2017-2018学年北京市朝阳区初一第二学期期末数学试卷(含答案)
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
【精选3份合集】2017-2018年北京市某中学七年级下学期期末考试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知不等式组3010xx->⎧⎨+≥⎩,其解集正确的是()A.﹣1≤x<3 B.﹣1<x≤3C.x>3 D.x≤﹣1【答案】C【解析】由x-3>0得x>3,由x+1≥0得x≥-1,所以不等式组的解集是x>3;故选C.点睛:本题主要是求不等式组的解集,取解集的原则是“同大取大,同小取小,大小小大中间找,大大小小无处找”,熟记这些并会应用是解题的关键.2.在国际跳水比赛中,根据规则,需要有7位裁判对选手的表现进行打分.在裁判完成打分后,总裁判会在7位裁判的打分中,去掉一个最高分,再去掉一个最低分,将剩下5位裁判的平均分作为该选手的最终得分.在总裁判去掉最高分与最低分后,一定保持不变的统计量是()A.平均分B.众数C.中位数D.最高分【答案】C【解析】根据平均分、众数、中位数等的意义进行分析判断即可.【详解】去掉一个最高分,再去掉一个最低分,平均分、众数、最高分都有可能发生变化,只有中位数不变,故选C.【点睛】本题考查了平均分、众数、中位数,正确把握各自的含义是解题的关键.3.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.4 C.﹣3 D.﹣4【答案】B【解析】试题分析:在x轴上的点的纵坐标为零,则x-4=0,解得:x=4,故选B.点睛:本题主要考查的就是象限中点的特征,属于基础题型.点在第一象限,则点的横坐标和纵坐标都是正数;点在第二象限,则点的横坐标为负数,纵坐标为正数;点在第三象限,则点的横坐标和纵坐标都是负数;点在第四象限,则点的横坐标为正数,纵坐标为负数;x轴上的点的纵坐标为零;y轴上的点的横坐标为零.4.三角形两条边的长分别是4和10,下面四个数值中可能是此三角形第三边长的为()A.5 B.6 C.11 D.16【答案】C【解析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点睛】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.5.如图,点E在AC的延长线上,下列条件中:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D+∠ABD =180º,能判断AB∥CD的是()A.①③④B.①②③C.①②④D.②③④【答案】A【解析】根据平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可得出答案.【详解】①∵∠1=∠2,∴ AB∥CD,②∵∠ 3=∠4,∴BD∥AC,③∵∠ A=∠ DCE,∴AB∥CD,④∵∠ D+∠ ABD=180°,∴ AB∥ CD,综上所述:能判断AB∥CD的有①③④ .故答案为A.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.300【解析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.7.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个【答案】C【解析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠2,不能判定l1∥l2,故本小题错误;②∵∠4=∠5,∴l1∥l2,故本小题正确;③∵∠2+∠5=180°,不能判定l1∥l2,故本小题错误;④∵∠1=∠3,∴ l1∥l2,故本小题正确;⑤∵∠6=∠1+∠2=∠3+∠2,∴∠1=∠3 ∴l1∥l2,故本小题正确.故选C.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解题关键.8.计算:(8x3﹣12x2﹣4x)÷(﹣4x)=()A.﹣2x2+3x B.﹣2x2+3x+1 C.﹣2x2+3x﹣1 D.2x2+3x+1【答案】B【解析】用多项式的每一项分别处以﹣4x即可.【详解】(8x3﹣12x2﹣4x)÷(﹣4x)=﹣2x2+3x+1.【点睛】本题考察了多项式除以单项式,其运算法则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加.9.43在两个连续整数a 和b 之间,43a b <<,那么+a b 的值是( )A .11B .13C .14D .15 【答案】B【解析】首先用“夹逼法”确定a b 、的值,进而可得+a b 的值.【详解】解:6437<<,∴6,7a b ==,∴6713a b +=+=.故选:B.【点睛】此题主要考查了估算无理数的大小,关键是正确确定a b 、的值.10.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD ∆的面积是 ( )A .15B .30C .45D .60【答案】B 【解析】作DE ⊥AB 于E ,根据角平分线的性质得到DE =DC =4,根据三角形的面积公式计算即可.【详解】解:作DE ⊥AB 于E ,由基本尺规作图可知,AD 是△ABC 的角平分线,∵∠C =90°,DE ⊥AB ,∴DE =CD =4,∴△ABD 的面积=12AB×DE =12×15×4=30, 故选:B .本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题题11.一个正数a 的平方根分别是2m ﹣1和﹣3m+52,则这个正数a 为_____. 【答案】1【解析】直接利用平方根的定义得出2m-1+(-3m+52)=0,进而求出m 的值,即可得出答案. 【详解】解:根据题意,得:2m-1+(-3m+52)=0, 解得:m=32, ∴正数a=(2×32-1)2=1, 故答案为1.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.12.将一副三角板如图叠放,则图中∠α的度数为______.【答案】15°.【解析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.13()23-3279324____________. 【答案】732-【解析】按顺序先分别进行算术平方根的运算、立方根的运算,绝对值的化简,然后再按运算顺序进行计算即可.【详解】原式=(333232---=333232--+ 732=- 故答案为:732- 【点睛】本题考查了实数的运算,熟练掌握实数运算的顺序并能正确化简各数是解题的关键.14.若不等式组21 4x axx-≥⎧⎪⎨+>-⎪⎩无解,则a的取值范围是_____.【答案】a≥1.【解析】根据解不等式组的方法可以解答此不等式组,再根据此不等式组无解,从而可以求得a的值.【详解】214x axx-≥⎧⎪⎨+>-⎪⎩①②由不等式①,得x≥a,由不等式②,得x<1,∵不等式组214x axx-≥⎧⎪⎨+>-⎪⎩无解,∴a≥1,故答案为:a≥1.【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.如图所示,直线,AB CD相交于点O,且110AOD BOC∠+∠=,则AOC∠的度数是__________.【答案】125°【解析】两直线相交,对顶角相等,即∠AOD=∠BOC,已知∠AOD+∠BOC=100°,可求∠AOD;又∠AOD 与∠AOC互为邻补角,即∠AOD+∠AOC=180°,将∠AOD的度数代入,可求∠AOC.【详解】∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又∵∠AOD+∠BOC=110°,∴∠AOD=55°.∵∠AOD与∠AOC互为邻补角,∴∠AOC=180°−∠AOD=180°−55°=125°.故答案为:125°【点睛】此题考查对顶角、邻补角,解题关键在于两直线相交,对顶角相等16.如图,AB CD ⊥,垂足为O ,直线EF 经过点O ,126∠=︒,则2∠=__︒.【答案】64°【解析】已知∠1,且∠DOF 与∠1是对顶角,可求∠DOF ,再利用∠DOF 与∠1互余,求∠1.【详解】∵∠1=16°,∠DOF 与∠1是对顶角,∴∠DOF=∠1=16°,又∵∠DOF 与∠1互余,∴∠1=90°−∠DOF=90°−16°=64°.故答案为:64°【点睛】本题考查了垂线的定义及对顶角的性质,熟练掌握性质是解题的关键.17.将一直角三角板与两边平行的纸条如图放置,已知∠2﹣∠1=30°,则∠2的度数为______.【答案】60°【解析】根据平行线的性质得∠2=∠3,再根据互余得到∠2+∠1=90°,进而得出答案.【详解】解:如图所示:∵a ∥b ,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°-∠1=∠2,∴∠2+∠1=90°,∵∠2-∠1=30°,∴∠2=60°.故答案为:60°.【点睛】本题考查了平行线性质:两直线平行,同位角相等,是基础题,熟记性质是解题的关键.三、解答题18.(1)因式分解:2(2)(2)a b b -+-(2)已知x ≠y ,且210x x -=,210y y -=,则x +y 的值. 【答案】(1)(1)(1)(2)a a b +--或(2)(1)(1)b a a -+-;(2)1x y +=【解析】利用因式分解和平方差公式。
2017-2018学年新课标最新北京市第二学期初一期末数学考试题及答案解析-精品试卷

2017-2018学年度第二学期期末检测试卷初一数学在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.1.6月5日是世界环境日.某班召开了“保护环境,从我做起”的主题班会.同学们了解到:在空气污染中,PM2.5对人体健康危害极大.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .2.5×106B .0.25×10-5 C. 2.5×10-6 D .25×10-7 2.已知a b <,则下列不等式一定成立的是A .770a b -<B .22a b -<-C .33a b >D .44a b +>+ 3.已知二元一次方程572=-y x ,用含x 的代数式表示y ,正确的是 A .257x y +=B .257x y -= C .275yx += D .572y x -= 4.下列运算正确的是A. 632)(x x = B. 33()xy xy = C. )0(4423≠=÷x y x x y x D. 422x x x =+5.已知⎩⎨⎧==11y x ,⎩⎨⎧==32y x 是关于x,y 的二元一次方程y=kx+b 的解,则k,b 的值是 A .k=1, b=0 B .k=-1, b=2 C .k=2, b=-1 D .k=-2, b=1 6.下列调查中,适合用普查方法的是A. 了解CCTV1传统文化类节目《中国诗词大会》的收视率B. 了解初一(1)班学生的身高情况C. 了解庞各庄某地块出产西瓜的含糖量D. 调查某品牌笔芯的使用寿命7.化简)3()(2b a b a +--的结果是 A .b a 2-- B .b a 3-- C .b a -- D .b a 5--8.下列变形是因式分解的是A. 8)6(862++=++x x x x B. 4)2)(2(2-=-+x x xC. )31(322x x x x +=+D. )2)(1(232--=+-x x x x9.如图,1∠和2∠不是同位角的是10.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD =70°,则∠AOF 的度数是A. 35°B. 45°C. 55°D. 65° 二、填空题(本题共8小题,每题2分,共16分) 11.用不等式表示“y 的21与5的和是正数”______________. 12.请你写出一个二元一次方程组,使它的解是x 2y 3=⎧⎨=⎩. 13. 已知a x=3,a y=4,ayx +2的值是______________.14. 分解因式:=-22ay ax ______________.15.某班气象兴趣小组的同学对北京市2016年5月份每天的最高气温做了统计,如下表:16.如图,直线l 1∥l 2,AB 与直线l 1交于点C ,BD 与直线l 2相交于点D , 若∠1=60°,∠2=50°,则∠3=______________.17.如图,利用直尺和三角尺过直线外一点画已知直线的平行线.第一步:作直线AB ,并用三角尺的一边贴住直线AB ;第二步:用直尺紧靠三角尺的另一边;第三步:沿直尺下移三角尺;第四步:沿三角尺作出直线CD.这样就得到AB ∥CD.这种画平行线的依据是______________.18.观察下列各等式:323323⨯=+()()1-211-21⨯=+⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+21-3121-31 …请你再找出一组满足以上特征的两个不相等的有理数,并写成等式形式:____________.三、解答题(本题共54分,其中第28小题4分,其余每小题5分)19. 解不等式3)12(221->-x x ,并把它的解集在数轴上表示出来.20.解不等式组523(2),12123x x x x +<+⎧⎪--⎨⎪⎩ ≤. 21. 解方程组⎩⎨⎧=+=+323732y x y x22. 计算()()2--3--21-2--10⎪⎭⎫ ⎝⎛+23.计算(x+2)(x -2)(x 2-4)24.若关于x,y 的方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的值的和等于2,求244m m -+的值.25.列方程组解应用题:2016年5月18日,国际月季洲际大会在大兴开幕.某校初一年级生物、美术等兴趣小组前去参观学习.为减少现场排队购票时间,张老师利用网络购票。
北京市朝阳区七年级(下)期末数学试卷(解析版)

北京市朝阳区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A.B.C.D.【考点】算术平方根.【专题】计算题.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:根据题意得:的算术平方根为.故答案为:.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b【考点】不等式的性质.【分析】根据不等式的基本性质对每个选项进行判断.【解答】解:a<bA、a﹣b<0,故A选项错误;B、a﹣3<b﹣3,故B选项错误;C、a<b,故C选项错误;D、﹣3a>﹣3b,故D选项正确.故选:D.【点评】此题考查的知识点是不等式的性质,关键不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.下列各数中,无理数是()A.B.3.14 C.D.5π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故A错误;B.3.14是有理数,故B错误;C、=﹣3是有理数,故C错误;D、5π是无理数,故C正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x<5﹣3,合并同类项得,2x<2,系数化为1得.x<1.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.【考点】二元一次方程的解.【专题】计算题.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:3k+6=1,解得:k=﹣,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【解答】解:A、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,是真命题;B、两条平行线被第三条直线所截,同旁内角才互补,故错误,是假命题;C、两直线平行,内错角相等,正确,是真命题;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°﹣65°=25°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、对旅客上飞机前的安检,必须准确,故必须普查;B、了解全班同学每周体育锻炼的时间,适合全面调查;C、企业招聘,对应聘人员的面试,因而采用普查合适;D、了解某批次灯泡的使用寿命情况,适合抽样调查.故选:D.【点评】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL【考点】平移的性质.【分析】根据平移的性质:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等可得答案.【解答】解:∵将△ABC进行平移得到△MNL,其中点A的对应点是点M,∴AM∥BN∥CL,AM=BN=CL,BC=NL,∴A、B、D都正确,C错误,故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)【考点】坐标与图形性质.【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.【点评】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题:(本大题共18分,每小题3分)11.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.【考点】解二元一次方程.【专题】计算题.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣7y=5,解得:x=,故答案为:【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:在同一平面内两条直线垂直于同一条直线,,结论:这两条直线平行.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:∵可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行.∴题设是在同一平面内两条直线垂直于同一条直线,结论是:这两条直线平行,故答案为:在同一平面内两条直线垂直于同一条直线,这两条直线平行;【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为(﹣1,1).【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由A(2m+1,m+2)在第二象限内,得,解得﹣2<m<﹣,点A的横坐标、纵坐标均为整数,得m=﹣1.2m+1=﹣1,m+2=1,则点A的坐标为(﹣1,1),故答案为:(﹣1,1).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是70°.【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.【解答】解:∵AB∥CD,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABF=2∠ABC=70°,∵AB∥CD,∴∠CEF=∠ABF=70°.故答案为70°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对(9,6).【考点】规律型:数字的变化类.【分析】由数表可以看出:偶数行第一个数是所在行数,平方后依次减少1;奇数行第一个数是上行数平方加1再开方,平方后依次增加1;奇数列第一个数是所在列数,平方后依次减少1;偶数列第一个数是所在上列数平方加1再开方,平方后依次增加1;由此规律得出答案即可.【解答】解:∵偶数行第一个数是所在行数,平方后依次减少1;偶数行第一个数是所在行数,平方后依次减少1;奇数列第一个数是所在列数,平方后依次减少1;∴(4,5)第5列的第一个数是5,平方后是25减去4就是第四行的数21,开方后为;∵8<<9,∴第9行的第一个数是,65+6﹣1=70,第数位置为有序数对是(9,6).故答案为:,(9,6).【点评】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共40分,每小题4分)17.计算:.【考点】实数的运算.【专题】计算题.【分析】原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果.【解答】解:原式=2﹣+﹣2=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②得:5x=10,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式:.并把解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:去分母得,3x﹣(x+4)≤6x﹣12,去括号得,3x﹣x﹣4≤6x﹣12,移项得,3x﹣x﹣6x≤﹣12+4,合并同类项得,﹣4x≤﹣8,系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.20.求不等式组:的整数解.【考点】一元一次不等式组的整数解.【分析】线求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<1,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1,0,1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1(5,1),C1(3,﹣4);(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是8.【考点】作图-平移变换.【分析】(1)根据点P平移后的点可得,△ABC先向右平移4个单位,然后向下平移3个单位得到△A1B1C1,根据点A、C的坐标,写出点A1,C1的坐标;(2)根据坐标系的特点,将点A、B、C先向右平移4个单位,然后向下平移3个单位,然后顺次连接;(3)用△ABC所在的矩形的面积减去三个小三角形的面积.【解答】解:(1)由图可得,A1(5,1),C1(3,﹣4);(2)所作图形如图所示:(3)S△A1B1C1=5×4﹣×2×4﹣×2×3﹣×2×5=20﹣4﹣3﹣5=8.故答案为:(5,1),(3,﹣4);8.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD 的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换)【考点】对顶角、邻补角;角平分线的定义.【专题】推理填空题.【分析】根据邻补角,可得方程,根据角平分线的定义,可得∠AOC的度数,根据对顶角相等,可得答案.【解答】解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换),故答案为:EOD,平角的定义,对顶角相等,36°.【点评】本题考查了对顶角、邻补角,利用邻补角得出方程是解题关键,又利用了对顶角相等.23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.【考点】估算无理数的大小.【专题】阅读型.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64,可得<<,可得3<4,可得的小数部分b=﹣3,可得a+b的值.【解答】解:∵9π≈28.26,∴a=28,∵27<28<64,∴<<,∴3<4,∴b=﹣3,∴a+b=28+﹣3=25,∴a+b的值为25.【点评】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.24.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量200,“A等级”对应扇形的圆心角度数为108°;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用D等级的人数除以对应的百分比即可得本次抽样调查的样本容量,利用“A等级”对应扇形的圆心角度数=“A等级”的百分比×360°求解即可.(2)先求出B,C等级的人数即可补全条形统计图,(3)利用体育测试成绩为“D等级”的学生人数=总人数דD等级”的学生百分比求解即可.【解答】解:(1)本次抽样调查的样本容量:10÷5%=200(名),“A等级”对应扇形的圆心角度数为(1﹣50%﹣15%﹣5%)×360°=108°,故答案为:200,108°.(2)B等级的人数为200×50%=100(名),C等级的人数为:200×15%=30(名),如图,(3)体育测试成绩为“D等级”的学生人数为10000×5%=500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).【考点】平行线的性质.【专题】推理填空题.【分析】由平行线的性质得出同位角相等,再由已知条件得出AD∥BC,即可得出结论.【解答】解:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠A+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等).故答案为:DCE;两直线平行,同位角相等.【点评】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?【考点】二元一次方程组的应用.【分析】设短跳绳单价为x元,长跳绳单价为y元,根据长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,列方程组求解.【解答】解:设短跳绳单价为x元,长跳绳单价为y元,由题意得,,解得:,答:短跳绳单价为8元,长跳绳单价为20元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 5 4000火车货运站100 1.3 5 6600 (1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?【考点】一次函数的应用.【分析】(1)根据需要花费费用为冷藏费、运输费用和装卸费用的和,分别计算用火车和用汽车花费即可解题;(2)计算用汽车和用火车运输费用一样多时s的值,即可解题.【解答】解:(1)用汽车运输,需要花费:y1=(1.5×60)x+5××60+4000=94x+4000;用火车运输,需要花费:y2=(1.3×60)x+5××60+6600=81x+6600;(2)当y1=y2时,即94x+4000=81x+6600,解得:s=200,故当s=200km时,用火车和汽车运输花费一样,当s>200km时,用火车运输比较划算,当s<200km时,用汽车运输比较划算.【点评】本题考查了一次函数的实际应用,本题中求得用汽车和用火车运输费用一样多时x 的值是解题的关键.28.夏季来临,某饮品店老板大白计划下个月(8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:8月该冰淇淋日销售量频数分布表8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800 16800≤x<900 6由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据頻数分布直方图可知800≤x<900一组的频数是6,然后根据頻数之和为31,即可求得700≤x<800一组的频数;(2)利用总销量﹣总成本=利润,进而得出答案;(3)①利用8m﹣4400<1200进而得出答案;②利用当剩余的冰淇淋打八折后全部售完以及当剩余的冰淇淋打八折后仍没人购买,分别表示出利润即可.【解答】解:(1)800≤x<900一组的频数是6,则700≤x<800一组的频数是31﹣3﹣6﹣6=16(天).;(2)该冰淇淋的制作成本是5(1+10%)=5.5(元),则平均每日的利润是:8m﹣800×5.5=8m ﹣4400;(3)①由题意可得:8m﹣4400<1200,解得:m<700,则下个月销售该冰淇淋的日利润少于1200元的天数为:3+6=9(天);②当剩余的冰淇淋打八折后全部售完,则其利润为:8m﹣800×5.5+(800﹣m)×8×0.8=14.4m+3888,当剩余的冰淇淋打八折后仍没人购买,则其利润为:8m﹣4400,故下个月因销售该冰淇淋获得月利润的范围为:8m﹣4400到14.4m+3888.【点评】此题主要考查了频数分布直方图以及利用样本估计总体以及频数分布直方图等知识,正确利用图形得出正确信息是解题关键.。
2017-2018学年度第二学期期末考试初一数学试题及答案

2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
北京市朝阳区2017-2018学年七年级下期末数学试卷含答案解析模板

2017-2018学年北京市朝阳区七年级(下)期末数学试卷一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A. B.C. D.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b3.下列各数中,无理数是()A.B.3.14 C.D.5π4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)二、填空题:(本大题共18分,每小题3分)11.化简:=.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:,结论:.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为.15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对.三、解答题(本大题共40分,每小题4分)17.计算:.18.解方程组:.19.解不等式:.并把解集在数轴上表示出来.20.求不等式组:的整数解.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC 作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1,C1;(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠=180°(),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(),∴∠BOD=(等量代换)23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.24.为了解某区2018年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量,“A等级”对应扇形的圆心角度数为;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠().∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?28.夏季来临,某饮品店老板大白计划下个月(2018年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2017年8月该冰淇淋日销售量频数分布表2017年8月该冰淇淋日销售量频数分布直方图由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.2017-2018学年北京市朝阳区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A. B.C. D.【考点】算术平方根.【专题】计算题.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:根据题意得:的算术平方根为.故答案为:.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b【考点】不等式的性质.【分析】根据不等式的基本性质对每个选项进行判断.【解答】解:a<bA、a﹣b<0,故A选项错误;B、a﹣3<b﹣3,故B选项错误;C、a<b,故C选项错误;D、﹣3a>﹣3b,故D选项正确.故选:D.【点评】此题考查的知识点是不等式的性质,关键不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.下列各数中,无理数是()A.B.3.14 C.D.5π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故A错误;B.3.14是有理数,故B错误;C、=﹣3是有理数,故C错误;D、5π是无理数,故C正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x<5﹣3,合并同类项得,2x<2,系数化为1得.x<1.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.【考点】二元一次方程的解.【专题】计算题.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:3k+6=1,解得:k=﹣,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【解答】解:A、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,是真命题;B、两条平行线被第三条直线所截,同旁内角才互补,故错误,是假命题;C、两直线平行,内错角相等,正确,是真命题;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°﹣65°=25°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、对旅客上飞机前的安检,必须准确,故必须普查;B、了解全班同学每周体育锻炼的时间,适合全面调查;C、企业招聘,对应聘人员的面试,因而采用普查合适;D、了解某批次灯泡的使用寿命情况,适合抽样调查.故选:D.【点评】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL【考点】平移的性质.【分析】根据平移的性质:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等可得答案.【解答】解:∵将△ABC进行平移得到△MNL,其中点A的对应点是点M,∴AM∥BN∥CL,AM=BN=CL,BC=NL,∴A、B、D都正确,C错误,故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)【考点】坐标与图形性质.【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.【点评】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题:(本大题共18分,每小题3分)11.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.【考点】解二元一次方程.【专题】计算题.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣7y=5,解得:x=,故答案为:【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:在同一平面内两条直线垂直于同一条直线,,结论:这两条直线平行.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:∵可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行.∴题设是在同一平面内两条直线垂直于同一条直线,结论是:这两条直线平行,故答案为:在同一平面内两条直线垂直于同一条直线,这两条直线平行;【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为(﹣1,1).【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由A(2m+1,m+2)在第二象限内,得,解得﹣2<m<﹣,点A的横坐标、纵坐标均为整数,得m=﹣1.2m+1=﹣1,m+2=1,则点A的坐标为(﹣1,1),故答案为:(﹣1,1).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是70°.【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.【解答】解:∵AB∥CD,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABF=2∠ABC=70°,∵AB∥CD,∴∠CEF=∠ABF=70°.故答案为70°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对(9,6).【考点】规律型:数字的变化类.【分析】由数表可以看出:偶数行第一个数是所在行数,平方后依次减少1;奇数行第一个数是上行数平方加1再开方,平方后依次增加1;奇数列第一个数是所在列数,平方后依次减少1;偶数列第一个数是所在上列数平方加1再开方,平方后依次增加1;由此规律得出答案即可.【解答】解:∵偶数行第一个数是所在行数,平方后依次减少1;偶数行第一个数是所在行数,平方后依次减少1;奇数列第一个数是所在列数,平方后依次减少1;∴(4,5)第5列的第一个数是5,平方后是25减去4就是第四行的数21,开方后为;∵8<<9,∴第9行的第一个数是,65+6﹣1=70,第数位置为有序数对是(9,6).故答案为:,(9,6).【点评】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共40分,每小题4分)17.计算:.【考点】实数的运算.【专题】计算题.【分析】原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果.【解答】解:原式=2﹣+﹣2=﹣. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②得:5x=10,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式:.并把解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:去分母得,3x﹣(x+4)≤6x﹣12,去括号得,3x﹣x﹣4≤6x﹣12,移项得,3x﹣x﹣6x≤﹣12+4,合并同类项得,﹣4x≤﹣8,系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.20.求不等式组:的整数解.【考点】一元一次不等式组的整数解.【分析】线求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<1,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1,0,1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC 作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1(5,1),C1(3,﹣4);(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是8.【考点】作图-平移变换.【分析】(1)根据点P平移后的点可得,△ABC先向右平移4个单位,然后向下平移3个单位得到△A1B1C1,根据点A、C的坐标,写出点A1,C1的坐标;(2)根据坐标系的特点,将点A、B、C先向右平移4个单位,然后向下平移3个单位,然后顺次连接;(3)用△ABC所在的矩形的面积减去三个小三角形的面积.【解答】解:(1)由图可得,A1(5,1),C1(3,﹣4);(2)所作图形如图所示:(3)S△A1B1C1=5×4﹣×2×4﹣×2×3﹣×2×5=20﹣4﹣3﹣5=8.故答案为:(5,1),(3,﹣4);8.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换)【考点】对顶角、邻补角;角平分线的定义.【专题】推理填空题.【分析】根据邻补角,可得方程,根据角平分线的定义,可得∠AOC的度数,根据对顶角相等,可得答案.【解答】解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换),故答案为:EOD,平角的定义,对顶角相等,36°.【点评】本题考查了对顶角、邻补角,利用邻补角得出方程是解题关键,又利用了对顶角相等.23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.【考点】估算无理数的大小.【专题】阅读型.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64,可得<<,可得3<4,可得的小数部分b=﹣3,可得a+b的值.【解答】解:∵9π≈28.26,∴a=28,∵27<28<64,∴<<,∴3<4,∴b=﹣3,∴a+b=28+﹣3=25,∴a+b的值为25.【点评】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.24.为了解某区2018年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量200,“A等级”对应扇形的圆心角度数为108°;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用D等级的人数除以对应的百分比即可得本次抽样调查的样本容量,利用“A等级”对应扇形的圆心角度数=“A等级”的百分比×360°求解即可.(2)先求出B,C等级的人数即可补全条形统计图,(3)利用体育测试成绩为“D等级”的学生人数=总人数דD等级”的学生百分比求解即可.【解答】解:(1)本次抽样调查的样本容量:10÷5%=200(名),“A等级”对应扇形的圆心角度数为(1﹣50%﹣15%﹣5%)×360°=108°,故答案为:200,108°.(2)B等级的人数为200×50%=100(名),C等级的人数为:200×15%=30(名),如图,(3)体育测试成绩为“D等级”的学生人数为10000×5%=500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).【考点】平行线的性质.【专题】推理填空题.【分析】由平行线的性质得出同位角相等,再由已知条件得出AD∥BC,即可得出结论.【解答】解:∵AB∥CD (已知),∴∠B=∠DCE ( 两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠A+∠B=180°,∴AD ∥BC (同旁内角互补,两直线平行),∴∠E=∠DFE (两直线平行,内错角相等).故答案为:DCE ;两直线平行,同位角相等.【点评】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?【考点】二元一次方程组的应用.【分析】设短跳绳单价为x 元,长跳绳单价为y 元,根据长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,列方程组求解.【解答】解:设短跳绳单价为x 元,长跳绳单价为y 元,由题意得,,解得:, 答:短跳绳单价为8元,长跳绳单价为20元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A 地运到B 地.已知汽车和火车从A 地到B 地的运输路程都是x 千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?【考点】一次函数的应用.【分析】(1)根据需要花费费用为冷藏费、运输费用和装卸费用的和,分别计算用火车和用汽车花费即可解题;(2)计算用汽车和用火车运输费用一样多时s的值,即可解题.【解答】解:(1)用汽车运输,需要花费:y1=(1.5×60)x+5××60+4000=94x+4000;用火车运输,需要花费:y2=(1.3×60)x+5××60+6600=81x+6600;(2)当y1=y2时,即94x+4000=81x+6600,解得:s=200,故当s=200km时,用火车和汽车运输花费一样,当s>200km时,用火车运输比较划算,当s<200km时,用汽车运输比较划算.【点评】本题考查了一次函数的实际应用,本题中求得用汽车和用火车运输费用一样多时x的值是解题的关键.28.夏季来临,某饮品店老板大白计划下个月(2018年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2017年8月该冰淇淋日销售量频数分布表2017年8月该冰淇淋日销售量频数分布直方图由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据頻数分布直方图可知800≤x<900一组的频数是6,然后根据頻数之和为31,即可求得700≤x<800一组的频数;(2)利用总销量﹣总成本=利润,进而得出答案;(3)①利用8m﹣4400<1200进而得出答案;②利用当剩余的冰淇淋打八折后全部售完以及当剩余的冰淇淋打八折后仍没人购买,分别表示出利润即可.【解答】解:(1)800≤x<900一组的频数是6,则700≤x<800一组的频数是31﹣3﹣6﹣6=16(天).。
北京市朝阳区2017-2018学年七年级下期末考试数学试题(含答案)

北京市朝阳区2017~2018学年度第二学期期末检测七年级数学试卷 (选用) 2018.7学校_________________ 班级___________ 姓名_________________ 考号_________________一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.41的算术平方根为 A.161B.21 C. 21 D. 21-2.下列调查中,适合抽样调查的是A. 了解某班学生的身高情况B. 检测朝阳区的空气质量C. 选出某校短跑最快的学生参加全市比赛D. 全国人口普查3.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面右侧的四个图中,能由图1经过平移得到的是图1 A B C D4. 二元一次方程52=-y x 的解是A.⎩⎨⎧=-=1,2y xB. ⎩⎨⎧==5,0y xC. ⎩⎨⎧==3,1y xD.⎩⎨⎧==1,3y x5. 如图,O 为直线 AB 上一点,OE 平分∠BOC ,OD ⊥OE 于点 O , 若∠BOC =80°,则∠AOD 的度数是 A. 70° B. 50° C. 40° D. 35°6. 下列命题中,真命题是A .两个锐角的和一定是钝角B .相等的角是对顶角C .带根号的数一定是无理数D .垂线段最短7. 如果a >b ,那么下列不等式成立的是A .a -b <0B .a -3<b -3C .-3a <-3bD .1133<a b8.为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量为不低于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理...的是 A. 本次抽样调查的样本容量为50B. 估计该小区按第一档电价交费的居民户数最多C. 该小区按第二档电价交费的居民有220户D. 该小区按第三档电价交费的居民比例约为6%二、填空题(本题共16分,每小题2分)9. 点(-2,3)到x 轴的距离为___.10. 若()0112=-++y x ,则x+y = ___.11. 如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是___.第11题图 第12题图12.为了培养学生社会主义核心价值观,朝阳区中小学生一直坚持参观天安门广场的升旗仪式.如图是利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,表示金水桥的点的坐标为(1,-2),表示本仁殿的点的坐标为(3,-1),则表示乾清门的点的坐标是 .13.如果点P (6,1+m )在第四象限, 写出一个符合条件的m 的值:m= .14.如图,AB ∥CD ,一副三角尺按如图所示放置, ∠AEG =20度,则 ∠HFD 为 度.15.为了估计一个鱼池中鱼的条数,采用了如下方法:先从鱼池的不同地方捞出 40 条鱼,给这些鱼做上记号后放回鱼池,过一段时间后,在同样的地方捞出 200 条鱼,其中有记号的鱼有 4条.请你估计鱼池中鱼的条数约为 条.16. 数学课上,老师请同学们思考如下问题:小军同学的画法如下:老师说,小军的画法正确. 请回答:小军画图的依据是:____.三、解答题(本题共60分,第17-18题每题4分,第19-26题每题5分,第27-28题每题6分)17. 计算:3-153-8-23++)(.18. 解不等式2(41)58x x --≥,并把它的解集在数轴上表示出来.如图,过点A 画直线a 的平行线.如图,在直线a 上任取一点B ,过点B 画直线a 的垂线b ; 过点A 画直线b 的 垂线c .直线c 即为所求.19.解方程组:⎩⎨⎧=+=-.533y x y x ,20. 解不等式组:436,473.2x x x x --⎧⎪⎨--⎪⎩≥>21.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移 1 个单位长度得到三角形 AʹBʹCʹ ,点A ,B ,C 的对应点分别为 Aʹ,Bʹ,Cʹ.(1)写出点 Aʹ,Bʹ,Cʹ 的坐标; (2)在图中画出平移后的三角形 AʹBʹCʹ ; (3)三角形 AʹBʹCʹ 的面积为 .22. 某家商店的账目记录显示,某天卖出6件甲商品和3件乙商品,收入108元;另一天,以同样价格卖出5件甲商品和1件乙商品,收入84元.问每件甲商品和乙商品的售价各是多少元?23. 按要求完成下列证明:已知:如图,AB∥CD,直线AE交CD于点C,∠BAC+∠CDF=180°.求证:AE∥DF.证明:∵AB∥CD(),∴∠BAC=∠DCE().∵∠BAC+∠CDF=180°(已知),∴ +∠CDF=180°().∴AE∥DF().24.阅读下列材料:近五年,我国对外贸易发展迅速.据海关统计,2017年我国进出口总额为27.8万亿元,比2016年增长14.4%,其中2017年进口额12.5万亿元,比2016年增长19.0%.2013---2016年我国进出口额数据如下表:年份2013 2014 2015 2016出口额/万亿元13.7 14.4 14.1 13.8进口额/万亿元12.1 12.0 10.4 10.5(1)2017年我国出口额为万亿元;(2)请选择适当的统计图描述2013---2017年我国出口额,并在图中标明相应数据;(3)通过(2)中的统计图判断:2013---2017年我国出口额比上一年增长最多的是年.25.在四边形ABCD中,AD∥BC,E为AB边上一点,∠BCE=15°,EF∥AD交DC于点F.(1)依题意补全图形,求∠FEC的度数;(2)若∠A=140°,求∠AEC的度数.26.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论: 若A -B >0,则A >B ; 若A -B =0,则A =B ; 若A -B <0,则A <B.下面是小明利用这个结论解决问题的过程:试比较3与223-的大小. 解:∵3(223)--322-3+==2322->0, ∴3 223-. 回答下面的问题:(1)请完成小明的解题过程;(2)试比较222(34)3x xy y -+-与223682x xy y -+-的大小(写出相应的解答过程).27.如图,在平面直角坐标系xOy 中,长方形ABCD 的四个顶点分别为(1,1),(1,2),(-2,2),(-2,1).对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘以同一个实数a ,纵坐标都乘以3,再将得到的点向右平移m (m >0)个单位,向下平移2个单位,得到长方形A´B´C´D´及其内部的点,其中点A ,B ,C ,D 的对应点分别为A´,B´,C´,D´. (1)点A 的横坐标为_____(用含a ,m 的式子表示).(2)点A´的坐标为(3,1),点C´的坐标为(-3,4), ①求a ,m 的值;②若对长方形ABCD 内部(不包括边界)的点E (0,y )进行上述 操作后,得到的对应点E ´仍然在长方形ABCD 内部(不包括边界), 求y 的取值范围.28. 对于平面直角坐标系xOy 中的点A ,给出如下定义:若存在点B (不与点A 重合,且直线AB 不与坐标轴平行或重合),过点A 作直线m ∥x 轴,过点B 作直线n ∥y 轴,直线m ,n 相交于点C.当线段AC ,BC 的长度相等时,称点B 为点A 的等距点,称三角形ABC 的面积为点A 的等距面积. 例如:如图,点A (2,1),点B (5,4),因为AC = BC =3,所以B为点A 的等距点,此时点A 的等距面积为92. (1)点A 的坐标是(0,1),在点B 1(-1,0),B 2(2,3),B 3(-1,-1)中,点A 的等距点为 .(2)点A 的坐标是(-3,1),点A 的等距点B 在第三象限,①若点B 的坐标是⎪⎭⎫ ⎝⎛2129,--,求此时点A 的等距面积;②若点A 的等距面积不小于98,求此时点B 的横坐标t 的取值范围.北京市朝阳区2017~2018学年度第二学期期末检测七年级数学试卷参考答案及评分标准2018.7一、选择题(本题共24分,每小题3分)二、填空题(本题共16分,每小题2分)三、解答题(本题共60分,第17-18题每题4分,第19-26题每题5分,第27-28题每题6分) 17.解:原式-2-3+5+3-1=2=.18.解:去括号,得28-x ≥85-x . 移项,得x x 58-≥28+-. 合并,得x 3≥6-. 系数化为1,得2x -≥. 不等式的解集在数轴上表示如下:19.解:3, 3 5. x y x y -=⎧⎨+=⎩①②①+②,得48x =. 解得2x =. 把2x =代入①中,得23y -=. 解得-1y =.答案 3 0 π-(1,3) 题号13141516答案答案不唯一.例如:2-=m35 2000在同一平面内,过一点有且只有一条直线与已知直线垂直;垂直定义;同位角相等,两直线平行∴原方程组的解是2,-1. xy=⎧⎨=⎩20.解:43,473.2x xxx-⎧⎪⎨--⎪⎩≥-6①>②解不等式①,得1x-≥.解不等式②,得12x<.∴原不等式组的解集为112x-≤<.21.解:(1)()13,-'A,()42,B',()51,-'C.(2)平移后的图形如图所示.(3)7.22.解:设每件甲商品的售价为x元,每件乙商品的售价为y元.根据题意,得⎩⎨⎧=+=+.84510836yxyx,解得16,4.xy=⎧⎨=⎩答:每件甲商品的售价为16元,每件乙商品的售价为4元.23.证明:∵AB∥CD(已知),∴∠BAC=∠DCE(两直线平行,同位角相等).∵∠BAC+∠CDF=180°(已知),∴∠DCE+∠CDF=180°(等量代换).∴AE∥DF(同旁内角互补,两直线平行).24.解:(1)15.3.(2)答案不唯一.例如:2013-2017年我国出口额统计图(3)2017.25.解:(1)补全的图形如图所示.∵AD ∥BC ,EF ∥AD ,∴EF ∥BC .∴∠FEC =∠BCE .∵∠BCE =15°,∴∠FEC =15°.(2)∵EF ∥AD ,∴∠AEF +∠A =180°.∵∠A =140°,∴∠AEF =40°.∴∠AEC =55°.26.解:(1)>.(2)()22222(34)33682x xy y x xy y -+---+- 222226833682x xy y x xy y =-+--+-+2 1.x =--∵210x --<,∴()22222(34)336820.x xy y x xy y -+---+-<∴22222(34)3368 2.x xy y x xy y -+--+-<27.解:(1)m a +. (2)①由)11(,A ,)13(,A '可得3=+m a .① 由)22-(,C ,)43-(,C '可得32-=+-m a .② 由①,②得⎩⎨⎧-=+-=+.32,3m a m a 解得 2,1.a m =⎧⎨=⎩ ∴2,a = 1.m =②根据题意,得'(1,32)E y -.可知无论y 取何值,点'E 一定落在AB 上.所以不存在满足题意的y 值.28.解:(1)B 1, B 2 .(2)①如图,根据题意,可知AC ⊥BC .∵A (-3,1),B (29-,21-), ∴AC =BC =23. ∴三角形ABC 的面积为8921=⋅BC AC .∴点A 的等距面积为89.点B 的横坐标t 的取值范围是92t ≤-或302t -≤<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区2017~2018学年度第二学期期末检测七年级数学试卷(选用)2018.7学校_________________ 班级___________ 姓名_________________ 考号_________________ 考生须知1.本试卷共8页,28道小题,满分100分,闭卷考试,时间90分钟.2.在试卷和答题卡上认真填写学校、班级、姓名、考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡、草稿纸一并交回.一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有..一个.1.41的算术平方根为A.161B.21± C.21D.21-2.下列调查中,适合抽样调查的是A. 了解某班学生的身高情况B. 检测朝阳区的空气质量C. 选出某校短跑最快的学生参加全市比赛D. 全国人口普查3.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面右侧的四个图中,能由图1经过平移得到的是图1 A B C D4. 二元一次方程52=-yx的解是A.⎩⎨⎧=-=1,2yxB.⎩⎨⎧==5,0yxC.⎩⎨⎧==3,1yxD.⎩⎨⎧==1,3yx5. 如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是A. 70°B. 50°C. 40°D. 35°6. 下列命题中,真命题是A.两个锐角的和一定是钝角 B.相等的角是对顶角C.带根号的数一定是无理数 D.垂线段最短7. 如果a >b ,那么下列不等式成立的是A .a -b <0B .a -3<b -3C .-3a <-3bD .1133<a b8.为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量为不低于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理...的是 A. 本次抽样调查的样本容量为50B. 估计该小区按第一档电价交费的居民户数最多C. 该小区按第二档电价交费的居民有220户D. 该小区按第三档电价交费的居民比例约为6%二、填空题(本题共16分,每小题2分)9. 点(-2,3)到x 轴的距离为___.10. 若()0112=-++y x ,则x+y = ___.11. 如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B ,则点B 表示的数是___.第11题图 第12题图12.为了培养学生社会主义核心价值观,朝阳区中小学生一直坚持参观天安门广场的升旗仪式.如图是利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 轴、 轴的正方向,表示金水桥的点的坐标为(1,-2),表示本仁殿的点的坐标为(3,-1),则表示乾清门的点的坐标是 .13.如果点P (6,1+m )在第四象限, 写出一个符合条件的m 的值:m= .14.如图,,一副三角尺按如图所示放置, ∠AEG =20度,则 为 度.15.为了估计一个鱼池中鱼的条数,采用了如下方法:先从鱼池的不同地方捞出 40 条鱼,给这些鱼做上记号后放回鱼池,过一段时间后,在同样的地方捞出 200 条鱼,其中有记号的鱼有 4条.请你估计鱼池中鱼的条数约为条.16. 数学课上,老师请同学们思考如下问题: 小军同学的画法如下:老师说,小军的画法正确. 请回答:小军画图的依据是:____.三、解答题(本题共60分,第17-18题每题4分,第19-26题每题5分,第27-28题每题6分)17. 计算:3-153-8-23++)(.18. 解不等式2(41)58x x --≥,并把它的解集在数轴上表示出来.19.解方程组:⎩⎨⎧=+=-.533y x y x ,20. 解不等式组:436,473.2x x x x --⎧⎪⎨--⎪⎩≥>如图,过点A 画直线a 的平行线.如图,在直线a 上任取一点B ,过点B 画直线a 的垂线b ; 过点A 画直线b 的 垂线c .直线c 即为所求.21.如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移个单位长度得到三角形,点A,B,C的对应点分别为,,.(1)写出点,,的坐标;(2)在图中画出平移后的三角形;(3)三角形的面积为.22. 某家商店的账目记录显示,某天卖出6件甲商品和3件乙商品,收入108元;另一天,以同样价格卖出5件甲商品和1件乙商品,收入84元.问每件甲商品和乙商品的售价各是多少元?23. 按要求完成下列证明:已知:如图,AB∥CD,直线AE交CD于点C,∠BAC+∠CDF=180°.求证:AE∥DF.证明:∵AB∥CD(),∴∠BAC=∠DCE().∵∠BAC+∠CDF=180°(已知),∴ +∠CDF=180°().∴AE∥DF().24.阅读下列材料:近五年,我国对外贸易发展迅速.据海关统计,2017年我国进出口总额为27.8万亿元,比2016年增长14.4%,其中2017年进口额12.5万亿元,比2016年增长19.0%.2013---2016年我国进出口额数据如下表:年份 2013 2014 2015 2016 出口额/万亿元 13.7 14.4 14.1 13.8 进口额/万亿元12.112.010.410.5(1)2017年我国出口额为 万亿元;(2)请选择适当的统计图描述2013---2017年我国出口额,并在图中标明相应数据;(3)通过(2)中的统计图判断:2013---2017年我国出口额比上一年增长最多的是 年.25.在四边形ABCD 中,AD ∥BC ,E 为AB 边上一点, ∠BCE =15°,EF ∥AD 交DC 于点F . (1)依题意补全图形,求∠FEC 的度数; (2)若∠A =140°,求∠AEC 的度数.26.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论: 若A -B >0,则A >B ; 若A -B =0,则A =B ; 若A -B <0,则A <B.下面是小明利用这个结论解决问题的过程:试比较3与223-的大小. 解:∵3(223)--322-3+==2322->0, ∴3 223-. 回答下面的问题:(1)请完成小明的解题过程;(2)试比较222(34)3x xy y -+-与223682x xy y -+-的大小(写出相应的解答过程).27.如图,在平面直角坐标系xOy 中,长方形ABCD 的四个顶点分别为(1,1),(1,2),(-2,2),(-2,1).对该长方形及其内部的每一个点都进行如下操作:把每个点的横坐标都乘以同一个实数a ,纵坐标都乘以3,再将得到的点向右平移m (m >0)个单位,向下平移2个单位,得到长方形A´B´C´D´及其内部的点,其中点A ,B ,C ,D 的对应点分别为A´,B´,C´,D´. (1)点A 的横坐标为_____(用含a ,m 的式子表示). (2)点A´的坐标为(3,1),点C´的坐标为(-3,4), ①求a ,m 的值;②若对长方形ABCD 内部(不包括边界)的点E (0,y )进行上述 操作后,得到的对应点E ´仍然在长方形ABCD 内部(不包括边界), 求y 的取值范围.28. 对于平面直角坐标系xOy 中的点A ,给出如下定义:若存在点B (不与点A 重合,且直线AB 不与坐标轴平行或重合),过点A 作直线m ∥x 轴,过点B 作直线n ∥y 轴,直线m ,n 相交于点C.当线段AC ,BC 的长度相等时,称点B 为点A 的等距点,称三角形ABC 的面积为点A 的 等距面积. 例如:如图,点A (2,1),点B (5,4),因为AC = BC =3,所以B 为点A 的等距点,此时点A 的等距面积为92. (1)点A 的坐标是(0,1),在点B 1(-1,0),B 2(2,3),B 3(-1,-1)中,点A 的等距点为 .(2)点A 的坐标是(-3,1),点A 的等距点B 在第三象限,①若点B 的坐标是⎪⎭⎫ ⎝⎛2129,--,求此时点A 的等距面积;②若点A 的等距面积不小于98,求此时点B 的横坐标t 的取值范围.备用图更多初中数学资料,初中数学试题精解请微信关注。