新八年级下期中考试数学试题.doc123
八年级数学下册期中试卷及答案【含答案】

八年级数学下册期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?A. a + b > 0B. a b > 0C. a b > 0D. a / b > 02. 已知等差数列的前三项分别是2,5,8,则第10项是多少?A. 21B. 27C. 31D. 353. 在直角坐标系中,点P(2, -3)关于原点的对称点是?A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一个三角形的两边长分别是8和15,第三边的长度可能是?A. 7B. 17C. 23D. 245. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题1. 两个负数相乘的结果是正数。
()2. 任何数与0相乘的结果都是0。
()3. 在等差数列中,公差越大,数列的项数越少。
()4. 直角三角形的两个锐角互余。
()5. 对角线相等的四边形一定是矩形。
()三、填空题1. 若 a = 3,b = -2,则 a + b = _______。
2. 已知一个等差数列的首项是2,公差是3,则第5项是 _______。
3. 在直角坐标系中,点A(1, 2)到原点的距离是 _______。
4. 若一个三角形的两边长分别是5和12,第三边的长度可能是 _______。
5. 下列图形中,既是中心对称图形又是轴对称图形的是 _______。
四、简答题1. 解释什么是等差数列,并给出一个例子。
2. 解释什么是直角坐标系,并说明其作用。
3. 解释什么是三角形的内角和,并给出计算公式。
4. 解释什么是轴对称图形,并给出一个例子。
5. 解释什么是等比数列,并给出一个例子。
五、应用题1. 已知一个等差数列的首项是3,公差是2,求前5项的和。
2. 在直角坐标系中,点A(2, 3)和点B(-2, 3)的中点坐标是多少?3. 若一个三角形的两边长分别是10和15,求第三边的长度范围。
八年级下册数学期中考试试卷【含答案】

八年级下册数学期中考试试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列哪个图形不是平行四边形?()A. 矩形B. 菱形C. 正方形D. 直角梯形3. 下列哪个数是无理数?()A. √9B. √16C. πD. 0.3334. 若一个等腰三角形的底边长为 8cm,腰长为 10cm,则这个三角形的周长为()A. 16cmB. 26cmC. 28cmD. 36cm5. 下列哪个代数式是整式?()A. 3x^2 + 2x 1B. 1/xC. √xD. x^2 + 1/x二、判断题1. 两个负数相乘的结果一定是正数。
()2. 任何一个正整数都可以表示为两个整数的和。
()3. 两条平行线上的对应角相等。
()4. 任何两个奇数相加的结果一定是偶数。
()5. 一个数的立方根只有一个。
()三、填空题1. 若 a = 3,b = -2,则 |a + b| = _______。
2. 若一个三角形的两边长分别为 5cm 和 12cm,则第三边的长度范围是 _______。
3. 2^10 = _______。
4. 若一个等边三角形的周长为 18cm,则其边长为 _______。
5. 若一个数的平方根是 4,则这个数是 _______。
四、简答题1. 解释什么是无理数。
2. 什么是等腰三角形?它有什么性质?3. 解释什么是整式。
4. 什么是平行四边形?它有什么性质?5. 解释什么是算术平方根。
五、应用题1. 一个长方形的周长为 22cm,长为 8cm,求宽。
2. 一个等腰三角形的底边长为 10cm,高为 8cm,求腰长。
3. 计算:(2/3 + 1/4) × 12。
4. 一个数的平方是 49,求这个数的立方。
5. 若一个数的平方根是 9,求这个数的平方。
六、分析题1. 证明:若 a > b,则 a^2 > b^2。
人教版数学八年级下册期中考试试卷及答案

人教版数学八年级下册期中考试试题一、单选题1.若在实数范围内有意义,则x 的取值范围是()A .x >0B .x >-1C .x≥-1D .任意实数2.下列各组数作为三角形的三边,能组成直角三角形的一组数是()A .2、3、4B .3、4、5C .1D .、3.下列各式计算正确的是()AB C .=2D .01)-=04.直角三角形ABC 的两条直角边的长分别为1、2,则它的斜边长为()A B C .2D .35.菱形的边长为5,它的一条对角线的长为6,则菱形的另一条对角线的长为为()A .8B .6C .5D .46.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A .AB =BC ,CD =DA B .AB ∥CD ,AD =BC C .AB ∥CD ,∠A =∠CD .∠A =∠B ,∠C =∠D7.下列命题的逆命题是真命题的是()A .对顶角相等B .菱形是一条对角线平分一组对角的四边形C .等边三角形的三个角都等于60°D .平行四边形的一组对边相等8.已知矩形ABCD 如图,AB =3,BC =4,AE 平分∠BAD 交BC 于点E ,点F 、G 分别为AD 、AE 的中点,则FG =()A .52B .2C .2D .1029.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A .42B .43C .56D .5710.如图,在矩形ABCD 中,AB=2,BC=4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A′处,当△A′DC 为等腰三角形时,AP 的长为()A .2B .233C .2或233D .2或433二、填空题11.请写出一个与3是同类二次根式的最简二次根式:_________.12.已知□ABCD ,∠A :∠B =1:3,则∠C =________度.13.已知矩形ABCD 如图,AB =4,BC =,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.14.如图,在菱形ABCD 中,AB=6cm ,∠A=60°,点E 以1cm/s 的速度沿AB 边由A 向B 匀速运动,同时点F 以2cm/s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为_________.15.已知由(a-b)2≥0可得a2+b2≥2ab,当a=b时,a2+b2=2ab成立.运用上述结论解决问题:对于正数x,代数式x+1+9x的最小值为_________.16.如图,四边形ABCD,AB∥CD,∠ABC=∠BCD=90°,点E为边BC上一点,连接AE、DE,AE=DE,AE⊥DE,若AB=1,CD=3,则线段BC=_____三、解答题17-18.如图,□ABCD的对角线相交于点O,过O的直线分别交AD、BC于点M、N,求证:OM=ON.19.如图,CD是△ABC的高,已知AD=4,BD=1,CD=2,判断△ABC的形状,并说明理由.20.如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC 翻折得到△EBC.(1)求证:四边形ABEC是平行四边形.(2)若AD=CD=6,∠ADC=120°,求四边形ABEC的面积.21.如图,已知:AB ⊥BC ,DC ⊥BC ,AB=4,CD=2,BC=8,P 是BC 上的一个动点,设BP=x .(1)用关于x 的代数式表示PA+PD ;(2)求出PA+PD 的最小值;(3)仿(22211+245x x x +-+的最小值;(4()22+(243)9x x ++-+的最小值.22.如图,在矩形ABCD 中,点E 为CD 上一点,将△BCE 沿BE 翻折后点C 恰好落在AD 边上的点F 处,过F 作FH ⊥BC 于H ,交BE 于G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB=8,BC=10,求四边形CEFG 的面积.23.在矩形ABCD 中,点P 在AD 上,3,AP=1.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图).(1)当点E与点B重合时,点F恰好与点C重合(如图),则PC的长为;(2)将直角尺从如图中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,从开始到停止,线段EF的中点所经过的路径(线段)长为.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,顶点B的坐标为(n,2),点E 是AB的中点,在OA上取一点D,将△BAD沿BD翻折,点A刚好落在BC边上的F处,BD、EF交于点P(1)直接写出点E、F的坐标;(2)若OD=1,求P点的坐标;(3)动点Q从P点出发,依次经过F,y轴上的点M,x轴上的点N,然后返回到P点:①若要使Q点运动一周的路径最短,试确定M、N的位置;②若n=3,求最短路径的四边形PFMN的周长.参考答案1.C【解析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【详解】根据题意得:x+1≥0,即x≥-1时,二次根式有意义.故选C.【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.B【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵22+32=13≠16=42,∴此三角形不是直角三角形,不合题意;B、32+42=52,∴此三角形是直角三角形,符合题意;C、12+)2≠)2,∴此三角形不是直角三角形,不合题意;D)2+2≠2,∴此三角形不是直角三角形,符合题意.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B【解析】【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确.【详解】不能合并,故选项A错误;,故选项B正确∵,故选项C错误;∵)01-=1,故选项D错误.故选B.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据勾股定理进行计算,即可求得结果.【详解】直角三角形的两条直角边的长分别为1,2,则斜边长.故选B.【点睛】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.5.A【解析】【分析】根据菱形的对角线互相垂直平分的性质和勾股定理,求出另一条对角线的长.【详解】∵一条对角线长是6cm,∴这条对角线的一半长是3cm ,由勾股定理得,另一条对角线的一半长4cm ,∴另一条对角线的长为8cm ,故选A .【点睛】本题主要利用菱形的对角线互相垂直平分及勾股定理来解决.6.C 【解析】【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【详解】解:A.,AB BC CD DA ==,两组邻边相等,不能推出四边形ABCD 是平行四边形,故本选项错误;B.//AB CD AD BC ,=,一组对边平行,另外一组对边相等,不能推出四边形ABCD 是平行四边形,故本选项错误;C.//AB CD A C ∠∠,=,可以推出四边形ABCD 是平行四边形,故本选项正确;D.∠A =∠B ,∠C =∠D ,本选项错误;理由:∵∠A=∠B ,∠C=∠D ,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB ∥CD ,但不能推出其它条件,即不能推出四边形ABCD 是平行四边形,故本选项错误;故选C.【点睛】本题考查对平行四边形的判定定理的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.7.C【解析】【分析】分别写出四格命题的逆命题:相等的角为对顶角;一条对角线平分一组对角的四边形是菱形;三个角都是60°的三角形为等边三角形;一组对边相等的四边形是平行四边形;然后再分别根据根据对顶角的定义对第一个进行判断;菱形的判定对第二个进行判断;根据等边三角形的判定方法对第三个进行判断;根据平行四边形的判定对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角等”,此逆命题为假命题,所以A选项错误;B、“菱形是一条对角线平分一组对角的四边形”的逆命题为“一条对角线平分一组对角的四边形是菱形”,此逆命题为假命题,所以B选项错误;C、“等边三角形的三个角都是60°”的逆命题为“三个角都是60°的三角形为等边三角形”,此逆命题为真命题,所以C选项正确;D、“平行四边形的一组对边相等”的逆命题为“一组对边相等的四边形是平行四边形”,此逆命题为假命题,所以D选项错误.故选C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.8.D【解析】【分析】由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=3,∵BC=AD=4,∴EC=1,连接DE,如图,∴=,∵点F、G分别为AD、AE的中点,∴FG=110 22 DE=.故选D.【点睛】本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.9.B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.10.C【解析】【分析】根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.【详解】①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP∴△ABA'是等边三角形∴∠ABP=30°==;∴AP=②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2∴A'B+A'C=2+2=4∴点A'落在BC上的中点处此时,∠ABP=12∠ABA'=45°∴AP=AB=2.综上所述,当△A′DC为等腰三角形时,AP的长为或2.故选C.【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.11.答案不唯一,如【解析】试题分析:同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式.答案不唯一,如考点:同类二次根式的定义点评:本题属于基础应用题,只需学生熟练掌握同类二次根式的定义,即可完成. 12.45【解析】【分析】根据平行四边形邻角互补的性质可求解.【详解】如图,∵四边形ABCD是平行四边形∴∠A+∠B=180°而∠A:∠B=1:3∴∠A=∠C=45°故答案为45.【点睛】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.83【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积,相加即可得出答案.【详解】过点P作MN∥AD,交AB于点N,交CD于点M.如图,∴AB∥CD,AD∥BC,AD=BC=43AB=CD=4,∴S△APB +S△DPC=12×AB×PN+12CD×PM=12×4×PN+12×4×PM=12×4×(PM+PN)=12×4×4383.故答案为:83.【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.14.2【解析】【分析】连接BD .当AE=BF 时,易证△ADE ≌△BDF ,即可推出△DEF 是等边三角形,列出方程即可解决问题.【详解】连接BD .∵四边形ABCD 是菱形,∠A=60°,∴△ADB ,△BDC 都是等边三角形,当AE=BF 时,易证△ADE ≌△BDF ,∴DE=DF ,∠ADE=∠BDF ,∴∠EDF=∠ADB=60°,∴△DEF 是等边三角形,由AE=BF ,得到t=6-2t ,t=2时,△DEF 是等边三角形,故答案为:2.【点睛】本题考查菱形的性质、等边三角形的判定和性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题15.7【解析】【分析】根据探究方法中的结论,代入数据即可得出结论【详解】当x >0时,x+9x +1≥21=6+1=7,故代数式x +1+9x有最小值为7.故答案为:7.【点睛】像这样的阅读形题,只要读懂题意仿照例题给定方法,套入数据即可得出结论,为此应加强这方面的练习.16.4【解析】【分析】根据等角的余角相等求出∠1=∠3,再利用“角角边”证明△ABE 和△ECD 全等,然后根据全等三角形对应边相等可得AB=CE ,BE=CD ,再根据BC=BE+CE 代入数据计算即可得解.【详解】如图,∵AE ⊥DE ,∴∠2+∠3=90°,又∵∠ABC=90°,∴∠1+∠2=90°,∴∠1=∠3,在△ABE 和△ECD 中,1390ABC BCD AE DE ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△ECD (AAS ),∴AB=CE=1,BE=CD=3,∴BC=BE+CE=3+1=4.故答案为:4.【点睛】本题考查了全等三角形的判定与性质,利用等角的余角相等求出三角形全等的条件是解题的关键,利用阿拉伯数字加弧线表示角更形象直观.17.【解析】【分析】先把各二次根式化为最简二次根式,然后合并即可【详解】原式==+=【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.18.见解析.【解析】【分析】根据平行四边形的对角线互相平分可得OA=OC ,再根据平行四边形的对边平行可得AD ∥BC ,利用两直线平行,内错角相等可得∠MAO=∠NCO ,然后利用“角边角”证明△AMO 和△CNO 全等,根据全等三角形对应边相等即可得证.【详解】证明:∵四边形ABCD 为平行四边形∴OB=OD ,MD ∥BN∴∠MDO=∠NBO在△MOD 和△NOB 中MOD NOB OB OD MDO NBO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MOD ≌△NOB(ASA)∴OM=ON【点睛】本题考查了平行四边形的对角线互相平分,对边平行的性质,全等三角形的判定与性质,比较简单.19.△ACB 为直角三角形,见解析.【解析】【分析】利用勾股定理的逆定理即可判断.【详解】△ABC 为Rt △,理由如下:∵CD 为高,∴∠ADC=∠BDC=90°在Rt △ACD 中,由勾股定理AC ==,在Rt △BCD 中,由勾股定理BC ==,∵AC 2+BC 2=(22225AB +==∴△ACB 为直角三角形【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理是关键.20.(1)见解析;(2)【解析】【分析】(1)由四边形ABCD 为等腰梯形,AD ∥BC ,可得AB=DC ,AC=BD ,又由在平面内将△DBC 沿BC 翻折得到△EBC ,可得EC=DC ,DB=BE ,继而可得:EC=AB ,BE=AC ,则可证得四边形ABEC 是平行四边形;(2)利用等腰梯形的性质,求得高和BC 的长即可求得四边形ABEC 的面积=2△ABC 的面【详解】(1)证明:∵四边形ABCD 为等腰梯形,AD ∥BC ,∴AB=DC ,AC=BD ,由折叠的性质可得:EC=DC ,DB=BE ,∴EC=AB ,BE=AC ,∴四边形ABEC 是平行四边形.(2)解:如图,过点A 、D 分别作AF ⊥BC ,DG ⊥BC ,垂足分别为F 、G ,∵AD ∥BC ,∠ADC=120°,∴FG=AD=6,AF=DG ,∠ABF=60°,∵四边形ABCD 为等腰梯形,∴AB=DC=6,∴BF=12AB=3,AF=32在Rt △ABF 和Rt △CDG 中,AB DC AF DG ⎧⎨⎩==,∴Rt △ABF ≌Rt △CDG (HL ),∴BF=GC=3,∴BC=12,∴S 四边形ABEC =2S △ABC =2×12【点睛】此题考查了等腰梯形的性质、折叠的性质以及平行四边形的性质.注意掌握数形结合思想的21.(1(2)10,(3)(4)【解析】【分析】(1)根据勾股定理可直接用x表示PA+PD即可;(2)作A关于BC的对称点E,连接DE,根据轴对称确定最短路线问题,则DE就是PA+PD 的最小值,然后利用勾股定理列式计算即可得解;(3)设DC=1,AB=3,BC=6,根据(2)结论;即可得到结果;(4)设DC=2,AB=3,BC=5,PC=2+x,则BP=3-x,根据(2)结论即可得到结果.【详解】(1)∵AB⊥BC,DC⊥BC,AB=4,CD=2,BC=8,∴+=+=;(2)作A关于BC的对称点E,连接DE,则DE就是PA+PD的最小值,BE=AB=4,过E作EF∥BC交DC的延长线于F,则四边形BEFC是矩形,∴EF=BC=8,DF=2+4=6,∴=10,∴PA+PD的最小值是10;(3)设DC=1,AB=3,BC=6,则EF=6,DF=3+1=4,∴DE==;(4)设DC=2,AB=3,BC=5,PC=2+x,则BP=3-x,EF=5,DF=3+2=5,∴=5,∴的最小值是.【点睛】本题考查了利用轴对称确定最短路线问题,考虑利用几何知识求解是解题的关键,作出图形数形结合更容易理解.22.(1)证明见解析;(2)20.【解析】【分析】(1)根据翻折的性质可得∠1=∠2,EC=EF,再根据同角的余角相等求出∠1=∠3,从而得到∠2=∠3,根据同位角相等,两直线平行可得EF∥CG,再根据垂直于同一直线的两直线平行求出FG∥CD,从而求出四边形CEFG是平行四边形,然后根据邻边相等的平行四边形是菱形证明;(2)根据翻折的性质可得BF=BC=10,然后利用勾股定理列式求出AF,从而得到DF的长,设CE=EF=x,表示出DE,在Rt△DEF中,利用勾股定理列出方程求出x的值,再根据菱形的面积公式列式计算即可得解.【详解】(1)证明:根据翻折,∠1=∠2,EC=EF,∵FH⊥BC,∴∠3+∠4=90°,又∵∠1+∠4=∠BCD=90°,∴∠1=∠3,∴∠2=∠3,∴EF∥CG,又∵FH⊥BC,∠BCD=90°,∴FG∥CD,∴四边形CEFG是平行四边形,∵EC=EF(已证),∴四边形CEFG是菱形;(2)解:根据翻折,BF=BC=10,在Rt△ABF中,AF=,∴DF=AD-AF=10-6=4,设CE=EF=x,则DE=CD-CE=8-x,在Rt△DEF中,DF2+DE2=EF2,即42+(8-x)2=x2,解得x=5,所以,四边形CEFG的面积=CE•DF=5×4=20.【点睛】本题考查了矩形的性质,菱形的判定与性质,翻折变换的性质,(1)求出四边形CEFG是邻边相等的平行四边形是证明菱形的关键,(2)根据勾股定理求出菱形的边长是解题的关键.23.(1)(2【解析】【分析】(1)如图2,先利用勾股定理计算出PB=2,再证明△APB∽△DCP,然后利用相似比可计算出PC;(2)设线段EF的中点为O,连接OP,OB,如图1,利用直角三角形斜边上的中线性质得OP=OB=12EF,则利用线段垂直平分线定理的逆定理可得O点在线段BP的垂直平分线上,再确定旋转开始和停止时EF的中点位置,然后根据三角形中位线性质确定线段EF的中点所经过的路径(线段)长.【详解】(1)如图2,在矩形ABCD 中,∠A=∠D=90°,∵AP=1,AB=3∴221(3) ,∵∠ABP+∠APB=90°,∠BPC=90°,∴∠APB+∠DPC=90°,∴∠ABP=∠DPC ,∴△APB ∽△DCP ,∴AP :CD=PB :CP ,即13=2:PC ,∴3,(2)设线段EF 的中点为O ,连接OP ,OB ,如图1,在Rt △EPF 中,OP=12EF ,在Rt △EBF 中,OB=12EF ,∴OP=OB ,∴O 点在线段BP 的垂直平分线上,如图2,当点E 与点B 重合时,点F 与点C 重合时,EF 的中点为BC 的中点O ,当点E 与点,A 重合时,EF 的中点为PB 的中点O ,∴OO′为△PBC 的中位线,∴OO′=123∴线段EF 3【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决(2)小题的关键是判断O 点在线段BP 的垂直平分线上.24.(1)E (n ,1);F (n-2,2);(2)点P 坐标为(73,43);(3)①见解析,+.【解析】【分析】(1)由翻折知四边形ABFD 是正方形,据此得DF=AB=AD=2、OD=CF=BC-BF=n-2,即可得出点F 坐标,由E 为AB 中点可得点E 的坐标;(2)OD=1知n=3,据此得出点B 、D 、E 、F 的坐标,分别求得直线BD 和直线EF 的解析式,联立方程组即可求得BD 与EF 的交点P 的坐标;(3)①作点F 关于y 轴的对称点F′、作点P 关于x 轴的对称点P′,连接F′P′交y 轴于点M 、交x 轴于点N ;②由n=3结合(2)知点P 、F 及其关于坐标轴的对称点,利用勾股定理求解可得.【详解】(1)∵B (n ,2),∴AB=OC=2、OA=BC=n ,由翻折知△DAB ≌△DFB ,∴∠DAB=∠DFB=90°、BA=BF=2,∵∠ABF=90°,∴四边形ABFD 是正方形,∴DF=AB=AD=2,∴OD=CF=BC-BF=n-2,则F (n-2,2),∵E 为AB 中点,∴AE=BE=1,∴E (n ,1);(2)若OD=1,则n-2=1,即n=3,∴B (3,2)、D (1,0)、E (3,1)、F (1,2),设BD 所在直线解析式为y=kx+b ,将点B (3,2)、D (1,0)代入,得:320k b k b +⎧⎨+⎩==,解得:11 kb⎧⎨-⎩==,∴BD所在直线解析式为y=x-1;设EF所在直线解析式为y=mx+n,将E(3,1)、F(1,2)代入,得:312 m nm n+⎧⎨+⎩==,解得:1252mn==⎧-⎪⎪⎨⎪⎪⎩,∴EF所在直线解析式为y=-12x+52;由11522y xy x-⎧⎪⎨-+⎪⎩==可得7343xy⎧⎪⎪⎨⎪⎪⎩==,所以点P坐标为(73,43);(3)①如图所示,作点F关于y轴的对称点F′、作点P关于x轴的对称点P′,连接F′P′交y轴于点M、交x轴于点N,②若n=3,由(2)知P(73,43)、F(1,2),则F′(-1,2)、P′(73,-43),∴,.∴C四边形PFMN【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、待定系数法求函数解析式、轴对称-最短路线问题及勾股定理.。
新部编版八年级数学下册期中考试卷(带答案)

新部编版八年级数学下册期中考试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.439.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1 二、填空题(本大题共6小题,每小题3分,共18分)181________.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.使x2-有意义的x的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE 的长为__________.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x yx y⎧+=⎪⎨⎪-=⎩(2)1263()46x y yx y y+⎧-=⎪⎨⎪+-=⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、A6、C7、D8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、-2 -33、x2≥4、x>3.5、49 136、8三、解答题(本大题共6小题,共72分)1、(1)1083xy=⎧⎪⎨=⎪⎩;(2)2xy=⎧⎨=⎩.2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、()1略;()2BEF67.5∠=.5、24°.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
新初二数学下期中试卷(含答案)

新初二数学下期中试卷(含答案)一、选择题1.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m2.实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++3.正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直4.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是( )A .203B .252C .20D .255.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 26.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .5 7.如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .58.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家 9.下列各组数是勾股数的是( ) A .3,4,5 B .1.5,2,2.5 C .32,42,52 D 34510.对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限11.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A.①②③④B.①②④C.①②D.②③④12.下列各式中一定是二次根式的是( )A.23-B.2-C.2-D.x(0.3)二、填空题13.当直线y=kx+b与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b为______.14.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC=______cm.∆中,D、E分别为AB、AC的中点,点F在DE上,且15.如图,在ABCAC=,5AF CF⊥,若3BC=,则DF=__________.16.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=_____度.17.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=4,则图中阴影部分的面积为_______.18.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______19.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.20.如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.三、解答题21.计算:(1)32205080-+- (2)112312365÷⨯ (3)21397318322x x x x x +-- (4)()()223526-+ 22.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A 、B 、C 是小正方形的顶点,求∠ABC 的度数.23.如图,直线L :y =﹣12x+2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C(0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当t 为何值时△COM ≌△AOB ,请直接写出此时t 值和M 点的坐标.24.化简:(1)1225; (2)1535⨯; (3)11233-+; (4)(52+)(52-). 25.如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m , 平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.2.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -的正负,再根据2a 的性质计算即可.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()()2212a b +--()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键. 3.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .4.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB 的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.5.A【解析】【分析】先根据直线y =﹣x+b 判断出函数图象,y 随x 的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y =﹣x+b ,k =﹣1<0,∴y 随x 的增大而减小,又∵﹣2<﹣1<1,∴y 1>y 2>y 3.故选:A .【点睛】本题考查一次函数的图象性质:当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.6.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】Q 如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B Q ∠=︒,60A ∴∠=︒,142AC AB ==. CD Q 是斜边上的高,30ACD ∠=︒Q122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.7.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=o ,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.8.D解析:D【解析】【分析】利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.故选:D .【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.9.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A .32+42=52,是勾股数;B .1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C .(32)2+(42)2≠(52)2,不是勾股数;D 2+22 故选A .【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.D解析:D【解析】【分析】根据一次函数的性质对D 进行判断;根据一次函数图象上点的坐标特征对A 、B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题. 11.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.12.B解析:B【解析】二次根式要求被开方数为非负数,易得B为二次根式.故选B.二、填空题13.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.14.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】∵AD是中线,AB=13,BC=10,∴152BD BC==.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD⊥BC.15.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE 为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.45【解析】【分析】先设∠BAE=x°根据正方形性质推出AB=AE=AD∠BAD=90°根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数根据平角定义求出即可【详解】解:设∠BAE=解析:45【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【详解】解:设∠BAE=x°.∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD.∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°﹣∠BAE)=90°﹣12x°,∠DAE=90°﹣x°,∠AED=∠ADE=12(180°﹣∠DAE)=12[180°﹣(90°﹣x°)]=45°+12x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣12x°)﹣(45°+12x°)=45°.故答案为45.点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.17.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】由图可知,阴影部分的面积1424 2=⨯⨯=故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE的面积等于△BOF的面积,从而可以判断阴影部分的面积等于矩形面积的一半.18.13或;【解析】第三条边的长度为解析:13或119;【解析】第三条边的长度为222212+5=13125=119或19.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.20.169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可【详解】解:S1=9S2=16S3=144∴所对应各边为:3412∴中间未命名的正方形边长为5∴最大的直角三角形的面积52+12解析:169【解析】【分析】利用正方形的基本性质和勾股定理的定义进行解答即可.【详解】解:S 1=9,S2=16,S3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S=52+122=169.故答案为169.【点睛】本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.三、解答题21.(1);(2);(3);(4)17【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)先利用完全平方公式计算,然后利用平方差公式计算.【详解】解:()1原式==()2原式===()3原式==()4原式(55=-+=-=25241【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(1)详见解析;(2)详见解析;(3)450【解析】【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【详解】(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,、;(3)如图3,连接AC,因为AB2=22+42=20,AC2=32+12=10,BC2=32+12=10,所以AB2= AC2+ BC2,AC=BC∴三角形ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.【点睛】本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.23.(1)A(4,0)、B(0,2);(2)0≤t≤4时,S△OCM=8﹣2t;t>4时,S△OCM=2t﹣8;(3)当t=2或6时,△COM≌△AOB,此时M(2,0)或(﹣2,0)【解析】【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=12OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【详解】(1)对于直线AB:y=﹣12x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=12×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=12×4×(t﹣4)=2t﹣8;(3)∵OC=OA,∠AOB=∠COM=90°,∴只需OB=OM,则△COM≌△AOB,即OM=2,此时,若M在x轴的正半轴时,t=2,M在x轴的负半轴,则t=6.故当t=2或6时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.24.(1;(2)3;(3;(4)3.【解析】【分析】(1)根据二次根式的性质化简;(2)根据二次根式的乘除法则运算;(3)先把各二次根式化简为最简二次根式,然后合并即可;(4)利用平方差公式计算.【详解】(1)原式=5;(2)原式;(3)原式(4)原式=5﹣2=3.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25.【解析】【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形,∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE ,又∵60DAB ︒∠=,CD=CB,∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质),菱形ABCD 的边长为2,∴CD=2,CE=1, 由勾股定理得22(1) DE=213-=, 3.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
新人教版八年级数学下册期中考试题及答案【完整版】

新人教版八年级数学下册期中考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.若式子x1x+有意义,则x的取值范围是__________.3.分解因式:3x-x=__________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值. 4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、B6、A7、C8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、x 1≥-且x 0≠3、x (x+1)(x -1)4、2≤a+2b ≤5.5、706、6三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、0.4、略.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
新人教版八年级数学下册期中考试卷(完整版)

新人教版八年级数学下册期中考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C.45357x x++= D.45357x x--=7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.68.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、B7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、-2 -33、14、15、46、24三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)略;(2)△ABC 的周长为5.4、略.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新华桥学校八年级数学(下)期中试卷
温馨提示:亲爱同学,考试马上就要开始,测试时间100分钟,努力吧! 一、填空能手——看谁填得又快又准确(每题2分,共24分) 1、2
x 是非负数表示为:______________ (用适当的符号表示)
2、—x 3
5<5(化成“x >a ”或“x <a ”的形式是______________。
3、不等式7-x >1的正整数解为: 。
4、不等式6-12x <0的解集是_________。
5、.分解因式:=-33ab b a
6、.当x _______时,分式2
4
2
+-x x
的值为零.
7、.化简329
122++-x x 的结果是 . (第11题) (第12题)
8、.等腰直角三角形中,一直角边与斜边的比是_________.
9、.已知32
=b a ,则=+-b
a b a .
10、.已知线段AB=10cm ,C 为AB 上的金分割点(AC>BC),则AC=_________
11.如图,在ΔABC 中,若∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长
为 .
12.如图,正方形ABCD 中,E 是CD 的中点,P 是BC 上一点,要使ΔABP 与Δ
ECP 相似,还需具备的一个条件是 .
二、比一比,谁的命中率高(每题3分,共24分)
13.下列多项式中,能用公式法进行因式分解的是 ( ) (第14题)
A 、22y xy x +-
B 、222y xy x -+
C 、222y xy x -+-
D 、22y xy x ++
14、.如图,一张矩形报纸ABCD 的长AB=a cm ,宽BC=b cm ,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a ∶b 等于( ) (A)
2
∶1 (B)1∶
2
(C)
3
∶1 (D)1∶
3
15、.如果把分式
b
a a
b +中的a 、b 都扩大2倍,那么分式的值一定( )
A.是原来的2倍
B.是原来的4倍
C.是原来的2
1 D.不变 16、.如果不等式组
⎩
⎨
⎧>-<+m x x x 145 的解集是x>2,则m 的取值范围是( )
A.m ≥2
B.m ≤2
C.m=2
D.m <2
17、.若关于x 的方程2
121--=-+x m x x 产生增根,则m 是( ) A. 1 B. 2 C. 3 D. 4
18、.把一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,
则最后一个学生能得到的苹果不超过2个,则学生人数是( )
A.3
B.4
C.5
D.6
19、.如图,AB 是斜靠在墙上的一个梯子,梯脚B 距墙1.4m ,
梯上点D 距墙1.2m ,BD 长0.5m ,则梯子的长为( ) (第19题图)
A. 3.5m
B. 3.85m
C. 4m
D. 4.2m
20.在比例尺为1:5000的地图上,量得甲,乙两地的距离为25cm,则甲,乙两地的实际
距离是( )A.1250km B.125km C.12.5km D.1.25k m
三、解答能手——看谁解答得既完整又整洁(20、21题每小题5分,共38分)
20、.解不等式(组)
,并要求把解集在数轴上表示出来。
(1) 312
5->+-x x (2)
⎪⎩⎪
⎨⎧-≥-+<-x x x x 23712
1
)1(334
21分解因式
(1) 3m 3
a +6m 2
a —12ma (2)
2
22
22
4)
(b
a b a
-+
22.计算与化简(每小题6分) (1)计算1
9
)1(9
61
2
2
2
--⨯
+÷++-a a
a a a
a (2)先化简再求值
2
24
442
2
+--
+--x x x x x ;其中x=
2
23. 解方程 (1)14
22
2
=-+
-x x x (6分 (2)
5125
52
x x x +
=--
四、应用题(第24题6分,第25题9分共15分)
24.甲、乙两人都从A 地出发到B 地,已知两地相距50千米,且乙的速度是甲速度的2.5倍.现甲先出发1小时30分,乙再出发,结果乙反而比甲早到1小时,问两人速度各是多少?
25.甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴楚雄彝人古镇一日游的旅游团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元;那么随着团体人数的变化,哪家旅行社的收费更优惠?
26.如图,要测量河宽,在两岸找到相对两点A 、B ,先从B 出发与AB 成90°方向向前走50米,到C 处立一标杆,然后方向不变继续朝前走10米到D 处,在
D 处转90°,沿D
E 方向走到E 处,若A 、C 、E 三点恰好在同一直线上,且DE=17米,你能根据题目提供的数据和图形求出河宽吗?(9分)
27.阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面 的高BC.(10分)。