初一数学下册期末试卷有答案

合集下载

2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)

2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。

()2. 一个数既是偶数又是奇数。

()3. 任何两个数的和都是正数。

()4. 任何两个数的差都是负数。

()5. 任何两个数的积都是正数。

()三、填空题(每题1分,共5分)1. 5的平方根是______。

2. 下列数中,最大的是______(2,3,0,5)。

3. 两个相邻的自然数之和是______。

4. 下列数中,最小的数是______(3,4,2,1)。

5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。

四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。

2. 请简述什么是绝对值。

3. 请简述什么是分数。

4. 请简述什么是比例。

5. 请简述什么是方程。

五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。

2. 若一个数的三分之一是4,求这个数。

3. 若一个数的二分之一是5,求这个数。

4. 若一个数的四分之一是3,求这个数。

5. 若一个数的五分之一是2,求这个数。

六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。

2. 请分析什么是反比例函数,并举例说明。

七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。

2. 请用尺规作一个半径为3cm的圆。

八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

七年级下学期期末考试数学试卷(附有答案)

七年级下学期期末考试数学试卷(附有答案)

a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

七年级下册数学期末试卷及答案

七年级下册数学期末试卷及答案

七年级下册数学期末试卷及答案一、选择题(此题共10小题,每题3分,共30分)1.(3分)以下各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有( )A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数的定义(无理数是指无限不循环小数)判断即可.解答:解:无理数有,0.101001…(中间0依次递增),﹣π,共3个,应选C.点评:考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.2.(3分)(xx?北京):如图AB∥CD,CE平分∠ACD,∠A=110°,那么∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平行线的性质;角平分线的定义.专题:计算题.分析:此题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进展做题.解答:解:∵AB∥CD,根据两直线平行,同旁内角互补.得:∴∠ACD=180°﹣∠A=70°.再根据角平分线的定义,得:∠ECD= ∠ACD=35°.应选D.点评:考查了平行线的性质以及角平分线的概念.3.(3分)以下调查中,适宜采用全面调查方式的是( )A. 了解我市的空气污染情况B. 了解电视节目《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某工厂生产的一批手表的防水性能考点:全面调查与抽样调查.分析:由普查得到的调查结果比拟准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比拟近似.解答:解:A、不能全面调查,只能抽查;B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;C、人数不多,容易调查,适合全面调查;D、数量较大,适合抽查.应选C.点评:此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进展普查、普查的意义或价值不大时,应选择抽样调查,对于准确度要求高的调查,事关重大的调查往往选用普查.4.(3分)一元一次不等式组的解集在数轴上表示为( )A. B. C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,在数轴上表示为:应选B.点评:此题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原那么是解答此题的关键.5.(3分)二元一次方程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解二元一次方程.专题:计算题.分析:将x=1,2,3,…,代入方程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;那么方程的正整数解有3个.应选B点评:此题考查了解二元一次方程,注意x与y都为正整数.6.(3分)假设点P(x,y)满足xy<0,x<0,那么P点在( )A. 第二象限B. 第三象限C. 第四象限D. 第二、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进展判断.解答:解:∵xy<0,x<0,∴y>0,∴点P在第二象限.应选A.点评:此题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四局部,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,那么∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平行线的性质.分析:过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.应选B.点评:此题考查了平行线的性质,解答此题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.8.(3分) 是方程组的解,那么是以下哪个方程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:二元一次方程组的解;二元一次方程的解.。

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案
1.计算a÷a
A.a2B.a3C.a-3D.a 9
2 如果a<b,则下列各式中成立的是
A.a+4>b+4 B.2+3a>2+3b C.a-b>b-6D.-3a>-3b
3.已知
2
1
x
y
=-


=

是方程mx+y=3的解,m的值是
A.2 B.-2 C.1 D.-1
4.2009年5月26日,中国一新加坡工业园区开发建设15周年,在这15年间实际利用外资16 0美元,用科学记数法表示为
A.1.62×108美元B.1.62×1010美元C.162×108美元D.0.162×1011美元
5.为了解我市中学生中15岁女生的身高状况,随机抽商了10个学校的200名15岁女生的身高,则下列表述正确的是
A.总体指我市全体15岁的女中学生B.个体是10个学校的女生
C.个体是200名女生的身高D.抽查的200名女生的身高是总体的一个样本
6.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有
A.4个B.5个C.6个D.无数个
7.下列说法正确的是
A.调查某灯泡厂生产的10000只灯泡的使用寿命不宜用普查的方式.
B.2012年奥运会刘翔能夺得男子110米栏的冠军是必然事件.
C.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行.
D.某种彩票中奖的概率是1%,买100.张该种彩票一定会中奖.
8.下列条件中,不能判定△AB C≌△A′B′C′的是
A.∠A=∠A,∠C=∠C,AC=A′C′
B.∠C=∠C′=90°,BC=B′C′,AB=A′B′
C.∠A=∠A′=80°,∠B=60°,∠C′=40°,AB=A′B′
D.∠A=∠A,BC=B′C′,AB=A′B′
9.火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形可变成的象形文字是
10.现有纸片:l张边长为a的正方形,2张边长为b的正方形,3张宽为a、长为b的长方形,用这6张纸片重新拼出一个长方形,那么该长方形的长为:
A.a+b B.a-+2b C.2a+b D.无法确定
二、填空题(本大题共10小题,每小题2分,共20分)请把最后结果填在题中横线上.
11.3x-5>5x+3的解集_______________.
12.分解因式:2x2-18=______________.
13.已知,
2
53
x y k
x y k
+=


-=+

如果x与y互为相反数,那么k=___________.
14.不等式1223
x ->-的最大整数解是____________. 15.要使右图饺接的六边形框架形状稳定,至少需要添加_________条对角线.
16.一次测验中共有20道题,规定答对一题得5分,答错或不答均得负2分,某同学在这次测验中共得
79分.则该生答对_________题。

17.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某
一指令规定:机器人先向前行走1米,然后互转45°,若机器人反复执
行这一指令,则从出发到第一次回到原处,机器人共走了___________米.
18.如图,a ∥b,∠1=70°,∠2=35°,则∠3=___________°.
19.下列各式是个位数位5的整数的平方运算:
152225;252=625;352=1225;452=2025;552=3025;652=4225;………;99952=…
观察这些数都有规律,试利用该规律直接写出99952运算的结果为____________.
20.如图(见上),方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三
角形,图中与△ABC 全等的格点三角形共有_________个(不含△ABC).
三、解答题(本大题共11小题,共60分,解答应写出必要的计算过程、推演步骤或文字说明)
21.(本小题5分)先化简,再求值:(x -y) 2+(x+y)(x -y ),其中x=3,y=-1.
22.(本小题5分)计算()()()2
020*********.2510-⎛⎫--+-⨯- ⎪⎝⎭ 23.(本小题5分)解不等式:42123
x x ++≥-,并把它的解集在数轴上表示出来. 24.(本小题5分)解方程组:132324
x y x y ⎧-=⎪⎨⎪+=-⎩
25.(本小题5分)
已知:如图,AD ∥BE ,∠1=∠2.求证:∠A=∠E .
26.(本小题5分)光明中学积极向应“阳光体育工程”的号召,利用课外活动时间抽测了七年级1班学
生的体育成绩,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
项目选择情况统计图 训练后篮球定时定点投篮测试进球数统计表 进球数(个)
8 7 6 5 4 3 人 数
2 1
3 7 8 3
请你根据图表中的信息回答下列问题:
(1)本次测试的样本是__________________________________________.
(2)选择长跑训练的人数占全班人数的百分比是________,该班共有同学_________人.
(3)如果规定训练后篮球定时定点投篮进球6个以上(含6个)才算及格,则该班级篮球定时定点投篮的及格率为_________.
(4)针对学生目前的身体状况,你有何合理化的建议?
27.(本小题5分)如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,AE=CE ,
AB 与CF 有什么位置关系?说明你的理由.
28.(小题6分)为了解学生的身体素质,某校体育教师对初中学生进行引体向上测试,将所得的数据进
行整理,画出统计图,图中从左到右依次为第1、2、3、4、5组,
(1)求抽取了多少名学生参加测试;
(2)引体向上处于哪个次数段的学生人数最多;
(3)若次数在5次(含5次)以上为达标,任取一名学生,求该学生测试达标的概率.
29.(本小题6分)按照指定要求画图
(1)如下图1所示,黑粗线把一个由18个小正方形组成的图形分割成两个全等图形,请在图2中,
仿图1沿着虚线用四种不同的画法,把每图形分割成两个全等图形.
(2)请将下面由16个小正方形组成的图形,用两种不同的画法沿正方形的网格线用粗线把它分割成
两个全等图形
30.(本小题6分)去年5月12日四川汶川发生特大地震灾害后,全国人民万众一心,众志成城,支援四川灾区.某救灾物资中转站现库存救灾物资500吨,每天还源源不断有救灾物资从全国各地运来.若每天安排10辆货车转运这些救灾物资,10天可将库存物资运完,使后来的物资做到随到随运.若每天安排15辆货车转运这些救灾物资,5天可将库存物资运完,使后来的物资做到随到随运.假设每辆货车每天的装运量相同,每天从全国各地进入这个中转站的救灾物资吨数是一个固定值.求每辆货车每天运送多少吨救灾物资?每天从全国各地进入这个中转站的救灾物资有多少吨?31.(本小题7分)为了有效的使用好资源,某市电业局从2002年l月起进行居民峰谷用电试点,每天8:00~21:00用一度电位0.56元(峰电价),21:00~次日8:00用一度电为0.35元(谷电价),而目前不使用“峰谷”’电的居民用一度电为0.53元
(1)同学小丽家某月使用“峰谷电”后,应支付电费99.4元,已知“峰电”度数占总用电度数的70%,
请你计算一下,小丽家当月使用“峰电”和“谷电”各多少度?
(2)假设小丽家该月用电210度,请你计算一下:当“峰电”用电量不超过多少度时,使用“峰谷”
电合算?。

相关文档
最新文档