和程序设计时会经常用到它们。
8051内部数据存储器地址由00H至FFH共有256个字节的地址空间,该空间被分为两部分,其中内部数据RAM的地址为00H~7FH(即0~127)。
而用做特殊功能寄存器的地址为80H~FFH。
在此256个字节中,还开辟有一个所谓“位地址”区,该区域内不但可按字节寻址,还可按“位(bit)”寻址。
对于那些需要进行位操作的数据,可以存放到这个区域。
从00H到1FH安排了四组工作寄存器,每组占用8个RAM字节,记为R0~R7。
究竟选用那一组寄存器,由前述标志寄存器中的RS1和RS0来选用。
在这两位上放入不同的二进制数,即可选用不同的寄存器组。
(3)特殊功能寄存器特殊功能寄存器(SFR)的地址范围为80H~FFH。
在MCS-51中,除程序计数器PC和四个工作寄存器区外,其余21个特殊功能寄存器都在这SFR块中。
其中5个是双字节寄存器,它们共占用了26个字节。
其中带*号的可位寻址。
特殊功能寄存器反映了8051的状态,实际上是8051的状态字及控制字寄存器。
用于CPU PSW便是典型一例。
这些特殊功能寄存器大体上分为两类,一类与芯片的引脚有关,另一类作片内功能的控制用。
与芯片引脚有关的特殊功能寄存器是P0~P3,它们实际上是4个八位锁存器(每个I/O口一个),每个锁存器附加有相应的输出驱动器和输入缓冲器就构成了一个并行口。
MCS-51共有P0~P3四个这样的并行口,可提供32根I/O线,每根线都是双向的,并且大都有第二功能。
(二)8051单片机的内部总体结构其基本特性如下:8位CPU、片内振荡器4k字节ROM、128字节RAM21个特殊功能寄存器32根I/O线可寻址的64k字节外部数据、程序存贮空间2个16位定时器、计数器中断结构:具有二个优先级、五个中断源一个全双口串行口位寻址(即可寻找某位的内容)功能,适于按位进行逻辑运算的位处理器。
除128字节RAM、4k字节ROM和中断、串行口及定时器模块外,还有4组I/O口P0~P3,余下的就是CPU的全部组成。
把4kROM换为EPROM就是8751的结构,如去掉ROM/EPROM部分即为8031的框图,如果将ROM置换为Flash 存贮器或EEPROM,或再省去某些I/O,即可得到51系列的派生品种,如89C51、AT89C2051等单片机的框图。
单片机各部分是通过内部的总线有机地连接起来的。
第二节设计步骤2.1时钟频率任何微控制器设计中,决定功耗的一个首要因素就是系统的时钟频率。
互补金属氧化物半导体(CMOS)工艺的器件功耗直接正比于时钟频率。
因此,从省电的角度考虑,将处理器运行于尽可能低的频率比较有利。
图1表示一个普通的8051微控制器的典型功率曲线,一个被所有便携系统设计得所熟知的关系。
一般来讲,电流随频率的变化曲线为线性,具有一定的DC偏移。
这个静态电流由片由的静态电路所消耗,例如比较器、运算放大器等。