海南省大健康产业人才需求多元回归预测模型的构建

合集下载

基于多元线性回归的市场需求预测模型

基于多元线性回归的市场需求预测模型

基于多元线性回归的市场需求预测模型市场需求预测一直是企业决策的重要环节,它的准确性直接影响着企业的销售额和利润。

基于多元线性回归的市场需求预测模型,是一种常用的数据分析方法,可以帮助企业了解市场需求,预测销售量,并提供决策依据。

多元线性回归是一种用于分析多个自变量对一个因变量的影响的统计方法,其核心思想是寻找一条线来描述多个自变量和因变量之间的关系。

对于市场需求预测而言,我们可以将销售量作为因变量,将各种潜在影响因素(如广告投入、产品特征、竞争对手销售量等)作为自变量,建立一个多元线性回归模型,从而预测市场需求量。

在构建多元线性回归模型之前,我们需要收集相关的数据。

这些数据包括历史销售量、广告投入、产品特征、竞争对手销售量等信息。

在收集数据时需要尽量确保数据的准确性和完整性,以提高预测模型的准确性。

在建立多元线性回归模型之前,还需要进行一些预处理步骤。

首先,我们需要对数据进行清洗,排除异常值和缺失值。

然后,对自变量进行标准化处理,以消除不同变量之间的量纲差异。

最后,我们可以使用相应的统计软件,如R、Python等,来进行模型的构建和分析。

构建多元线性回归模型的关键是选择合适的自变量。

在选择自变量时,我们可以根据经验和领域知识进行初步筛选,然后使用逐步回归或其他变量选择方法进行进一步选择。

选择自变量时要注意自变量之间的相关性,尽量选择与因变量有高度相关性的自变量。

在建立模型后,我们可以利用已有数据对模型进行验证和评估。

常用的评估指标包括决定系数(R^2)、均方根误差(RMSE)、平均绝对误差(MAE)等。

通过评估模型的准确性,我们可以判断模型的可靠性,并对模型进行必要的修正和改进。

一旦构建好的多元线性回归模型具有较高的预测准确性,我们就可以利用该模型进行市场需求预测。

预测的结果可以帮助企业制定合理的市场策略,调整产品定价,优化广告投入以及与竞争对手的竞争策略。

然而,多元线性回归模型也存在一些限制。

多元线性回归——模型、估计、检验与预测

多元线性回归——模型、估计、检验与预测

多元线性回归——模型、估计、检验与预测⼀、模型假设传统多元线性回归模型最重要的假设的原理为:1. ⾃变量和因变量之间存在多元线性关系,因变量y能够被x1,x2….x{k}完全地线性解释;2.不能被解释的部分则为纯粹的⽆法观测到的误差其它假设主要为:1.模型线性,设定正确;2.⽆多重共线性;3.⽆内⽣性;4.随机误差项具有条件零均值、同⽅差、以及⽆⾃相关;5.随机误差项正态分布具体见另⼀篇⽂章:回归模型的基本假设⼆、估计⽅法⽬标:估计出多元回归模型的参数注:下⽂皆为矩阵表述,X为⾃变量矩阵(n*k维),y为因变量向量(n*1维)OLS(普通最⼩⼆乘估计)思想:多元回归模型的参数应当能够使得,因变量y的样本向量在由⾃变量X的样本所构成的线性空间G(x)的投影(即y’= xb)为向量y 在线性空间G(x)上的正交投影。

直⽩⼀点说,就是要使得(y-y’)’(y-y’)最⼩化,从⽽能够使y的预测值与y的真实值之间的差距最⼩。

使⽤凸优化⽅法,可以求得参数的估计值为:b = (x’x)^(-1)x’y最⼤似然估计既然已经在假设中假设了随机误差项的分布为正态分布,那么⾃变量y的分布也可以由线性模型推算出来(其分布的具体函数包括参数b在内)。

进⼀步的既然已经抽取到了y的样本,那么使得y的样本出现概率(联合概率密度)最⼤的参数即为所求最终结果与OLS估计的结果是⼀致的矩估计思想:通过寻找总体矩条件(模型设定时已经有的假设,即⽆内⽣性),在总体矩条件中有参数的存在,然后⽤样本矩形条件来进⾏推导未知参数的解。

在多元回归中有外⽣性假设:对应的样本矩为:最终估计结果与OLS⽅法也是⼀样的。

三、模型检验1.拟合优度检验(1)因变量y是随机变量,⽽估计出来的y’却不是随机变量;(2)拟合优度表⽰的是模型的估计值y’能够在多⼤程度上解释因变量样本y的变动。

(3)y’的变动解释y的变动能⼒越强,则说明模型拟合的越好y-y’就越接近与假设的随机误差(4)⽽因变量的变动是由其⽅差来描述的。

回归分析中的多元回归模型构建技巧

回归分析中的多元回归模型构建技巧

回归分析是统计学中一种非常重要的方法,用于分析自变量和因变量之间的关系。

而多元回归是回归分析中的一种高级技术,它可以同时考虑多个自变量对因变量的影响,从而更准确地描述变量之间的关系。

在构建多元回归模型时,有一些技巧和注意事项需要我们注意,下面将从数据收集、变量选择、模型诊断等几个方面来探讨多元回归模型的构建技巧。

一、数据收集在构建多元回归模型之前,首先需要收集高质量的数据。

数据的质量将直接影响到最终的模型结果。

因此,我们需要注意以下几点:1. 数据的可靠性:收集的数据应来自可靠的来源,避免因为数据质量问题而导致模型分析的不准确。

2. 数据的完整性:尽量收集完整的数据,缺失值会对模型的构建和解释产生影响。

3. 数据的充分性:应确保数据的样本量足够大,以保证模型的稳定性和可靠性。

二、变量选择在构建多元回归模型时,变量的选择是非常重要的一步。

合理的变量选择可以提高模型的准确性和可解释性,以下是一些变量选择的技巧:1. 因变量的选择:需要选择一个合适的因变量,这要求我们对研究主题有深入的理解,明确研究目的和研究问题。

2. 自变量的选择:选择自变量时需要注意自变量之间的相关性,避免多重共线性问题。

同时,还需要考虑自变量与因变量之间的相关性,选择与因变量具有显著相关性的自变量进行建模。

三、模型诊断在构建多元回归模型后,还需要进行模型诊断,以验证模型的有效性和稳定性。

模型诊断通常包括以下几个方面:1. 残差分析:通过对模型的残差进行分析,来检验模型的拟合程度和误差性质,进而评估模型的有效性。

2. 多重共线性检验:多重共线性会导致模型参数估计的不准确,因此需要对模型中的自变量之间的相关性进行检验。

3. 异方差性检验:异方差性会使得模型的标准误差产生偏差,影响参数估计的有效性,需要进行相应的检验和处理。

四、模型解释最后,构建多元回归模型的目的之一是对变量之间的关系进行解释。

在模型解释时,需要注意以下几点:1. 参数的解释:需要深入理解模型中各个参数的物理含义,将其转化为实际问题的解释,以便更好地理解自变量对因变量的影响。

基于ARIMA模型的海南省国内生产总值预测

基于ARIMA模型的海南省国内生产总值预测

基于ARIMA模型的海南省国内生产总值预测随着我国经济的快速发展,各省份的国内生产总值(GDP)也在不断增长。

海南省作为我国的经济特区之一,其经济增长速度更是快速。

对于政府和企业来说,对未来海南省GDP的预测是非常重要的。

本文将基于ARIMA模型,对海南省GDP进行预测和分析。

一、ARIMA模型ARIMA模型是自回归移动平均模型的英文缩写,它是一种非常常用的时间序列模型,用于对未来数据进行预测。

ARIMA模型的主要思想是将时间序列数据转化为平稳时间序列数据,然后建立模型进行预测。

ARIMA模型有三个重要参数:p(自回归阶数)、d(差分次数)、q(移动平均阶数)。

其中p表示自回归模型中所包含的滞后项个数,d表示需要进行几次差分才能使时间序列平稳,q表示移动平均模型中所包含的滞后项个数。

通过调整这三个参数,可以得到适合于特定时间序列数据的ARIMA模型。

二、海南省GDP时间序列数据为了进行ARIMA模型的建立和预测,我们首先需要获取海南省历年的GDP时间序列数据。

根据国家统计局的数据,我们获取了2000年至2020年的海南省GDP数据,具体数据如下:| 年份| GDP(亿元)|| ---- | ----------- || 2000 | 377.607 || 2001 | 439.492 || 2002 | 513.776 || 2003 | 591.78 || 2004 | 690.753 || 2005 | 836.22 || 2006 | 1060.91 || 2007 | 1315.48 || 2008 | 1668.45 || 2009 | 1967.02 || 2010 | 2053.23 || 2011 | 2277.35 || 2012 | 2523.94 || 2013 | 2837.38 || 2014 | 3163.32 || 2015 | 3701.79 || 2016 | 4046.86 || 2017 | 4462.52 || 2018 | 4832.05 || 2019 | 5411.95 || 2020 | 5723.587 |由于ARIMA模型要求时间序列数据平稳,所以我们首先需要对海南省GDP数据进行平稳性检验和差分处理。

多元线性回归模型构建

多元线性回归模型构建

多元线性回归模型构建多元线性回归模型是统计分析中一种常用的数据拟合方法,可用来对定量变量之间的关系进行建模,预测定量变量的变化,以及预测结果的置信水平等。

本文将针对多元线性回归模型的概念及其理论模型,结构介绍,应用说明以及优缺点等方面进行详细介绍。

二、概念多元线性回归模型(Multiple Linear Regression Model, MLRM)是统计分析中最常用的数据拟合方法,也是机器学习和数据挖掘的一种经典算法。

它可以用来在多个定量变量之间建立一个线性回归关系,从而预测定量变量的变化,以及预测结果的置信水平等。

多元线性回归模型以线性模型为基础,以求解最小二乘问题(Least Squares Problem)来寻找常数和系数,旨在找到最佳拟合模型。

三、结构多元线性回归模型以线性模型为基础,以求解最小二乘问题(Least Squares Problem)来寻找常数和系数,旨在找到最佳拟合模型,其结构如下:多元线性回归模型:Y=b0+b1*X1+b2*X2…+b n*XnY 为因变量,指被预测的定量变量;X1、X2…Xn是自变量,指可用来预测因变量变化的定量变量; b0、b1、b2…b n分别为关系中各个自变量的系数。

四、应用多元线性回归模型广泛应用于社会科学,包括经济学、管理学、法学等多个领域。

例如,探讨一个企业经济活动的盈利情况,就可采用多元线性回归模型计算出不同的投资因素对企业收益的影响程度。

因此,多元线性回归模型可以应用在预测和决策分析中,从而更好地支持决策。

五、优点(1)多元线性回归模型可涉及多个自变量,可模拟出复杂的系统关系,解决多头预测和决策分析问题,对决策提供可靠的数据和参考;(2)多元线性回归模型具有较高的精度和稳定性,可以准确地捕捉现实问题,更好地反映实际情况;(3)多元线性回归模型的数据处理上也相对较为简单,不需要花费大量的人力和时间资源,容易操作,易于理解;六、缺点(1)多元线性回归模型要求数据具有较高的完整性和多样性,并要求自变量的变量类型较少,局限性较大;(2)多元线性回归模型可能因数据中的噪音而影响模型的准确性,模型预测存在较大误差;(3)多元线性回归模型可能存在欠拟合或过拟合的情况,无法有效反映出实际系统中的复杂情况。

丝绸需求的趋势预测与分析

丝绸需求的趋势预测与分析

丝绸需求的趋势预测与分析
陈文虎;李瑞;沈卫德
【期刊名称】《丝绸》
【年(卷),期】2006(000)012
【摘要】运用数学模型对我国的真丝绸需求趋势进行预测和分析.结果表明,我国的真丝绸需求量有不断上升的趋势,2006-2010年丝绸需求量将达到17~22亿m:真丝绸初级产品价格呈下降态势,而真丝绸制成品价格呈上涨变化;真丝绸需求的增长趋势会促进丝绸产业的发展,加速"东桑西移"进程.
【总页数】4页(P18-20,23)
【作者】陈文虎;李瑞;沈卫德
【作者单位】苏州大学,社会学院,江苏,苏州,215021;苏州大学,生命科学学院,江苏,苏州,215021;苏州大学,生命科学学院,江苏,苏州,215021
【正文语种】中文
【中图分类】F426.81
【相关文献】
1.丝绸需求的多因素预测与分析 [J], 陈文虎;李瑞;沈卫德
2.海南省大健康产业人才需求多元回归预测模型的构建r——基于主成分分析与趋势外推组合预测法的视角 [J], 陈燕莹;黑启明;刘春平;吴睿;符帅
3.基于ARIMA模型的河南省医疗服务需求变化趋势及预测分析 [J], 马兰; 田庆丰; 郭丽芳; 李越; 李颖菲
4.新疆学前教育发展趋势与教育资源需求分析
——基于2020-2035年幼儿园学位数预测 [J], 方建华;马芮
5.基于判别分析算法的共享单车需求波动趋势预测研究 [J], 蔡梦琴;王艳敏;柯文娟;石志颖
因版权原因,仅展示原文概要,查看原文内容请购买。

多元回归模型

多元回归模型

多元回归模型简介多元回归模型(Multiple Regression Model)是一种用于分析多个自变量与一个因变量之间关系的统计模型。

它可以用于预测和解释因变量的变化,并确定自变量对因变量的影响程度。

多元回归模型在许多领域中都得到广泛应用,特别是在经济学、金融学、社会科学和自然科学等领域。

它可以帮助研究人员找出多个自变量对一个因变量的综合影响,从而提供更准确的预测和解释。

建立多元回归模型的步骤建立多元回归模型一般包括以下几个步骤:1.收集数据:收集自变量和因变量的数据,并确保数据的完整性和准确性。

2.数据预处理:对数据进行清洗和处理,包括处理缺失值、异常值和离群值等。

3.确定自变量和因变量:根据研究目的和领域知识,确定自变量和因变量。

4.拟合回归模型:选择合适的回归模型,并使用最小二乘法等方法拟合回归模型。

5.模型评估:通过分析回归系数、残差、拟合优度等指标来评估模型的拟合效果。

6.解释结果:根据回归模型的系数和统计显著性,解释自变量对因变量的影响。

多元回归模型的方程多元回归模型可表示为以下方程:Y = β0 + β1X1 + β2X2 + … + βk*Xk + ε其中,Y表示因变量,X1、X2、…、Xk表示自变量,β0、β1、β2、…、βk表示回归系数,ε为误差项。

回归系数β0表示截距,表示当所有自变量为0时,因变量的值。

回归系数βi表示自变量Xi对因变量的影响,即当自变量Xi增加一个单位时,因变量的平均变化量。

误差项ε表示模型无法解释的部分,代表了观测误差和模型中遗漏的影响因素。

多元回归模型的拟合和评估拟合多元回归模型的常用方法是最小二乘法(Ordinary Least Squares,OLS)。

最小二乘法通过最小化观测值和模型预测值之间的残差平方和,找到最佳拟合的回归系数。

拟合好的多元回归模型应具备以下特征:1.较小的残差:模型的残差应该较小,表示模型能够较好地拟合数据。

2.显著的回归系数:回归系数应该达到统计显著性水平,表示自变量对因变量的影响是真实存在的。

人口统计学中的多元回归分析

人口统计学中的多元回归分析

人口统计学中的多元回归分析随着社会的发展,人口的多元化和复杂化越来越明显。

人口统计学作为一门对人口数量、结构和分布等方面进行系统地研究和分析的学科,成为了解人口现象和规律的主要学科之一。

而多元回归分析是人口统计学中一种广泛应用的方法,可以帮助我们更加深入地了解人口现象和变化规律。

一、多元回归分析的概念和意义多元回归分析是通过制定数学模型来分析两个或两个以上变量之间的关系,并确定它们之间的相关性质。

在人口统计学中,多元回归分析常常用于研究人口数量、结构、分布等方面的影响因素和相互关系。

多元回归分析的结果可以帮助我们预测未来的人口变化趋势,制定相关政策和措施,以调整和优化人口结构,实现经济和社会的可持续发展。

二、多元回归分析的模型和假设多元回归分析的基本模型为:Y = β0 + β1X1 + β2X2 +…+ βkXk + ε其中,Y表示因变量,即需要分析的人口现象;X1、X2、…、Xk表示自变量,即影响人口现象的各种因素;β0、β1、β2…、βk表示各个自变量的回归系数,即各个自变量对因变量的贡献大小;ε则表示误差项,即未被回归模型解释的不确定因素。

多元回归分析的假设主要包括以下几点:1. 自变量和因变量之间是线性关系2. 各自变量之间不存在多重共线性(即不相互独立)3. 误差项具有零均值和常量方差4. 误差项之间不存在自相关(即不相互依赖)通过建立合适的多元回归模型,并进行数据拟合和检验,可以判断各个变量是否显著影响因变量,以及它们的影响大小和方向。

三、应用举例以人口数量与城市化程度之间的关系为例。

通过选取适当的自变量,如城市人口增长率、大学生人数、劳动力人口比例等,建立多元回归模型,可以分析这些因素对人口数量的影响。

模型拟合好之后,可以得到不同自变量的回归系数,从而可以判断不同因素对人口数量的影响程度。

如劳动力人口比例的系数为正,说明劳动力人口的增加可以促进人口数量的增长;而大学生人数的系数为负,说明大学生越多,人口数量越少,因为他们更愿意在大城市就业,而非返回农村。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省大健康产业人才需求多元回归预测模型的构建作者:陈燕莹黑启明刘春平吴睿符帅来源:《中国市场》2017年第29期[摘要]文章首先根据文献检索法梳理国内文献关于人才需求预测方法的优缺点,基于现有文献研究,在考虑专家的意见和数据的易得性,选取3类共20个指标因素,选取2009—2015年的数据,构建基于海南省大健康产业各类卫生技术人员数量和整个指标体系因素之间的多元回归模型。

在具体分析中,由于多个指标之间存在多重共线性关系,为保留尽可能多的指标因素,采用主成分分析进行降维处理,解决共线性问题,共提取2个公因子,并利用公因子构建多元线性回归预测模型。

同时,结合趋势外推法通过对整体指标体系因素的未来值的预测代入回归预测模型进而进行2016—2020年未来海南省大健康产业人才需求的预测。

和海南省大健康产业各类卫生人才及管理人员数目的实际值进行比较,回归预测模型具有较好的预测结果。

[关键词]海南省;健康产业人才需求;预测模型[DOI]1013939/jcnkizgsc2017291012016年10月25日,国务院发布《“健康中国2030”规划纲要》,明确健康中国的战略目标是,到2020年,建立覆盖城乡居民的中国特色基本医疗卫生制度,健康素养水平持续提高,人人享有基本医疗卫生服务和基本体育,主要健康指标居于中高收入国家之列。

到2030年,促进全民健康的制度体系更加完善,健康服务质量和健康保障水平不断提高,健康产业繁荣发展,基本实现健康水平,主要健康指标进入高收入国家行列。

[1]为了保障健康服务指标建设的达成,健康服务尤其是医疗服务质量的改善与提高,促使整个社会基本医疗卫生服务的可负担,如何确保合理的健康服务人才的供给与布局,能够相对准确科学地进行一个国家或者一个区域的健康产业人才的需求预测,明晰影响健康产业人才需求的因素就成为值得重点研究的问题之一。

在加快建设国际旅游岛的背景下,健康服务业已成为海南省现实需求最大、增长速度最快的现代服务业之一。

到2020年,全省健康服务业总规模达到1000亿元以上,健康服务业占GDP比重达到15%左右,成为推动经济社会持续发展的重要力量。

为了实现这一目标,海南省必然需要大量的健康服务业专业人才,而截至2015年年底海南省统计年鉴及“十二五”期间卫生科教工作总结文件的统计数据显示,海南省每千常住人口执业(助理)医师数达到209人,每千常住人口注册护士数达到271人,医护比为1∶130,每千常住人口执业药师数达到031人,距离国家《“健康中国2030”规划纲要》要求的健康指标均存在一定的差距,例如,到2015年,每千常住人口执业(助理)医师应达到22人,到2020年,达到25人,到2030年,达到30人;到2020年,每千常住人口注册护士数应达到314人,到2030年,达到47人;到2020年,每千常住人口执业药师数应达到06人。

1人才需求预测方法的研究现状总体而言,我国目前的人才需求预测工作还十分薄弱,很多行业还没有建立起具有宏观指导性,自身行业独特的人才需求特征指标体系和规范化的预测模型。

大部分的人才需求预测还停留在企业预测层面,大多采用传统的时序外推法,只考虑时间序列因素,不关注外部因素造成的影响,当外部经济环境、政策冲击加上人口流动迁移发生重大变化时,传统的预测方法将难以适应人才预测的需要。

Scheffler等(2008)[2]是首位从国家间的角度,使用合适的纵向数据对158个国家的医师人数的供求数量及是否符合世卫组织的基本健康服务覆盖的需求门槛进行预测的学者。

Jenny X Liu、Yevgeniy Goryakin、Akiko Maeda等(2017)[3]基于经济学供需模型以经济增长、人口规模、健康水平覆盖程度为解释变量,使用世界卫生组织健康市场劳动力观察报告中的165个国家从1990年至2013年的健康市场劳动力数据对2030年的全球健康市场劳动力需求进行预测。

结果发现到2030年,全球需要各类健康卫生技术人才高达8000万人,为2013年的两倍,而世界范围内劳动力的净短缺达到1500万人。

随着经济增长、人口增长及人口老龄化,对健康市场劳动力需求的高增长将由高收入国家向中等偏高收入国家转移。

大量的人才短缺会加剧国家间健康卫生技术人才的全球争夺与竞争。

由于供不应求,中等收入国家会面临大量人才短缺。

与此相反,低收入国家将面临供求双方的低增长,看似不会面临人才短缺的现象,但是健康卫生人员的数量远远低于世卫组织对基本健康服务覆盖所要求的人员需求门槛。

我国人才需求预测分析起始于20世纪80年代,经济增长的腾飞伴随着大量的人才需求,因此拥有以经济增长的有关数据为基础的预测传统,以人才需求量作为预测量,进行预测模型设计。

这种思路容易忽视科学技术与知识的变革与叠代更替带来的产业结构升级和核心竞争优势的转变,进而对人才数量与其结构变化的影响。

人才需求影响的因素很多,涉及社会、经济、科技等多种因素,很多地区的人才统计数据在1988年才开始建立,样本数据很少,历史数据遗漏与错误现象严重,存在“维度灾难”的问题。

目前人才需求预测的模型建立方法有以下五种:一是时序趋势外推预测法;二是多元回归模型;三是灰色预测模型;四是神经网络预测模型;五是差分自回归移动平均法与最小二乘支持向量机(ARIMA-LSSVM)组合预测模型等。

赵东旭(2015)[4]基于趋势外推法对吉林省2001—2013年的接待入境旅游人数以时间t 为自变量,时序数值y为因变量进行二次曲线的模型拟合,然后基于该模型对未来8年(2014—2021年)的入境旅游人数进行预测,平均误差较小,方程拟合较好,有较高的预测精度。

这种方法是对特定时间序列建立的静态模型,只可根据时间序列的长度进行未来短中期(4~5年或近10年)的预测,由于预测时刻越远,受到的干扰影响因素就越大,预测的精度就会下降,因而难以建立长期预测模型。

王小平、陈敏等(2014)[5]选取涉及宏观经济因素、社会环境因素、对外经济因素、技术因素四类23种指标构建基于上海市金融业从业人员数量和这23种指标因素间的回归预测模型。

文中利用主成分分析方法解决共线性问题,提取2个公因子,并利用公因子构建线性回归预测模型。

通过预测模型估测的上海市金融业从业人员数量与实际就业人员数量相比,回归模型具有较好的预测结果。

这类模型预测的方法能够清晰直观地解释所要分析问题的影响因素,容易理解问题背后深层次的内在联结与相互影响。

但其缺点也非常明显,选择影响因素无可避免具有极强的主观性,可能造成遗漏了重要的相关因素或挑选了次要因素,因而影响了预测因素的精确性。

另外,这类模型目标变量的预测是基于解释变量的预测值可以获得的前提下的,具有一定的局限性,对历史数据的获取量比较多。

胡雪花(2009)[6]首先从经济、社会、科学技术、涉外经济四个方面进行分析,建立了人才需求预测系统的指标体系,选取了32个指标,结合了相关性分析和灰度关联分析,建立了三种灰色预测模型,并在实际数据的检验下选择了等维动态GOM模型作为指标预测的最优模型。

在对指标分析建模的基础上,建立了基于灰色理论的BP神经网络人才需求预测模型,并与此前的等维GOM模型进行模型优劣比较,在此基础上,提出了基于灰色理论的Elman神经网络的改进模型。

最后实证结果表明,Elman神经网络预测模型能够结合灰色理论和神经网络两者对人才需求历史数据不足达到双重降维的优点以及充分利用各指标信息,反映人才系统动态性和指标影响的动态化,具有强线性拟合特性和较强的适用性。

通过以上研究可知,各种预测方法皆存在自身的优劣势和适用的数据条件,而至今没有学者运用科学的人才需求预测方法对医疗卫生行业乃至整个大健康产业的人才需求情况进行合理的预测工作。

因此,本文以海南省为例,尝试对海南省的大健康产业的人才需求预测进行分析,为现实研究提供可借鉴之处。

2海南省大健康产业人才需求预测指标选择多元线性回归分析方法是常用的统计学方法,它可以利用收集到的历史数据或者观察数据去尝试拟合模型,以研究学者关心的目标变量与解释变量之间的线性关系,检验解释变量的显著性特征和对模型的影响作用大小,进而可以通过两个或两个以上的变量去解释和预测另一个变量的关系。

根据劳动经济学的理论,劳动需求是一种“派生需求”,雇主之所以要雇用劳动力,是为了生产、销售产品或者提供服务以获得收益。

根据传统经济学的厂商理论,从宏观角度上看,生产函数Q=(L,K),从中可以看出,产量的增长不仅依靠资本投入的增长,也凭借着劳动力的增加或者劳动生产率的提高。

这取决于全社会的资本投资规模和科学技术革新突破带来的生产率低增长。

从微观层度来看,各个企业的劳动力需求的变化,受限于产量的变化以及工资率的变化。

而劳动力的需求变化还受到了劳动力供给的制约,除了工资因素外,还取决于所在国家或地区的人口规模、人口结构、人口流动、所处的经济周期以及其他相关制度和政策冲击的影响。

因此,依据现有的文献指标选择方法,结合各方面收集到的资料和访谈专家的意见,在考虑指标数据的易得性、适用性,以及不同行业研究对象上的差异性,本文选取了三类共20个指标进行预测分析,具体见表1。

3海南省大健康产业人才需求预测模型的构建31相关性及共线性分析本文初步以海南省卫生人员总量作为因变量(记为y1),以上述20个指标作为自变量(即X1,…,X20),运用2009—2015年的历史数据资料,建立回归预测模型。

在做回归分析之前,先利用统计软件SPSS 230中文版对海南省卫生人员总量y1与20个指标因素之间的相关程度进行考察,运用Pearson相关分析检验法,其相关系数参见表1。

从相关系数上看,在5%的置信水平下,海南省卫生人员总量与全省居民消费价格指数、全省医疗保健和个人用品消费价格指数以及全省商品零售价格指数的相关系数分别为-0136、-0115和-0250,相关性较小,可将这三种价格指数予以剔除;同时,海南省卫生人员总量和海南省全员劳动率以及海南省进口总额的相关系数虽为0553和0679,因其相关系数相对小于其他系数指标,且没有达到5%的置信水平,故依然把这两种指标剔除;除了上述剔除的5种指标因素外,其余的15种指标与海南省卫生人员总量具有极大的相关性,相关系数大,几乎都在09以上,而且都是正相关。

从这20种指标因素的相关因素上看,个别指标之间的相关系数达到了08以上,存在共线性问题,因此需要对20个自变量进行共线性诊断,共线性相关指标参见表2和表3。

由表2和表3可以看出,共线性诊断给出了容差(Tolerance)和方差膨胀因子(VIF)、特征值(Eigenvalue)、条件索引(Condition Index)和方差比例(Variance Proportions)的值。

相关文档
最新文档