2020年初一数学期末试卷

合集下载

2020—2021学年第一学期七年级期末考试数学试卷

2020—2021学年第一学期七年级期末考试数学试卷

2020—2021学年第一学期七年级期末考试数学试卷(卷面分值:150分 考试时间:120分钟)注意事项:1. 本试卷共4页。

答题前,请考生在试卷密封区内规定的位置上认真填写科目、姓名、准考证号、考场号。

2. 答题时必须使用黑色或蓝色钢笔、圆珠笔。

3.答题时请对准题号,把答案写在试卷的规定位置上,另加页无效。

一、选择题(每小题5分,共50分) 1.下列4个数中,有理数是( )A .227B .381C .2D .π2.若a 与b 互为相反数,则a +b 等于( )A .0B .-2aC .2aD .-2 3.下列各对数中,互为相反数的是( ) A .12和 0.2 B .23和32 C .﹣1.75和314D .2 和﹣(﹣2)4.下列式子中,不是整式的是( ) A .358x y - B .aπ+b C .3a a-+ D .4y 5.下列是一元一次方程的是( )A .32x x -=B .2210x x ++=C .2x y +=D .25x + 6.下列运算正确的是( )A .2a 2-3a 2=-a 2B .4m -m =3C .a 2b -ab 2=0D .x -(y -x )=-y 7.下列方程变形正确的是A .由–2x =3得x =–23B .由–2(x –1)=3得–2x +2=3C .由1323x x x -++=得x +3(x –1)=2(x +3)D .由1.3 1.50.50.30.2x x --=得131510532x x--=8.用一副三角尺可以拼出大小不同的角,现将一块三角尺的一个角放到另一块三角尺的一个角上,使它们的顶点重合,且有一边也重合,如图.则图中∠α等于( ) A .15° B .20° C .25° D .30°9.今年某月的月历上圈出了相邻的三个数a 、b 、c ,并求出了它们的和为39,这三个数在月历中的排布不可能是( )A .B .C .D .10.把几个互不相同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7,…},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x 是集合的一个元素时,2018﹣x 也必是这个集合的元素,这样的集合我们又称为对称集合,例如{2,2016}就是一个对称集合,若一个对称集合所有元素之和为整数M ,且23117<M <23897,则该集合总共的元素个数是( ) A.22B.23C.24D.25二、填空题(每小题4分,共24分)11.若∠α=68°,则∠α的余角为_______°.12.1光年是指光在真空中走1年的路程大约是9460500000000千米,将数据9460500000000用科学记数法表示为_________________.13.由35y x +=,用含y 的代数式表示x ,则x =_________.14.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=_____________15.已知点A 在数轴上表示的数是-2,则与点A 的距离等于3的点表示的数是_______,若点B 表示的数为-10,则A 、B 两点间的距离是___________16.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____题 号 一二三四五六总 分 得 分三、解答题(共76分)17.计算:(每题6分,共12分)(1)()21273655⎛⎫-⨯--⨯-÷- ⎪⎝⎭ (2)()735536124618⎡⎤-+-+⨯-⎢⎥⎣⎦18.(8分)先化简,再求值:12)1(3)(22222++---ab b a ab b a ,其中41,2==b a .19.(12分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人. (1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?20.如图,BD 平分ABC ∠,BE 把ABC ∠分成的两部分:2:5ABE EBC ∠∠=,21DBE ∠=, 求ABC ∠的度数21.(12分)如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示. (1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出 点M 的位置并说明理由22.如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)请说明原点在第几部分;(2)若AC =5,BC =3,b =-1,求a(3)若点B 到表示1的点的距离与点C 到表示1的点的距离相等,且3a b c --=-,求3(2)a b b c -+-- 的值23.在学习了有理数的加减法之后,老师讲解了例题123420192020-+-++-+的计算思路为:将两个加数组合在一起作为一组,其和为1,共有1010组,所以结果为+1010. 根据这个思路学生改编了下列几题: (1)计算:①123420192020-+-++- ②135720172019-+-++-(2)蚂蚁在数轴的原点O 处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位……①按照这个规律,第1024次爬行后蚂蚁所在位置在原点左侧还是右侧?对应哪个数? ②按照这个规律,第_________次爬行后蚂蚁在数轴上表示751的位置.。

2020-2021学年江苏省镇江市七年级(上)期末数学试卷(解析版)

2020-2021学年江苏省镇江市七年级(上)期末数学试卷(解析版)

2020-2021学年江苏省镇江市七年级第一学期期末数学试卷一、填空题(共12小题).1.的倒数是.2.我市某日的最高温度是7℃,最低温度是﹣1℃,则当天的最高温度比最低温度高℃.3.2020年10月11日至12月10日,第七次全国人口普查开展入户工作.上一次人口普查公告显示中国总人口截至当时约为1370000000人,1370000000用科学记数法表示为.4.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是(填序号).5.下列各数:﹣1,,1.01001…(每两个1之间依次多一个0),0,,3.14,其中有理数有个.6.已知∠α=63°47′,则它的余角等于.7.若x=﹣2是关于x的方程3m﹣2x+1=0的解,则m的值为.8.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于cm.9.如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=°.10.用火柴棒搭成如图所示的图形,第①个图形需要3根火柴棒,第②个图形需要5根火柴棒…,用同样方式,第n个图形需根火柴棒(用含n的代数式表示).11.将四个数2,﹣3,4,﹣5进行有理数的加、减、乘、除、乘方运算,列一个算式(每个数都要用,且只能用一次,写出一个即可),使得运算结果等于24.12.已知关于x的一元一次方程x﹣3=2x+b的解为x=999,那么关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b的解为y=.二、选择题(共有6小题,每小题3分,共计18分.)13.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x214.如果直线l外一点P与直线l上三点的连线段长分别为6cm,8cm,10cm,则点P到直线l的距离是()A.不超过6cm B.6cm C.8cm D.10cm15.丁丁和当当用大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定16.一个几何体如图所示,它的俯视图是()A.B.C.D.17.如图,将一副三角板叠放在一起,使直角顶点重合于点C,则∠ACE+∠BCD等于()A.120°B.145°C.175°D.180°18.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.45三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:(1)|﹣6|﹣(+3)+1;(2)×(﹣32×﹣4).20.解方程:(1)4(x﹣2)=2﹣x;(2)1+=.21.如图,所有小正方形的边长都为1个单位,点A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段AB的垂线,交线段CB的延长线于点E;(3)线段AE的长度是点到直线的距离;(4)△ABE的面积等于.22.如图,直线AB、CD相交于点O,过点O作OE⊥AB,射线OF平分∠AOC,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.23.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.24.我校七年级各班组织了关于“元旦”期间的市场调查社会实践活动.甲、乙、丙三位同学组成的活动小组去A,B两大超市,调查了这两个超市近两年“元旦”期间的销售情况.请根据这三位同学的实践活动报告解决以下问题:(1)去年A、B两超市销售额共为万元;(2)分别求出这两个超市去年“元旦”期间的销售额.25.[读一读]如图1,点A在原点O的左侧,点B在原点O的右侧,点A、B分别对应实数a、b,我们能求出线段AB的长.过程如下:AB=OA+OB=|a|+|b|.因为a<0,b>0,所以|a|=﹣a,|b|=b.所以AB=﹣a+b=b﹣a.[试一试]如图2,若点A、B都在原点O的左侧,且点A距离原点更远,点A、B分别对应实数a、b.求线段AB的长.[用一用]数轴上有一条线段AB,若把线段AB上的每个点对应的数都乘以得到新的数,再把所有这些新数所对应的点都向左平移2个单位后,得到新的线段CD.(1)若点A表示的数是3,点B表示的数是﹣2,则线段CD的长等于;(2)如果线段AB上的一点P经过上述操作后得到的点P'与点P重合,线段AB上的一点Q经过上述操作后得到的点Q′表示的数是Q表示的数的,求线段PQ的长.26.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB 绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=秒.(直接写出结果)参考答案一、填空题(本大题共有12小题,每小题2分,共计24分.)1.的倒数是2.【分析】根据倒数的定义,的倒数是2.解:的倒数是2,故答案为:2.2.我市某日的最高温度是7℃,最低温度是﹣1℃,则当天的最高温度比最低温度高8℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:由题意可得:7﹣(﹣1),=7+1,=8(℃).故答案为:8.3.2020年10月11日至12月10日,第七次全国人口普查开展入户工作.上一次人口普查公告显示中国总人口截至当时约为1370000000人,1370000000用科学记数法表示为1.37×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:1370000000用科学记数法表示为1.37×109,故答案为:1.37×109.4.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是②(填序号).解:图①利用垂线段最短;图②利用两点之间线段最短;图③利用两点确定一条直线;故答案为:②.5.下列各数:﹣1,,1.01001…(每两个1之间依次多一个0),0,,3.14,其中有理数有4个.解:在所列实数中,有理数有﹣1、0、、3.14,故答案为:4.6.已知∠α=63°47′,则它的余角等于26°13′.【分析】根据互余的概念:和为90度的两个角互为余角作答.解:根据定义∠a的余角度数是90°﹣63°47′=26°13′.故答案为:26°13′.7.若x=﹣2是关于x的方程3m﹣2x+1=0的解,则m的值为﹣.解:∵x=﹣2是关于x的方程3m﹣2x+1=0的解,∴3m+4+1=0,解得:m=﹣,故答案为:﹣.8.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于6或16 cm.【分析】本题由于点C是直线上的一点,所以点C有可能在线段AB之间,有可能在线段AB的延长线上,从而容易得到答案为6cm或者16cm.【解答】解,当点C在线段AB之间时,AC=AB﹣BC=11﹣5=6cm.当点C在线段AB的延长线上时,AC+BC=11+5=16cm.故答案为:6或16.9.如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=45°°.【分析】根据角平分线的定义得到∠DOC=∠BOC,∠COE=∠COA,结合图形计算即可.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠DOE=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB=45°.故答案为:45°.10.用火柴棒搭成如图所示的图形,第①个图形需要3根火柴棒,第②个图形需要5根火柴棒…,用同样方式,第n个图形需(1+2n)根火柴棒(用含n的代数式表示).【分析】根据已知图形得出火柴棒的根数为序数2倍与1的和,据此可得答案.解:∵第①个图形中火柴棒的根数3=1+2×1,第②个图形中火柴棒的根数5=1+2×2,第③个图形中火柴棒的根数7=1+2×3,……∴第n个图形中火柴棒的根数为1+2n,故答案为:(1+2n).11.将四个数2,﹣3,4,﹣5进行有理数的加、减、乘、除、乘方运算,列一个算式2×[4﹣(﹣3)﹣(﹣5)]=24(答案不唯一)(每个数都要用,且只能用一次,写出一个即可),使得运算结果等于24.【分析】根据2×12=3×8=4×6=24来构造即可.解:2×[4﹣(﹣3)﹣(﹣5)]=2×(4+3+5)=2×12=24,故答案为:2×[4﹣(﹣3)﹣(﹣5)]=24(答案不唯一).12.已知关于x的一元一次方程x﹣3=2x+b的解为x=999,那么关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b的解为y=1000.解:∵关于x的一元一次方程x﹣3=2x+b的解为x=999,∴关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b中y﹣1=999,解得:y=1000,故答案为:1000.二、选择题(共6小题).13.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.解:2x2﹣3x2=(2﹣3)x2=﹣x2;故选:C.14.如果直线l外一点P与直线l上三点的连线段长分别为6cm,8cm,10cm,则点P到直线l的距离是()A.不超过6cm B.6cm C.8cm D.10cm【分析】根据垂线段最短得出两种情况:①当4cm是垂线段的长时,②当4cm不是垂线段的长时,求出即可.解:∵6<8<10,∴根据垂线段最短得出:当6cm是垂线段的长时,点P到直线l的距离是6cm;当6cm 不是垂线段的长时,点P到直线l的距离小于6cm,即点P到直线l的距离小于或等于6cm,即不超过6cm,故选:A.15.丁丁和当当用大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定【分析】可得丁丁剪成扇形做圆锥形的帽子的底面半径大于当当剪成扇形做圆锥形的帽子的底面半径,由于母线长相等,根据勾股定理可得丁丁做成的帽子更高一些.解:由图形可知,丁丁剪成扇形做圆锥形的帽子的底面半径大于当当剪成扇形做圆锥形的帽子的底面半径,∵扇形的半径相等,即母线长相等,∴由勾股定理可得丁丁做成的圆锥形的帽子更高一些.故选:A.16.一个几何体如图所示,它的俯视图是()A.B.C.D.【分析】根据俯视图的意义,从上面看该几何体所得到的图形结合选项进行判断即可.解:从上面看该几何体,得到的是长方形,且中间有一条竖线,因此选项C中的图形,比较符合题意,故选:C.17.如图,将一副三角板叠放在一起,使直角顶点重合于点C,则∠ACE+∠BCD等于()A.120°B.145°C.175°D.180°【分析】由题意可知∠ACB=∠DCE=90°,根据补角的定义可得∠ACE+∠BCD等于180°.解:∵∠ACB=∠DCE=90°,∴∠ACE+∠BCD=∠DCE+(∠ACD+∠BCD)=∠DCE+∠ACB=180°.故选:D.18.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.45【分析】可设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:根据(1)得分不足7分的平均得分为3分,可得xy﹣3x=13①,根据(2)得3分及以上的人平均得分为4.5分,可得4.5x﹣xy=21.5②,再把它们相加求得x,进一步可求七(1)班共有学生人数.解:设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:(1)得分不足7分的平均得分为3分,xy+3×2+5×1=3(x+5+3),xy﹣3x=13①,(2)得3分及以上的人平均得分为4.5分,xy+3×7+4×8=4.5(x+3+4),4.5x﹣xy=21.5②,①+②得1.5x=34.5,解得x=2.3,故七(1)班共有学生23+5+3+3+4=38(人).故选:A.三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:(1)|﹣6|﹣(+3)+1;(2)×(﹣32×﹣4).【分析】(1)先算绝对值,再算加减法;(2)先算乘方,再算乘法,最后算减法;如果有括号,要先做括号内的运算.解:(1)|﹣6|﹣(+3)+1=6﹣3+1=4;(2)×(﹣32×﹣4)=×(﹣9×﹣4)=×(﹣6﹣4)=×(﹣10)=﹣5.20.解方程:(1)4(x﹣2)=2﹣x;(2)1+=.【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程去分母、去括号、移项、合并同类项、系数化为1即可.解:(1)4(x﹣2)=2﹣x,去括号,得4x﹣8=2﹣x,移项,得4x+x=2+8,合并同类项,得5x=10,系数化为1,得x=2;(2)1+=,去分母,得6+3(3﹣x)=2(2x+1),去括号,得6+9﹣3x=4x+2,移项,得﹣3x﹣4x=2﹣6﹣9,合并同类项,得﹣7x=﹣13,系数化为1,得x=.21.如图,所有小正方形的边长都为1个单位,点A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段AB的垂线,交线段CB的延长线于点E;(3)线段AE的长度是点E到直线AB的距离;(4)△ABE的面积等于4.【分析】(1)根据要求画出图形即可.(2)根据垂线的定义画出图形即可.(3)根据点到直线的距离的定义判断即可.(4)利用三角形的面积公式计算即可.解:(1)如图,直线CD即为所求作.(2)如图,直线AE即为所求作.(3)线段AE的长度是点E到直线AB的距离.故答案为:E,AB.(4)△ABE的面积=×4×2=4,故答案为:4.22.如图,直线AB、CD相交于点O,过点O作OE⊥AB,射线OF平分∠AOC,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.【分析】(1)根据角平分的定义和对顶角相等可得答案;(2)根据垂直的定义得∠AOE=90°,然后由角的和差关系可得答案.解:(1)∵射线OF平分∠AOC,∠AOF=25°,∴∠AOC=2∠AOF=50°,∴∠BOD=∠AOC=50°;(2)∵OE⊥AB,∴∠AOE=90°,∵∠AOC=50°,∴∠COE=90°﹣∠AOC=90°﹣50°=40°.23.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是D,B的对面是E,C的对面是F;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.【分析】(1)依据A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F 都相邻,故B对面的字母是E,进一步可求C的对面是F;(2)依据小正方体各对面上的两个数都互为相反数,可求m,n,进一步求出F所表示的数.解:(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故C的对面是F.故答案为:D,E,F;(2)∵字母A表示的数与它对面的字母D表示的数互为相反数,∴|m﹣3|+(+n)2=0,∴m﹣3=0,+n=0,解得m=3,n=﹣,∴C=m﹣3n﹣=3﹣3×(﹣)﹣=5,∴F所表示的数是﹣5.24.我校七年级各班组织了关于“元旦”期间的市场调查社会实践活动.甲、乙、丙三位同学组成的活动小组去A,B两大超市,调查了这两个超市近两年“元旦”期间的销售情况.请根据这三位同学的实践活动报告解决以下问题:(1)去年A、B两超市销售额共为200万元;(2)分别求出这两个超市去年“元旦”期间的销售额.【分析】(1)可设去年A、B两超市销售额共为x万元,根据两超市销售额今年共为242.8万元,列出方程求解即可得出答案;(2)可设A超市去年“元旦”期间的销售额为y万元,则B超市去年“元旦”期间的销售额为(200﹣y)万元,根据两超市销售额今年共为242.8万元,列出方程求解即可得出答案.解:(1)设去年A、B两超市销售额共为x万元,依题意有x+21.4%x=242.8,解得x=200.故去年A、B两超市销售额共为200万元.故答案为:200;(2)设A超市去年“元旦”期间的销售额为y万元,则B超市去年“元旦”期间的销售额为(200﹣y)万元,依题意得:(1+25%)y+(1+15%)(200﹣y)=242.8,解得:y=128,200﹣y=200﹣128=72.故A超市去年“元旦”期间的销售额为128万元,B超市去年“元旦”期间的销售额为72万元.25.[读一读]如图1,点A在原点O的左侧,点B在原点O的右侧,点A、B分别对应实数a、b,我们能求出线段AB的长.过程如下:AB=OA+OB=|a|+|b|.因为a<0,b>0,所以|a|=﹣a,|b|=b.所以AB=﹣a+b=b﹣a.[试一试]如图2,若点A、B都在原点O的左侧,且点A距离原点更远,点A、B分别对应实数a、b.求线段AB的长.[用一用]数轴上有一条线段AB,若把线段AB上的每个点对应的数都乘以得到新的数,再把所有这些新数所对应的点都向左平移2个单位后,得到新的线段CD.(1)若点A表示的数是3,点B表示的数是﹣2,则线段CD的长等于1;(2)如果线段AB上的一点P经过上述操作后得到的点P'与点P重合,线段AB上的一点Q经过上述操作后得到的点Q′表示的数是Q表示的数的,求线段PQ的长.解:[试一试]如图2,AB=OA﹣OB=|a|﹣|b|.∵a<0,b<0,∴|a|=﹣a,|b|=﹣b.∴AB=﹣a+b=b﹣a.[用一用]设点A、B分别对应实数a、b,则C表示的数为,D表示的数为;(1)∵点A表示的数是3,点B表示的数是﹣2,∴C表示的数为=,D表示的数为=,∴线段CD的长为:=1.故答案为:1.(2)设点P表示的数为p,点Q表示的数为q,则P′表示的数为:,Q′表示的数为:.根据题意可得,=p,=,解得p=,q=﹣15,∴线段PQ的长=﹣(﹣15)=.26.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB 绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=60秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=15或37.5秒.(直接写出结果)解:(1)①由三角板可知∠DOC=60°,∵三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°,∴t秒后,∠AOC=5t.当OA平分∠DOC时,∠AOC=30°,∴5t=30°,解得t=6.答:t的值是6.②∵OB平分∠DOC时,∴∠BOC=30°,∠AOC=90°﹣30°=60°,∴5t=360°﹣60°=300°,解得t=60.故答案为:60.(2)设三角板OAB和三角板OCD旋转后分别为三角板OA′B′和三角板OC′D′,①线段OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∵∠B′OC′=30°,∴∠A′OC′=60°,∴5t+3t+60°=180°,解得t=15;②直线OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∠AOA′=90°∵∠B′OC′=30°,∴∠A′OC′=90°+30°=120°,∴5t+3t﹣120°=180°,解得t=37.5;故答案为:15或37.5.。

2020-2021学年陕西省榆林市初一数学第一学期期末试卷及解析

2020-2021学年陕西省榆林市初一数学第一学期期末试卷及解析

2020-2021学年陕西省榆林市初一数学第一学期期末试卷一、单选题(共30分)1.(3分)如图,圆柱形桶中装一半的水,将桶水平放置()A.B.C.D.2.(3分)某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有()①这种调查采用了抽样调查的方式②7万名考生是总体③1000名考生是总体的一个样本④每名考生的数学成绩是个体.A.2 B.3 C.4 D.03.(3分)从n边形的一个顶点出发,可以作5条对角线,则n的值是()A.6 B.8 C.10 D.124.(3分)下列有关“线段与角”的知识中,不正确的是()A.两点之间线段最短B.一个锐角的余角比这个角的补角小90°C.互余的两个角都是锐角D.若线段AB=BC,则B是线段AC的中点5.(3分)若∠A=20°8',∠B=20°15'30'',∠C=20.25°=20°15',则()A.∠B>∠C>∠A B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B6.(3分)下列整式中,是二次单项式的是()A.xy B.x+y C.x2+1 D.﹣2x7.(3分)如图,在数轴上,若点A,点M到点A,B距离相等()A.10 B.8 C.6 D.48.(3分)《孙子算经》是中国古代重要的数学著作.书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,则可列方程为()A.3x+3(100﹣x)=100 B.x+3(100﹣x)=100C.D.3x+(100﹣x)=1009.(3分)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,则作“其它”类统计.图(1)与图(2)()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.这两个统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.(3分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72二、填空题(共12分)11.(3分)将数据4400000000用科学记数法表示为.12.(3分)要想了解中国疫情的变化情况,最好选用统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用统计图.13.(3分)如图,将三个同样的正方形的一个顶点重合,如果∠1=45°,那么∠2的度数是度.14.(3分)有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,就连同原来的鸽子,每个鸽笼刚好住8个鸽子只鸽子.三、解答题(共78分)15.计算(1)(﹣16)+(+25)+(﹣1)+(﹣11);(2)(﹣3)×(﹣5)﹣30÷(﹣15);(3)(﹣15)×﹣(﹣15)×+(﹣15)÷8;(4)﹣14﹣×[3﹣(﹣3)2]﹣2÷(﹣).16.如图,已知线段MN,按要求画图:(1)作线段AB,使AB=MN;(保留作图痕迹)(2)画直线AB,在直线AB外取一点P,连接AP17.已知A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y(1)当x=2,y=﹣时,求B﹣2A的值.(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.18.化简:(1)﹣3x2y+2x2y+3xy2﹣2xy2;(2)2m+(m+n)﹣2(m﹣n).19.若a,b互为相反数,c,d互为倒数,n既不是正数也不是负数,求20211﹣(a+b)+m2﹣(cd)2021+n (a+b+c+d)的值.20.画出从3个方向看如图所示几何体的形状图.21.2020年7月,《网络预约出租汽车经营服务管理暂行办法》明确了网约车的合法地位起步价超出3公里后每公里单价传统出租车10元含3公里2元滴滴快车8元含3公里 2.2元此外,“滴滴快车”会有在高峰期由于打车需求旺盛而加价,以及在非高峰期送券的行为.(1)某天非高峰期间,小明要到20公里远的地方,此时快车推出了打车就送5元快车券(可以直接抵消当次车费),请你计算他乘坐“滴滴快车”的费用;(2)在打车高峰期,“滴滴快车”把本次车费总价上调为平时的1.5倍,请你计算此时乘坐滴滴快车与传统出租车到x(x>3)(用含x的式子表示)22.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,求∠BOD的度数.23.(9分)“足球运球”是中考体育选考项目之一.某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?24.某商场一种商品标价为40元,试销中发现:①一件该商品打九折销售仍可获利20%;②每天的销售量y(件)(元)满足一次函数y=162﹣3x.(1)求该商品的进价为多少元?(2)在不打折的情况下,如果商场要想获得最大利润,每件商品的销售价定为多少元?最大销售利润为多少?25.已知点C在直线AB上,线段AC=10厘米,BC=6厘米,N分别是AC,BC的中点.(1)画出示意图,并求线段MN的长度;(2)如图,点C在线段AB上时,动点P,B同时出发,点P以2cm/s的速度从点A向点B运动,当一个点到达终点时,另一个点也随之停止运动.在整个运动过程中,P,Q三点中有一点恰好是以另外两点为端点的线段的中点时,P点运动了多少秒?(画出示意图,并直接写出答案)参考答案与试题解析一、单选题(共30分)1.【解答】解:桶内水面的形状,就是用垂直于底面的平面截这个圆柱体所得到的截面的形状,而圆柱体用垂直于底面的平面去截可得到长方形的截面,故选:C.2.【解答】解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,故说法正确;②7万名考生的数学成绩是总体,故说法错误;③1000名考生的数学成绩是总体的一个样本,故说法错误;④每名考生的数学成绩是个体,故说法正确.故选:A.3.【解答】解:设多边形有n条边,则n﹣3=5,解得n=4,故选:B.4.【解答】解:两点之间线段最短是公理,正确;设这个锐角为x,它的余角为:(90﹣x)°.∵180﹣x﹣(90﹣x)=90°,故B正确;∵两个角互余,两个角的度数和是90°.∴两个角的度数都小于90°.∴互余的两个角都是锐角.故C正确,不符合题意;当A,B,C三点不在同一直线上时,B不是AC中点.故D错误,符合题意.故选:D.5.【解答】解:∵∠A=20°8',∠B=20°15'30'',∴∠B>∠C>∠A,故选:A.6.【解答】解:A选项,xy是二次单项式;B,C选项都是多项式;D选项,﹣2x是一次单项式;故选:A.7.【解答】解:由题意得:AB=10﹣(﹣2)=10+2=12,∵点M到点A,B距离相等∴MB=12÷8=6,∴10﹣6=5,∴点M表示的数是:4,故选:D.8.【解答】解:设大马有x匹,小马有(100﹣x)匹3x+(100﹣x)=100,故选:C.9.【解答】解:A、∵喜欢“其它”类的人数为:30人,∴样本总数为:30÷10%=300(人),∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;B、若该年级共有1200名学生×90=360(人);C、喜好“小说”的人数为:300﹣90﹣60﹣30=120(人);D、“漫画”所在扇形的圆心角为:,故此选项不符合题意.故选:C.10.【解答】解:第①个图形一共有2个五角星,第②个图形一共有:2+(8×2)=8个五角星,第③个图形一共有8+(5×2)=18个五角星,…第n个图形一共有:3×2+3×2+5×2+5×2+…+2(5n﹣1)=2[6+3+5+…+(8n﹣1)],=[1+(4n﹣1)]×n=2n4,则第(6)个图形一共有:2×67=72个五角星;故选:D.二、填空题(共12分)11.【解答】解:将4400000000用科学记数法可表示为:4.4×107.故答案为:4.4×105.12.【解答】解:由统计图的特点可知:要想了解中国疫情的变化情况,最好选用折线统计图,最好选用条形统计图.故答案为:折线,条形.13.【解答】解:由题意得,∠1+∠2+∠5=90°=∠2+∠4+∠2,而∠1=45°,∴∠1=∠4=45°,又∵∠2+∠5+∠8=90°,而∠3=18°,∴∠2=90°﹣45°﹣18°=27°,故答案为:27.14.【解答】解:设原来的鸽子数目为x,笼子数目为y,则而据题目可以得到方程组:,解得:x=27(只),即原有鸽子数目为27只.故答案为:27只.三、解答题(共78分)15.【解答】解:(1)(﹣16)+(+25)+(﹣1)+(﹣11)=(﹣16)+25+(﹣1)+(﹣11)=﹣5;(2)(﹣3)×(﹣5)﹣30÷(﹣15)=15+8=17;(3)(﹣15)×﹣(﹣15)×=(﹣15)×﹣(﹣15)×=(﹣15)×()=(﹣15)×1=﹣15;(4)﹣18﹣×[5﹣(﹣3)2]﹣2÷(﹣)=﹣8﹣×(5﹣9)﹣2×(﹣3)=﹣1﹣×(﹣6)+4=﹣3+1+4=5.16.【解答】解:(1)如图所示,AB即为所作的线段;(2)如图所示:直线AB,线段AP.17.【解答】解:(1)∵A=2x2﹣8xy+y2+2x+5y,B=4x2﹣3xy+2y2﹣5x﹣y,∴B﹣2A=4x5﹣6xy+2y4﹣3x﹣y﹣2(2x2﹣3xy+y6+2x+2y)=2x2﹣6xy+3y2﹣3x﹣y﹣5x2+6xy﹣5y2﹣4x﹣5y=﹣7x﹣5y当x=4,y=﹣时,B﹣2A=﹣7×2﹣7×(﹣)=﹣14+7=﹣13(2)∵|x﹣2a|+(y﹣3)3=0,∴x﹣2a=8,y﹣3=0,∴x=2a,y=3,∵B﹣2A=a,∴﹣8x﹣5y=﹣7×5a﹣5×3=﹣14a﹣15=a解得a=﹣6.18.【解答】解:(1)原式=﹣3x2y+6x2y+3xy6﹣2xy2=﹣x2y+xy2;(2)2m+(m+n)﹣2(m﹣n)=2m+m+n﹣2m+7n=m+3n.19.【解答】解:∵a,b互为相反数,c,m的绝对值是1,∴a+b=0,cd=42=1),n=8,∴20211﹣(a+b)+m2﹣(cd)2021+n(a+b+c+d)=20214﹣0+1﹣72021+0×(1+c+d)=2021+8﹣1+0=2021.20.【解答】解:如图所示:21.【解答】解:(1)8+2.5×(20﹣3)﹣5=4+2.2×17﹣4=8+37.4﹣6=40.4(元).答:他乘坐“滴滴快车”的费用为40.4元.(2)根据题意得:乘坐传统出租车所需费用为10+6(x﹣3)=(2x+7)(元);乘坐滴滴快车所需费用为1.5[3+2.2(x﹣6)]=(3.3x+4.1)(元).答:乘坐滴滴快车所需费用为(3.6x+2.1)元,乘坐传统出租车所需费用为(2x+4)元.22.【解答】解:设∠EOC=2x,∠EOD=3x,解得x=36°,∴∠EOC=4x=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=,∴∠BOD=∠AOC=36°.23.【解答】解:(1)∵总人数为18÷45%=40(人),∴C等级人数为40﹣(4+18+5)=13(人),则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20,而第20,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有:500×=50(人).24.【解答】解:(1)设该商品的进价为m元,由题意得40×0.9﹣m=20%•m,∴m=30,∴该商品的进价为30元;(2)在不打折的情况下,商场获得的利润为w元,由题意得:w=(x﹣30)(162﹣3x)=﹣3(x﹣42)2+432&nbsp; (30≤x≤54),∵a=﹣3<0,∴当x=42时,w最大=432,∴如果商场要想获得最大利润,每件商品的销售价定为42元为最合适.25.【解答】解:分为两种情况:①如图1,当B在线段AC延长线时,∵AC=10厘米,BC=6厘米、N分别是AC,∴CM=AC=5厘米BC=3厘米,∴MN=CM+CN=4+3=8(厘米);②如图3,当B在线段AC上时,MN=CM﹣CN=5﹣3=7(厘米);即MN的长度是8厘米或2厘米;(2)①当8<t≤5时,C是线段PQ的中点,解得t=4(秒);②当7<t≤时,P为线段CQ的中点,解得t=;③当<t≤6时,6﹣t=8t﹣16(秒);④当6<t≤3时,C为线段PQ的中点,解得t=4(舍),综上所述:P点运动了4秒或秒或秒.。

2020年初一数学上期末试卷(附答案)

2020年初一数学上期末试卷(附答案)

②作图的依据是

22.先化简,后求值:
已知 x 32
y1 2
0
求代数式 2xy2 6x 42x 1 2xy2 9 的值
23.如图 1,点 A、O、B 依次在直线 MN 上,现将射线 OA 绕点 O 沿顺时针方向以每秒 4°的速度旋转,同时射线 OB 绕点 O 沿逆时针方向以每秒 6°的速度旋转,直线 MN 保持 不动,如图 2,设旋转时间为 t(0≤t≤60,单位:秒).
14.100【解析】【分析】设这件童装的进价为 x 元根据利润=售价﹣进价即可 得出关于 x 的一元一次方程解之即可得出结论【详解】解:设这件童装的进价 为 x 元依题意得:120﹣x=20x 解得:x=100 故答案为:1
解析:100 【解析】 【分析】
设这件童装的进价为 x 元,根据利润=售价﹣进价,即可得出关于 x 的一元一次方程,解 之即可得出结论. 【详解】 解:设这件童装的进价为 x 元, 依题意,得:120﹣x=20%x, 解得:x=100. 故答案为:100. 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
第一步:取一个自然数 n1 5 ,计算 n12 1得 a1 ; 第二步:算出 a1 的各位数字之和得 n2 ,计算 n22 1 得 a2 ; 第三步:算出 a2 的各位数字之和得 n3 ,再计算 n32 1得 a3 ; 依此类推,则 a2019 ____________ 16.若 2a3x1 与 1 a2x4 的和是单项式,则 x 的值为____________.
5.A
解析:A 【解析】
【分析】
分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.
【详解】
解:因为 x2-3x=4, 所以 3x2-9x=12, 所以 3x2-9x+8=12+8=20. 故选 A. 【点睛】

2020-2021学年福建省泉州市七年级(下)期末数学试卷(解析版)

2020-2021学年福建省泉州市七年级(下)期末数学试卷(解析版)

2020-2021学年福建省泉州市七年级(下)期末数学试卷一、选择题(共10小题).1.下列方程中,解为x=1的是()A.x+1=1B.x﹣1=1C.2x﹣2=0D.2.不等式x≤2在数轴上表示正确的是()A.B.C.D.3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A.正五边形B.正六边形C.正八边形D.正十边形4.下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.一个三角形的两边长分别是4和9,则它的第三边长可能是()A.4B.5C.8D.136.下列不等式组中,无解的是()A.B.C.D.7.若是关于x,y的二元一次方程3k=5+3x+2y的一个解,则k的值()A.2B.3C.4D.68.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A.7x﹣4=9x﹣8B.C.7x+4=9x+8D.9.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°10.若关于x,y的二元一次方程组的解为则方程组的解为()A.B.C.D.二、填空题:本大题共6个小题,每小题4分,共24分.11.已知a>b,则﹣2a﹣2b(填“>”、“<”或“=”号).12.由3x+y=5,得到用x表示y的式子为y=.13.为建设书香校园,某中学的图书馆藏书量增加20%后达到2.4万册,则该校图书馆原来图书有万册.14.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.15.如图,将△ABC沿着射线BC的方向平移到△DEF的位置,若点E是BC的中点,BF =18cm,则平移的距离为cm.16.如图,在△ABC中,点D在BC边上,∠BAC=80°,∠ABC=50°,射线DC绕点D 逆时针旋转一定角度α,交AC于点E,∠ABC的平分线与∠ADE的平分线交于点P.下列结论:①∠C=50°;②∠P=∠BAD;③α=2∠P﹣∠BAD;④若∠ADE=∠AED,则∠BAD=2α.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共9个小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.解方程组:.18.解不等式组:.19.若代数式4x﹣5与3x﹣6的值互为相反数,求x的值.20.作图:在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形:(1)将△ABC向右平移5个单位得到△A′B′C′;(2)将△A′B′C′绕点A′顺时针旋转90°得到△A′DE;(3)连接EC′,则△A′EC′是三角形.21.如图,在△ABC中,∠A=62°,∠ABC=48°.(1)求∠C的度数;(2)若BD是AC边上的高,DE∥BC交AB于点E,求∠BDE的度数.22.如图,在四边形ABCD中,∠D=90°,E是BC边上一点,EF⊥AE,交CD于点F.(1)若∠EAD=60°,求∠DFE的度数;(2)若∠AEB=∠CEF,AE平分∠BAD,试说明:∠B=∠C.23.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n 元,5月份购进5台A型空调和7台B型空调共43000元;6月份购进7台A型空调和6台B型空调共45000元.(1)求m,n的值;(2)7月份该商场计划购进这两种型号空调共78000元,其中B型空调的数量不少于12台,试问有哪几种进货方案?24.已知x,y同时满足x+3y=4﹣a,x﹣5y=3a.(1)当a=4时,求x﹣y的值;(2)试说明对于任意给定的数a,x+y的值始终不变;(3)若y>1﹣m,3x﹣5≥m,且x只能取两个整数,求m的取值范围.25.阅读理解:如图1,在△ABC中,D是BC边上一点,且,试说明.解:过点A作BC边上的高AH,∵,,∴,又∵,∴.根据以上结论解决下列问题:如图2,在△ABC中,D是AB边上一点,且CD⊥AB,将△ACD沿直线AC翻折得到△ACE,点D的对应点为E,AE,BC的延长线交于点F,AB=12,AF=10.(1)若CD=4,求△ACF的面积;(2)设△ABF的面积为m,点P,M分别在线段AC,AF上.①求PF+PM的最小值(用含m的代数式表示);②已知,当PF+PM取得最小值时,求四边形PCFM的面积(用含m的代数式表示).参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,解为x=1的是()A.x+1=1B.x﹣1=1C.2x﹣2=0D.解:A、x+1=1的解为x=0,故A不符合题意;B、x﹣1=1的解为x=2,故B不符合题意;C、2x﹣2=0的解为x=1,故C符合题意;D、x﹣2=0的解为x=4,故D不符合题意;故选:C.2.不等式x≤2在数轴上表示正确的是()A.B.C.D.解:不等式x≤2在数轴上表示为:.故选:B.3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A.正五边形B.正六边形C.正八边形D.正十边形解:A、正五边形的每个内角是(5﹣2)×180°÷5=108°,不能整除360°,不能密铺;B、正六边形的每个内角是120°,能整除360°,能密铺.C、正八边形的每个内角为:(8﹣2)×180°÷8=135°,不能整除360°,不能密铺;D、正十边形的每个内角为:(10﹣2)×180°÷10=144°,不能整除360°,不能密铺;故选:B.4.下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A.B.C.D.解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称又是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意;故选:B.5.一个三角形的两边长分别是4和9,则它的第三边长可能是()A.4B.5C.8D.13解:设第三边长为a,由三角形的三边关系,得9﹣4<a<9+4,即5<a<13,∴它的第三边长可能是8,故选:C.6.下列不等式组中,无解的是()A.B.C.D.解:A.的解集为x<﹣3,故本选项不合题意;B.的解集为﹣3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故选:D.7.若是关于x,y的二元一次方程3k=5+3x+2y的一个解,则k的值()A.2B.3C.4D.6解:∵是关于x,y的二元一次方程3k=5+3x+2y的一个解,∴3k=5+3×(﹣1)+2×2,解得k=2,故选:A.8.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A.7x﹣4=9x﹣8B.C.7x+4=9x+8D.解:设总共有x两银子,根据题意列方程得:=,故选:D.9.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°解:∵∠A=110°,∴∠A的外角为180°﹣110°=70°,∴∠1+∠2+∠3+∠4=360°﹣70°=290°,故选:B.10.若关于x,y的二元一次方程组的解为则方程组的解为()A.B.C.D.解:∵方程组可变形为,∴,∴,故选:D.二、填空题:本大题共6个小题,每小题4分,共24分.11.已知a>b,则﹣2a<﹣2b(填“>”、“<”或“=”号).解:∵a>b,∴﹣2a<﹣2b,故答案为:<.12.由3x+y=5,得到用x表示y的式子为y=﹣3x+5.解:方程3x+y=5,解得:y=﹣3x+5,故答案为:﹣3x+513.为建设书香校园,某中学的图书馆藏书量增加20%后达到2.4万册,则该校图书馆原来图书有20万册.【解答】设原先臧书量是x万册,增加20%后变为(1+20%)x=1.2x(万册),即1.2x=2.4,解得x=20(万册),故答案是:2014.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=90°.解:∵△ABC≌△EDC,∴∠1=∠EDC,∵∠C=90°,∴∠EDC+∠E=90°,∴∠1+∠E=90°,故答案为:90.15.如图,将△ABC沿着射线BC的方向平移到△DEF的位置,若点E是BC的中点,BF =18cm,则平移的距离为6cm.解:由平移的性质可知:EF=BC,∵点E是BC的中点,∴EC=BC=BE,∴EC=EF=CF,∵BF=18cm,∴BE=EC=CF=×18=6(cm),即平移的距离为6cm,故答案为:6.16.如图,在△ABC中,点D在BC边上,∠BAC=80°,∠ABC=50°,射线DC绕点D 逆时针旋转一定角度α,交AC于点E,∠ABC的平分线与∠ADE的平分线交于点P.下列结论:①∠C=50°;②∠P=∠BAD;③α=2∠P﹣∠BAD;④若∠ADE=∠AED,则∠BAD=2α.其中正确的是①③④.(写出所有正确结论的序号)解:∵∠BAC=80°,∠ABC=50°,∴∠C=180°﹣∠BAC﹣∠ABC=50°,故①正确;∵∠ABC的平分线与∠ADE的平分线交于点P,∴∠PDE=∠ADE,∠PBD=∠ABC,又∵∠ADC=∠ADE+∠EDC=∠ADE+α=∠ABC+∠DAB①,∠PDC=∠PDE+∠EDC=∠PDE+α=∠PBD+∠P=∠ABC+∠P,∴2∠PDE+2α=∠ABC+2∠P,即∠ADE+2α=∠ABC+2∠P②,②﹣①得:α=2∠P﹣∠DAB,故②错误,③正确;∵∠ADC=∠ADE+α=∠ABC+∠DAB,∠AED=∠C+∠EDC=∠C+α,又∵∠ADE=∠AED,∴∠C+α+α=∠ABC+∠DAB,又∵∠C=50°,∠ABC=50°,∴∠C=∠ABC,∴∠BAD=2α,故④正确,故答案为:①③④.三、解答题:本大题共9个小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.解方程组:.解:,①﹣②,得y=12,把y=12代入②,得x+12=7,解得x=﹣5,故方程组的解为:.18.解不等式组:.解:,解不等式①,得x>﹣2,解不等式②,得x≤1,故不等式组的解集为:﹣2<x≤1.19.若代数式4x﹣5与3x﹣6的值互为相反数,求x的值.解:根据题意得:4x﹣5+3x﹣6=0,移项合并得:7x=11,解得:.20.作图:在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形:(1)将△ABC向右平移5个单位得到△A′B′C′;(2)将△A′B′C′绕点A′顺时针旋转90°得到△A′DE;(3)连接EC′,则△A′EC′是等腰直角三角形.解:(1)如图,△A′B′C′为所作;(2)如图,△A′DE为所作;(3)连接EC′,如图,∵△A′B′C′绕点A′顺时针旋转90°得到△A′DE,∴A′E=A′C′,∠EA′C′=90°,∴△A′EC′是等腰直角三角形.故答案为等腰直角.21.如图,在△ABC中,∠A=62°,∠ABC=48°.(1)求∠C的度数;(2)若BD是AC边上的高,DE∥BC交AB于点E,求∠BDE的度数.解:(1)∵∠A+∠ABC+∠C=180°,∴∠C=180°﹣62°﹣48°=70°.(2)∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣70°=20°,∵DE∥BC,∴∠BDE=∠CBD=20°.22.如图,在四边形ABCD中,∠D=90°,E是BC边上一点,EF⊥AE,交CD于点F.(1)若∠EAD=60°,求∠DFE的度数;(2)若∠AEB=∠CEF,AE平分∠BAD,试说明:∠B=∠C.【解答】(1)解:∵EF⊥AE,∴∠AEF=90°,四边形AEFD的内角和是360°,∵∠D=90°,∠EAD=60°,∴∠DFE=360°﹣∠D﹣∠EAD﹣∠AEF=120°;(2)证明:四边形AEFD的内角和是360°,∠AEF=90°,∠D=90°,∴∠EAD+∠DFE=180°,∵∠DFE+∠CFE=180°,∴∠EAD=∠CFE,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BAE=∠CFE,∵∠B+∠BAE+∠AEB=180°,∠C+∠CFE+∠CEF=180°,∠AEB=∠CEF,∴∠B=∠C.23.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n 元,5月份购进5台A型空调和7台B型空调共43000元;6月份购进7台A型空调和6台B型空调共45000元.(1)求m,n的值;(2)7月份该商场计划购进这两种型号空调共78000元,其中B型空调的数量不少于12台,试问有哪几种进货方案?解:(1)依题意得:,解得:.答:m的值为3000,n的值为4000.(2)设购进B型空调x台,则购进A型空调=(26﹣x)台,依题意得:,解得:12≤x<.又∵x,(26﹣x)均为整数,∴x为3的倍数,∴x可以取12,15,18,∴该商场共有3种进货方案,方案1:购进A型空调10台,B型空调12台;方案2:购进A型空调6台,B型空调15台;方案3:购进A型空调2台,B型空调18台.24.已知x,y同时满足x+3y=4﹣a,x﹣5y=3a.(1)当a=4时,求x﹣y的值;(2)试说明对于任意给定的数a,x+y的值始终不变;(3)若y>1﹣m,3x﹣5≥m,且x只能取两个整数,求m的取值范围.解:(1)∵x,y同时满足x+3y=4﹣a,x﹣5y=3a.∴两式相加得:2x﹣2y=4﹣2a,∴x﹣y=2﹣a,当a=4时,x﹣y的值为﹣2;(2)若x+3y=4﹣a①,x﹣5y=3a②.则①×3+②得到:4x+4y=12,∴x+y=3,∴不论a取什么实数,x+y的值始终不变.(3)∵x+y=3,∴y=3﹣x,∵y>1﹣m,3x﹣5≥m,∴,整理得,∵x只能取两个整数,故令整数的值为n,n+1,有:n﹣1<≤n,n+1<m+2≤n+2.故,∴n﹣1<3n﹣5且3n﹣8<n,∴2<n<4,∴n=3,∴,∴2<m≤3.25.阅读理解:如图1,在△ABC中,D是BC边上一点,且,试说明.解:过点A作BC边上的高AH,∵,,∴,又∵,∴.根据以上结论解决下列问题:如图2,在△ABC中,D是AB边上一点,且CD⊥AB,将△ACD沿直线AC翻折得到△ACE,点D的对应点为E,AE,BC的延长线交于点F,AB=12,AF=10.(1)若CD=4,求△ACF的面积;(2)设△ABF的面积为m,点P,M分别在线段AC,AF上.①求PF+PM的最小值(用含m的代数式表示);②已知,当PF+PM取得最小值时,求四边形PCFM的面积(用含m的代数式表示).解:(1)∵CD⊥AB,∴∠ADC=90°,由翻折得,CE=CD=4,∠AEC=∠ADC=90°,∴CE⊥AF,∵AF=10,∴S△ACF=AF•CE=×10×4=20.(2)①如图2,作MN⊥AC于点O,交AB于点N,连接FN、PN,由翻折得,∠OAM=∠OAN,∵AO=AO,∠AOM=∠AON=90°,∴△AOM≌△AON(ASA),∴OM=ON,AM=AN,∴AC垂直平分MN,∴PM=PN,∴PF+PM=PF+PN≥FN,∴当点P落在FN上且FN⊥AB时,PF+PM的值最小,为此时FN的长;如图3,FN⊥AB于点N,交AC于点P,PM⊥AF,由S△ABF=AB•FN=m,得×12FN=m,解得,FN=m,此时PF+PM=FN=m,∴PF+PM的最小值为m.②如图4,当PF+PM取最小值时,FN⊥AB于点N,交AC于点P,PM⊥AF,设CD=CE=a,PM=PN=x,∵AB=12,AF=10,∴==,∴S△AFC=S△ABF=m;∵,∴AM=AF=×10=4,∴AN=AM=4,∴BN=12=4=8,∴==,∴S△AFN=S△ABF=m,由S△APM=×4x,S△APN=×4x,得S△APM=S△APN,设S△APM=S△APN=2n,∵==,∴S△FPM=3n,由S△APN+S△APM+S△FPM=S△AFN=m,得2n+2n+3n=m,∴n=m,∴S△APM=2n=m,∴S四边形PCFM=m m=m.。

2020-2021学年七年级下期末数学试卷附答案解析

2020-2021学年七年级下期末数学试卷附答案解析

第 1 页 共 16 页2020-2021学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分30分)1.(3分)点P (a ,b )在第四象限,且|a |>|b |,那么点Q (a +b ,a ﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .x ≥﹣1B .x >1C .﹣3<x ≤﹣1D .x >﹣33.(3分)下列说法中,错误的是( )A .9的算术平方根是3B .√16平方根是±2C .27的平方根是±3D .立方根等于﹣1的实数是﹣14.(3分)下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .{x =1y =−1B .{x =2y =1C .{x =−1y =−2D .{x =4y =−15.(3分)如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD +∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)6.(3分)若√3的整数部分为x ,小数部分为y ,则√3x ﹣y 的值是( )A .1B .√3C .3√3−3D .37.(3分)为了解某中学七年级560名学生的身高情况,抽查了其中80名学生的身高进行统计分析.下面叙述正确的是( )A .560名学生是总体B .每名学生是总体的一个个体。

安徽合肥市包河区2020-2021学年第一学期七年级期末数学试卷(含答案)

安徽合肥市包河区2020-2021学年第一学期七年级期末数学试卷(含答案)

合肥市包河区2020-2021第一学期七年级期末数学试卷(含答案)一、选择题(共10小题,每题3分,满分30分)1.在数0, -|-2|, -0.5,2(--)3)中,负数的个数是()A.3B.2C.1D.O2.2020年9月11日,巢湖水位终于回落至警戒水位10.50米,这意味着“巢湖保卫战”取得重大胜利.在这场浩大的洪水之战中,合肥市前后出动了超过155万人次抗洪.而数字155万用科学记数法表示为()A.1.55x106B.15.5x105C.1.55x102D.155x1043.关于x的一元一次方程2x-2+m=4的解为x=1,则m的值为()A.6B.5C.4D.34.若2153x-=与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.25.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校共2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D. 扇形图中,乘车部分所对应的圆心角为54°第5题图第7题图第10题图6.已知线段AB=10cm,线段AC=16cm,且AB、AC在同一条直线上,点B在A、C之间,此时AB、AC的中点M、N之间的距离为()A.13cmB. 6cmC.3cmD.1.5cm7.如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.35°B.45°C.30°D.40°8.若四条直线在平面内交点的个数为a,则a的可能取值有()A.3个B. 4个C.5个D.6个9.某超市在“元且”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.284B.308C.312D.32010.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒,现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.2018B.2019C.2020D.2021二、填空题(共5小题,每题3分,满分15分)11.-0.5的相反数是__ __ ,倒数是12若代数式x-2y=-3,则代数式4y-2r+1的值为_13.已知:A和B都在同一条数轴上,点A表示-2,又知点B和点A相距5个单位长度,则点B表示的数是14.按如图所示的运算程序进行运算:则当输入的数为__ _时,运算后输出结果为815.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120,他做完作业后还是6点多钟,且时针和分针的夹角还是120,此同学做作业用了____ _分钟.三、解答题(共7大题,满分55分)16.(1) (4分)计算: -23×(1-14)÷0.5 (2) (4分)解方程:21511463x x x+--=-17. (6分)先化简,再求值: (2x2-5x+4)-3(x2-x+1),其中x=-2.18. (7分)某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如下:某校七年级部分学生成绩频数分布直方图某校七年级部分学生成绩扇形统计图请根据所给信息,回答下列问题:(1)A组、B组人数占总人数的百分比分别是___ _、___ _;本次共抽查了_名学生的成绩;(2)扇形统计图中,D组对应的圆心角的度数为a度,求a的值;(3)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上?19.(7分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2, 1, 9,且任意相邻四个台阶上数的和都相等.(1)求第5个台阶上的数x是多少?(2)试用含k(k为正整数)的式子表示出数“1”所在的台阶数(此问直接写出结果) .20.(8分)某水果店有甲,乙两种水果,它们的单价分别为a元/千克,b元/千克,若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元(1)求a和b的值;(2)甲种水果涨价m元/千克(0<m<2),乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克? (用含 m的代数式表示).21.(8分)点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b-3)2=0.(1)求点A,B所表示的数;(2)点P在直线AB上点B右边一点,且AP=bPB,点Q为PB的中点,求线段AQ的长.22.(11分)已知点0为直线AB.上一点,将直角三角板MON如图所示放置,且直角顶点在0处,在∠MON内部作射线OC,且0C恰好平分∠MOB(1)若∠CON=10°,求∠AOM的度数;(2)若∠BON=2CNOC,求∠AOM的度数;(3)试猜想∠AOM与∠NOC之间的数量关系,并说明理由,附加题(满分5分,第一空2分,第二空3分,计入总分,但总分不超过100分)23、如图,0为直线AB上一点,过点0作射线OC,∠AOC=30°,将一直角三角板(∠M= 30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.将图1中的三角板绕点0以每秒3°的速度沿顺时针方向旋转-周,经过_ _秒后, OM恰好平分∠BOC;若三角板在转动的同时,射线OC也绕0点以每秒5°的速度沿顺时针方向旋转一周,如图,那么经过___ _秒, OC平分∠MON?合肥市包河区2020-2021第一学期七年级期末数学试卷答案1 2 3 4 5 6 7 8 9 10B ACD C C A D B C11、 0.5; -2; 12、 7; 13、 -7或3 14、 5或-16; 15、48011 16、(1)-12;(2) x=13;2417、化简:-x2-2x+1;值为1;19、(1)x=-5;(2)4k-1;20、(1)a=3,b=5;(2)52m21、(1)a=-5,b=3;(2)10;22、(1)20°;(2)45°;附加题、5; 7.5;。

2020-2021学年第二学期七年级期末数学试卷及答案

2020-2021学年第二学期七年级期末数学试卷及答案

20.(5 分)先阅读材料,然后解方程组. 材料:善于思考的小军在解方程组
时,采用了如下方法:
解:将②变形,得 4x+10y+y=5
即 2(2x+5y)+y=5③
把①代入③,得 2×3+y=5,解得 y=﹣1.
把 y=﹣1 代入①,得 2x+5×(﹣1)=3,解得 x=4.
∴原方程组的解为

这种方法称为“整体代入法”.请用这种方法解方程组:
D.0
A. =±5
B.
=4
C.( )2=4 D.± =2
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
4.(3 分)下列说法正确的是( ) A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查 B.调查黄河某段的水质情况,适合采用抽样调查 C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查 D.为了了解一批袋装食品是否含有防腐剂,选择全面调查
D.
,故本选项不合题意.
故选:C.
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
【分析】根据不等式的性质 1,可判断 A、B;根据不等式的性质 2,可判断 C;根据不 等式的性质 3,可判断 D. 【解答】解:A、不等式的两边都减 3,不等式的方向不变,故 A 正确; B、不等式的两边都减 b,不等号的方向不变,故 B 错误; C、不等式的两边都乘以 ,不等号的方向不变,故 C 错误;
个大长方形的面积为
cm2.
三、解答题(本大题共 7 个小题,共 55 分.解答应写出文字说明,证明过程或演算步骤) 16.(8 分)(1)计算: +| ﹣3|﹣ + ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学期末试卷
姓名 得分
一. 填空题(每题2分,共28分) 1.用代数式表示
x ,y ,z
三数的平方
和: 。

2.当x =5时,代数式2x 2-3x-5的值为 。

3.在有理数集合中,最大的负整数是 ;绝对值最小的有理数是 。

4.213-与 的和312是,比713-小(7
53-)的数是 。

5.一个数的倒数是52-,这个数的相反数是 。

6.若ab>0,a+b<0则a,b 一定满足: 。

7.把830000用科学记数法表示为: 。

8.计算:(- 0.25)100×4100 = 。

9.若2.252 =5.063,x 2 =506.3,则x 。

10.把多项式x 3y –x 2y 3 + x 排成y 的升幂排列: 。

11.减去- 4x 等于3x 2 – 4x -3的多项式是: 。

12.若x =3是方程2x +a =x +1的解,则a = 。

二.单项选择题(每题2分,共16分)
13.每支a 元的钢笔,降价10%以后售价为( ) A .a+a %10⋅ B .a-a %10⋅ C .a+10% D .a-10%
14.一个数比它的相反数小,则这个数一定是( ) A .正数 B .负数 C .非正数 D .非负数
15.若p<0,则p 与它的相反数的差的绝对值是( )
A .p
B .0
C .2p
D .- 2p
16.将3×9×27×81的结果写成以3为底的幂的形式,则指数是( )
A .8
B .9
C .10
D .11
17.3.53949精确到千分位的近似值是( )
A .3.539
B .3.540
C .3.54
D .3.5395
18.下列说法中正确的是( )
A .x 的次数是0
B .x 的系数是0
C .23x 2是五次单项式
D .23是单项式 19.若y =3x+1,z =2y ,则x + y + z 等于( )
A .10x +1
B .10x+4
C .10x+2
D .10x+3
20.若3
1)1(5
1||2+--y m y x m 是三次三项式,则m 等于( )
A .- 1
B .1
C .±1
D .0 三.解答下列各题(每题4分,共16分) 21.当x=4
3,5
1=y 时,计算:5x 2-10xy + 8的值。

22.计算:)]}2(42[3{3422222222xy y x y x xy xy y x y x xy -+--+--
23.计算:|827
1718|1)95()321(2
3+----+
4.解方程:5
222
1+-=--y y y
四.解答下列各题(每题5分,共20分) 25.如图,计算阴影部分面积
26.计算)2
15(]}8.0)3
1(3[2
14{22-÷--⨯-⨯
27.已知多项式A =3x 2-2x +7,B=x 3-8x 2-2 。

计算3A- 2B
28.列方程解应用题: 两个运输队,第一队有80人,第二队有50人,现因任务需要,要求第一队的人数比第二队的人数的2倍还多4人,需要从第二队调多少人到第一队去?
五.解答下列问题(每题6分,共12分)
29.计算高为8.4cm ,底面直径为3cm 的圆锥体积(精确
到百分位)
30.已知x = -1是方程3t-5tx=3-t的解,求关于x的方程2tx-2 = t(1-2x)的解。

六.列方程解应用题(满分8分)
31.一水池有一个进水池和一个出水管。

单独进水注满水池要6小时,单独出水,排尽一池水要4小时。

若先打开进水管,当水放到
3
2时,再打开排水管。

问排水管要打开多少小时后,水池内没有任何积水?。

相关文档
最新文档