高中学业水平测试数学模拟试卷
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题05(1)

一、单选题二、多选题1. 已知为虚数单位,复数,则的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.定义在上的奇函数满足,若,则的取值范围为( )A.B.C.D.3.已知函数的图像在处的切线垂直于直线,则实数a 的值为( )A.B.C .10D .-104.已知函数,则函数的零点个数是 ( )A .4B .5C .6D .75.设等差数列的前n 项和为,已知A .35B .30C .25D .156.已知函数,若,则A.B.C.D.7. 函数的图象大致为( )A.B.C.D.8. 如图,在复平面内,复数对应的向量分别是,则()A.B.C.D.9. 设复数的共轭复数为,则下列选项正确的有( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题05(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题05(1)三、填空题四、解答题A.B.C.D.10. 19世纪时期,数学家们处理大部分数学对象都没有完全严格定义,数学家们习惯借助直觉和想象来描述数学对象,德国数学家狄利克雷(Dirichlet )在1829年给出了著名函数:(其中为有理数集,为无理数集),后来人们称之为狄利克雷函数,狄利克雷函数的出现表示数学家们对数学的理解发生了深刻的变化,数学的一些“人造”特征开始展现出来,这种思想也标志着数学从研究“算”转变到了研究“概念、性质、结构”.一般地,广义狄利克雷函数可以定义为(其中且),则下列说法正确的是( )A .都有B.函数和均不存在最小正周期C .函数和均为偶函数D .存在三点在图像上,使得为正三角形,且这样的三角形有无数个11. 下列命题中正确的是( )A .若样本数据,,…,的平均数是11,方差为8,则数据,,…,的平均数是6,方差为2B.已知随机变量服从正态分布,且,则C.已知两个变量具有线性相关关系,其回归方程为,且数据样本中心点为,则当时,样本的估计值为7D .随机变量,若,,则12. 设定义在R上的函数满足:①:②对任意实数满足;③存在大于零的常数m,使得,且当时, .则( )A.B.当时,C .函数在R 上没有最值D.任取13. 已知变量,的关系可以用模型拟合,设,其变换后得到一组数据如下:468102356由上表可得线性回归方程,则______.14. 已知椭圆:()的左,右焦点分别为,,点,在椭圆上,且满足,,则椭圆的离心率为________.15. 如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,正视图中的曲线为四分之一圆弧,则该几何体的表面积是___________.16.在中,角的对边分别为,已知(1)求的值;(2)若,求的面积.17. 在中,角A,B,C的对边分别为a,b,c,若.(1)求证:;(2)若,点D为边AB上的一点,CD平分,,求边长.18. 长江十年禁渔计划全面施行,渔民老张积极配合政府工作,如期收到政府的补偿款.他决定拿出其中10万元进行投资,并看中了两种为期60天(视作2个月)的稳健型(不会亏损)理财方案.方案一:年化率,且有的可能只收回本金;方案二:年化率,且有的可能只收回本金;已知老张对每期的投资本金固定(都为10万元),且第一次投资时选择了方案一,在每期结束后,老张不间断地进行下一期投资,并且他有的可能选择另一种理财方案进行投资.(1)设第i次投资()选择方案一的概率为,求;(2)求一年后老张可获得总利润的期望(精确到1元).注:若拿1千元进行5个月年化率为的投资,则该次投资获利元.19. 已知是椭圆C:上的动点,过原点O向圆M:引两条切线,分别与椭圆C交于P,Q两点(如图所示),记直线OP,OQ的斜率依次为,,且.(1)求圆M的半径r;(2)求证:为定值;(3)求四边形OPMQ的面积的最大值.20. 某数学建模小组研究挡雨棚(图1),将它抽象为柱体(图2),底面与全等且所在平面平行,与各边表示挡雨棚支架,支架、、垂直于平面.雨滴下落方向与外墙(所在平面)所成角为(即),挡雨棚有效遮挡的区域为矩形(、分别在、延长线上).(1)挡雨板(曲面)的面积可以视为曲线段与线段长的乘积.已知米,米,米,小组成员对曲线段有两种假设,分别为:①其为直线段且;②其为以为圆心的圆弧.请分别计算这两种假设下挡雨板的面积(精确到0.1平方米);(2)小组拟自制部分的支架用于测试(图3),其中米,,,其中,求有效遮挡区域高的最大值.21. 已知的内角,,的对边分别为,,,向量(1)当时,求的值;(2)当时,且,求的值.。
2024年天津市河北区普通高中学业水平合格性考试模拟检测数学试题(含答案)

2024年河北区普通高中学业水平合格性考试模拟检测数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时90分钟.参考公式●柱体的体积公式,其中表示柱体的底面积,表示柱体的高.●锥体的体积公式,其中表示锥体的底面积,表示锥体的高.●球的体积公式,其中表示球的半径.第Ⅰ卷(选择题 共45分)一、选择题:(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)(1)已知全集,集合,,则集合( )(A )(B )(C )(D )(2)的值为( )(A(B )(C(D )(3)不等式的解集为( )(A )(B )(C )(D )(4)命题“,”的否定是( )(A ),(B ),(C ),(D ),V Sh =柱体S h 13V Sh =锥体S h 34π3V R =球R {}0,1,2,3U ={}0,1A ={}1,2B =()U A B = ð{}2{}4{}1,3{}5,62πtan3()()2320x x --≥32x x ⎧⎫>⎨⎬⎩⎭322xx ⎧⎫≤≤⎨⎬⎩⎭322x x x ⎧⎫≤≥⎨⎬⎩⎭或32x x ⎧⎫≤⎨⎬⎩⎭x ∀∈Z 20x ≥x ∃∈Z 20x ≥x ∃∉Z 20x ≤x ∃∈Z 20x <x ∃∉Z 2x <(5)函数的定义域为( )(A )(B )(C )(D )(6)如图所示,,,为的中点,则为( )(A)(B )(C )(D )(7)下列函数是奇函数且在区间上是增函数的是( )(A )(B )(C )(D )(8)已知,,则用,表示( )(A )(B )(C )(D )(9)已知圆锥的母线长为)(A )(B )(C )(D )(10)已知,则( )(A )3(B (C)5(D (11)射击运动员甲、乙分别对同一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,则两人中恰有一人射中目标的概率是( )(A )0.06(B )0.16(C )0.26(D )0.72y =(]0,1()0,1()1,+∞()()0,11,+∞ AB a = AC b = M AB CM12a b+ 12a b- 12a b+ 12a b- ()0,1sin y x =3xy -=2y x=1y x=lg 3x =lg 5y =x y lg 452xy 3xy 2x y+2x y-π2π3π4π()i 12i z =-z =(12)为了得的图象,只需把,图象上所有点的( )(A )纵坐标伸长到原来的3倍,横坐标不变(B)纵坐标缩短到原来的,横坐标不变(C )横坐标伸长到原来的3倍,纵坐标不变(D )横坐标缩短到原来的,纵坐标不变(13)函数的零点所在的区间为( )(A )(B )(C )(D )(14)兴化千岛菜花风景区素有“全国最美油菜花海”之称,以千岛样式形成的垛田景观享誉全国,与享誉世界的普罗旺斯薰衣草园、荷兰郁金香花海、京都樱花并称,跻身全球四大花海之列.若将每个小岛近似看成正方形,在正方形方格中,,三位游客所在位置如图所示,则的大小为()(A )(B )(C )(D )(15)某校对学生在寒假中参加社会实践活动的时间(单位:小时)进行调查,并根据统计数据绘制了如图所示的频率分布直方图,其中实践活动时间的范围是,数据的分组依次为:,,,,.已知活动时间在内的人数为300,则活动时间在内的人数为()(A )600(B )800(C )1000(D )1200第Ⅱ卷(非选择题 共55分)二、填空题:(本大题共5小题,每小题3分,共15分.请将答案填在题中横线上)cos y x =x ∈R 1313()42x f x x =-+()1,2()2,3()3,4()4,523⨯A B C ABC ∠π6π4π35π12[]9,14[)9,10[)10,11[)11,12[)12,13[]13,14[)9,10[)11,12(16)函数的最大值为______.(17)据统计,某段时间内由内地前往香港的老、中、青年旅客的比例依次为,现使用分层抽样的方法从这些旅客中随机抽取人,若青年旅客抽到60人,则______.(18)若复数,则______.(19)在中,,,的长度为______.(20)已知,,且,则的最小值为______.三、解答题:(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤)(21)(本小题满分8分)已知,是第二象限角.(Ⅰ)求和的值;(Ⅱ)求的值.(22)(本小题满分10分)已知向量,,.(Ⅰ)若,求的值;(Ⅱ)若,求向量与的夹角的余弦值.(23)(本小题满分10分)如图,在四棱锥中,底面是正方形,平面,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.(24)(本小题满分12分)已知,函数.()()3sin 2f x x x =-∈R 5:2:3n n =2i z =+21z =-ABC △45A ∠=︒105C ∠=︒BC =AC 0a >0b >2a b =2b a+3sin 5α=αcos αtan απsin 3α⎛⎫-⎪⎝⎭()3,4a = ()1,b x = ()1,2c =a b ⊥b ()2c a b -∥2a b -aP ABCD -ABCD PA ⊥ABCD 1PA AB ==M N PA PB MN ∥ABCD CD ⊥PAD PC PAD 0a >()()2,,f x ax bx c a b c =++∈R(Ⅰ)函数的图象经过点,且关于的不等式的解集为,求的解析式;(Ⅱ)若有两个零点,,且的最小值为,当时,判断函数在上的单调性,并说明理由;(Ⅲ)设,记为集合中元素的最大者与最小者之差,若对,恒成立,求实数的取值范围.2024年河北区普通高中学业水平合格性考试模拟检测数学答案第Ⅰ卷(选择题 共45分)一、选择题:(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)题号(1)(2)(3)(4)(5)(6)(7)(8)答案A D B C B B A C题号(9)(10)(11)(12)(13)(14)(15)答案CDCDABD第Ⅱ卷(非选择题 共55分)二、填空题:(本大题共5小题,每小题3分,共15分.请将答案填在题中横线上)(16)1;(17)200;(18);(19)6;(20)2.三、解答题:(本大题共4小题,共40分.解答应写出文字说明,证明过程或演算步骤)(21)(本小题满分8分)解:(Ⅰ),是第二象限角,,.(Ⅱ)由(Ⅰ)可得,.(22)(本小题满分10分)解:(Ⅰ)由,得,解得,()f x ()0,2-x ()0f x ≤[]1,2-()f x ()f x α()βαβ<()f x 4a -102a <≤()()22g x ax b x c =+-+(),αβ2b a =()h t (){}()11f x t x t t -≤≤+∈R (],1t ∀∈-∞-()2h t a a >-a 1i -3sin 5α= α4cos 5α∴==-sin 3tan cos 4ααα==-πππsin sin cos cos sin 333ααα⎛⎫-=-=⎪⎝⎭a b ⊥340x +=34x =-,则.(Ⅱ)由题意,又,,解得,则,,,,即向量与(23)(本小题满分10分)证明:(Ⅰ)在中,,分别是,的中点,,又平面,平面,平面.(Ⅱ)四边形是正方形,,又平面,,又,平面.解:(Ⅲ)由(Ⅱ)知,平面,为斜线在平面上的射影,为直线与平面所成角.由题意,在中,,,,31,4b ⎛⎫∴=- ⎪⎝⎭54b== ()21,42a b x -=-()2c a b -∥()121420x ∴⨯-⨯-=1x =()21,2a b -= 2a b -== 5a == ()2cos 2,2a b a a b a a b a-⋅∴-==-2a b -a PAB △M N PA PB MN AB ∴∥MN ⊄ABCD AB ⊂ABCD MN ∴∥ABCD ABCD AD CD ∴⊥PA ⊥ ABCD PA CD ∴⊥PA AD A = CD ∴⊥PAD CD ⊥PAD PD ∴PC PAD CPD ∠PC PAD Rt PCD △PD =1CD =PC ∴==,即直线与平面.(24)(本小题满分12分)解:(Ⅰ)函数的图象经过点,,又关于的不等式的解集为,,为方程的两个实根,因此,解得所以的解析式为.(Ⅱ)解法一:,由题意得,即,令,解得,即,,对于任意,设,则,,又,,而,即,sinCD CPD PC ∴∠===PC PAD ()2f x ax bx c =++()0,2-()02f c ∴==- x ()0f x ≤[]1,2-1x ∴=-2x =220ax bx +-=()12,212,b a a ⎧-+=⎪⎪⎨-⎪-⨯=⎪⎩1,1,a b =⎧⎨=-⎩()f x ()22f x x x =--()222424b ac b f x ax bx c a x a a -⎛⎫=++=++⎪⎝⎭ ∴2444ac b a a-=-22416b ac a -=()20f x ax bx c =++=42b ax a-±==22b a α=--22baβ=-+()12,,x x αβ∈12x x <()()()()1212122g x g x x x a x x b ⎡⎤-=-++-⎣⎦1222242b b x x a a β⎛⎫+<=-+=-+ ⎪⎝⎭102a <≤()12242420b a x x b a b a a ⎛⎫∴++-<++-=-≤ ⎪⎝⎭120x x -<()()()()12121220g x g x x x a x x b ⎡⎤-=-++->⎣⎦因此,函数在区间上是单调递减的.解法二:,由题意得,即,令,解得,即,,由,则函数图象的对称轴方程为,()()12g x g x >∴()g x (),αβ()222424b ac b f x ax bx c a x a a -⎛⎫=++=++⎪⎝⎭∴2444ac b a a-=-22416b ac a -=()20f x ax bx c =++=42b ax a-±==22b a α=--22baβ=-+()()22g x ax b x c =+-+()g x 2122b bx a a a-=-=-。
广东省2024年普通高中合格性学业水平考试数学模拟数学试题一

一、单选题1. 在棱长为2的正方体中,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则四面体的体积的最大值为( )A .2B.C.D.2. 若集合,则集合可能为( )A.B.C.D.3.设是定义域为的奇函数,且,当时,,.将函数的正零点从小到大排序,则的第4个正零点为( )A.B.C.D.4.已知变量关于的回归方程为,若对两边取自然对数,可以发现与线性相关.现有一组数据如下表所示:12345则当时,预测的值为( )A.B.C.D.5. 函数在区间(,)内的图象是( )A.B.C.D.6. 若,且a 为整数,则“b 能被5整除”是“a 能被5整除”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知,则( )A.B.C.D.8.已知函数满足函数恰有5个零点,则实数的取值范围为( )A.B.C.D.9. 已知P为所在平面内一点,且满足,,则A.B.C.D.10. 已知数列的首项,且,,则满足条件的最大整数( )A .2022B .2023C .2024D .202511.在区间与内各随机取1个整数,设两数之和为,则成立的概率为( )广东省2024年普通高中合格性学业水平考试数学模拟数学试题一二、多选题A.B.C.D.12.如图,在正四棱柱中,是线段上的动点,有下列结论:①;②,使;③三棱锥体积为定值;④三棱锥在平面上的正投影的面积为常数.其中正确的是( )A .①②③B .①③C .②③④D .①④13. 已知,分别为随机事件A ,B 的对立事件,,,则( )A.B.C .若A ,B独立,则D .若A ,B互斥,则14.已知非常数函数及其导函数的定义域均为R ,若为奇函数,为偶函数,则( ).A.B.C.D.15. 我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.年年某市城镇居民、农村居民年人均可支配收入比上年增长率如图所示.根据下面图表,下列说法正确的是()A .对于该市居民年人均可支配收入比上年增长率的中位数,城镇比农村的大B .对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C .年该市农村居民年人均可支配收入比年有所下降D .年该市农村居民年人均可支配收入比年有所上升16. 若直线与两曲线、分别交于、两点,且曲线在点处的切线为,曲线在点处的切线为,则下列结论正确的有( )A .存在,使B .当时,取得最小值三、填空题四、填空题五、解答题C.没有最小值D.17. 蜚英塔俗称宝塔,地处江西省南昌市,建于明朝天启元年(1621年),为中国传统的楼阁式建筑.蜚英塔坐北朝南,砖石结构,平面呈六边形,是江西省省级重点保护文物,已被列为革命传统教育基地.某学生为测量蜚英塔的高度,如图,选取了与蜚英塔底部D 在同一水平面上的A ,B两点,测得米,,,,则蜚英塔的高度是_______米.18. 在复平面内,复数所对应的点的坐标为,则_____________.19.已知、分别为椭圆的左、右焦点,为椭圆上的动点,点关于直线的对称点为,点关于直线的对称点为,则当最大时,的面积为__________.20. 如图,在棱长为2的正方体中,点是侧面内的一个动点.若点满足,则的最大值为__________,最小值为__________.21.椭圆的左、右焦点分别为,,过焦点的直线交椭圆于,两点,则的周长为______;若,两点的坐标分别为和,且,则的内切圆半径为______.22. 计算求值:(1);(2)已知,均为锐角,,,求的值.23. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.六、解答题七、解答题八、解答题九、解答题24. 1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组,,…,,并整理得到如图频率分布直方图:(1)求其中阅读量小于60本的人数;(2)已知阅读量在,,内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在内的学生中随机选取3人进行调查座谈,用表示所选学生阅读量在内的人数,求的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).25. 已知.(1)求不等式的解集;(2)令的最小值为,若正数满足,证明:.26. 如图,在四棱锥P A BCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE .27. 在一次猜灯速的活动中,共有20道灯谜,甲同学知晓其中16道灯谜的谜底,乙同学知晓其中12道灯谜的谜底,两名同学之间独立竞猜,假设猜对每道灯谜都是等可能的.(1)任选一道灯谜,求甲和乙各自猜对的概率;(2)任选一道灯谜,求甲和乙至少一人猜对的概率.28.已知等比数列的前n 项和为,,.(1)求;(2)若数列的前n项和为,,且,试写出满足上述条件的数列的一个通项公式,并说明理由.。
普通高中学业水平模拟考试数学试题

普通高中学业水平模拟考试数学试题一、选择题1. 若函数 f(x) = 2x - 3,则 f(-2) 的值为多少?A. -7B. -1C. 1D. 72. 已知两条直线的斜率分别为 k1 = 2 和 k2 = -3,两直线相交于点 P,点 P 到 x 轴的距离为 4。
则点 P 的坐标是:A. (2, 4)B. (-2, -4)C. (4, 2)D. (-4, -2)3. 若 2(x + 3) - 4x = 3(x - 5),则解为:A. x = 13B. x = 5C. x = -5D. x = -13二、计算题1. 计算:(3^4)×(3^2)2. 计算:log10(100) + log2(8)3. 解方程:2x + 5 = 7x - 3三、解答题1. 已知 A、B 两点的坐标分别为 A(1, 2) 和 B(5, 8),求线段 AB 的中点坐标。
2. 已知函数 f(x) = 2x^2 - 3x + 1,求函数 f(x) 的最小值。
3. 一个球从 1 米的高度自由落下,每次弹起高度是上一次高度的一半。
求球在第n次落地时,共经过了多少米的路径。
四、解析题1. 求三角形 ABC 的面积,已知 AC = 8 cm,BC = 6 cm,∠ACB = 60°。
2. 在一个等差数列中,已知 a1 = 3,d = 4,求第 n 项的值 an。
3. 解方程:2^(x - 1) + 3 = 25总结:本次数学模拟考试试题中,涵盖了选择题、计算题、解答题和解析题,分别对学生的知识点掌握、计算能力和解题能力进行了全面考察。
希望同学们能认真完成试题,找出自己的不足并加以改进,提高数学水平。
祝大家取得好成绩!。
2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题

一、单选题二、多选题1. 已知全集,集合,,则如图中阴影部分所表示的集合为A.B.C.D.2. 设,为双曲线C:的左、右焦点,Q 为双曲线右支上一点,点P (0,2).当取最小值时,的值为( )A.B.C.D.3. 已知数列为等差数列,若,且它们的前n项和有最大值,则使得的n 的最大值为A .19B .20C .21D .224. 设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .105. 在中,内角A ,B ,C 所对的边分别为,,.向量,.若,则角的大小为( )A.B.C.D.6.已知函数,若将的图象向右平移个单位后,再把所得曲线上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图象,则( )A.B.C.D.7.已知函数,若,且,则实数a 的最大值为( )A .2B.C .ln2D .e8. 已知展开式的常数项为76,则( )A .1B .61C .2D.9. 已知复数,,则下列结论中正确的是( )A .若,则B .若,则C .若且,则D .若,则或10. 已知圆C:,则下列四个命题表述正确的是( )A .圆C 上有且仅有3个点到直线1:的距离都等于1B.过点作圆C 的两条切线,切点分别为M ,N ,直线MN的方程为C .一条直线与圆C 交于不同的两点P ,Q ,且有,则∠PCQ的最大值为D .若圆C 与E :相外切,则2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题2023年7月浙江省杭州市普通高中学业水平合格考试模拟数学试题三、填空题四、解答题11. 下列结论正确的是( )A .若,则B.若,则的最小值为2C .若,则的最大值为2D .若,则12. 在不透明的罐中装入大小相同的红、黑两种小球,其中红球个,黑球个,每次随机取出一个球,记录颜色后放回.每次取球记录颜色后再放入个与记录颜色同色的小球和个异色小球(说明:放入的球只能是红球或黑球),记表示事件“第次取出的是黑球”,表示事件“第次取出的是红球”.则下列说法正确的是( )A.若,则B.若,则C.若,则D .若,则13.如图,一个几何体的正视图是底为高为的等腰三角形,俯视图是直径为的半圆,该几何体的体积为_________.14.已知函数,则的值域为__________.15. 函数的最大值为________.16. 如图,四棱锥的底面为平行四边形,底面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若E 是侧棱上的一点,且与底面所成的是为45°,求二面角的余弦值.17.已知函数,且.(1)求实数的取值范围;(2)设为整数,且对任意正整数,不等式恒成立,求的最小值;(3)证明:.18.已知函数为偶函数.(1)求的值;(2)当时,不等式恒成立,求实数的取值范围.19. 设为椭圆()上任一点,,为椭圆的左右两焦点,短轴的两个顶点与右焦点的连线构成等边三角形.(1)求椭圆的离心率;(2)直线:与椭圆交于、两点,直线,,的斜率依次成等比数列,且的面积等于,求椭圆的标准方程.20. 如图,在四棱锥中,平面,,为棱的中点.(1)求证://平面;(2)当时,求直线与平面所成角的正弦值.21. 在中,,,分别上的点且,,将沿折起到的位置,使.(1)求证:;(2)是否在射线上存在点,使平面与平面所成角的余弦值为?若存在,求出的长度;若不存在,请说明理由.。
2019-2020学年高中学业水平数学模拟测试卷五套—解析版

2019-2020学年高中学业水平数学模拟测试卷五套—解析版高中学业水平考试模拟测试卷(一)2高中学业水平考试模拟测试卷(二)11高中学业水平考试模拟测试卷(三)19高中学业水平考试模拟测试卷(四)27高中学业水平考试模拟测试卷(五)38高中学业水平考试模拟测试卷(一)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={1,2,3,4},集合N={1,3,5},则M∩N等于()A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}解析:M∩N={1,2,3,4}∩{1,3,5}={1,3},故选 C.答案:C2.函数f(x)=ln(x-3)的定义域为()A.{x|x>-3}B.{x|x>0}C.{x|x>3}D.{x|x≥3}解析:由x-3>0得x>3,则定义域为{x|x>3}.故选C.答案:C3.下列命题中的假命题是()A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0C.∃x∈R,lgx<1D.∃x∈R,tanx=2解析:当x=1∈N*时,x-1=0,不满足(x-1)2>0,所以B为假命题.故选B.答案:B4.设i是虚数单位,若复数z=5(1+i)i,则z的共轭复数为()A.-5+5iB.-5-5iC.5-5iD.5+5i解析:由复数z=5(1+i)i=-5+5i,得z的共轭复数为-5-5i.故选B.答案:B5.已知平面向量a=(0,-1),b=(2,2),|λa+b|=2,则λ的值为()A.1+B.-1C.2D.1解析:λa+b=(2,2-λ),那么4+(2-λ)2=4,解得,λ=2.故选C.答案:C6.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A.4x+2y=5B.4x-2y=5C.x+2y=5D.x-2y=5解析:线段AB的中点为,kAB==-,所以垂直平分线的斜率k==2,所以线段AB的垂直平分线的方程是y-=2(x-2)⇒4x-2y-5=0.故选B.答案:B7.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台解析:(1)三视图复原的几何体是放倒的三棱柱.(2)三视图复原的几何体是四棱锥.(3)三视图复原的几何体是圆锥.(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.答案:C8.已知f(x)=x+-2(x>0),则f(x)有()A.最大值为0B.最小值为0C.最大值为-4D.最小值为-4解析:由x>0,可得>0,即有f(x)=x+-2≥2-2=2-2=0,当且仅当x=,即x=1时,取得最小值0.答案:B9.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况,应采取的抽样方法是()A.(1)用系统抽样法,(2)用简单随机抽样法B.(1)用分层抽样法,(2)用系统抽样法C.(1)用分层抽样法,(2)用简单随机抽样法D.(1)(2)都用分层抽样法解析:根据简单随机抽样及分层抽样的特点,可知(1)应用分层抽样法,(2)应用简单随机抽样法.故选C.答案:C10.在△ABC中,A∶B=1∶2,sinC=1,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶∶1D.1∶∶2解析:在△ABC中,A∶B=1∶2,sinC=1,可得A=30°,B=60°,C=90°.a∶b∶c=sinA∶sinB∶sinC=∶∶1=1∶∶2.故选D.答案:D11.等差数列{an}中,a3+a4+a5=12,那么{an}的前7项和S7=()A.22B.24C.26D.28解析:因为等差数列{an}中,a3+a4+a5=12,所以3a4=a3+a4+a5=12,解得a4=4,所以S7===7a4=28.故选D.答案:D12.抛物线y=x2的焦点到准线的距离是()A.B.C.2D.4解析:方程化为标准方程为x2=4y.所以2p=4,p =2.所以焦点到准线的距离为2.故选C.答案:C13.=()A.-B.-C.D.解析:=cos2-sin2=cos=.故选D.答案:D14.已知某几何体的三视图都是边长为2的正方形,若将该几何体削成球,则球的最大表面积是()A.16πB.8πC.4πD.2π解析:因为三视图均为边长为2的正方形,所以几何体是边长为2的正方体,将该几何体削成球,则球的最大半径为1,表面积是4π×12=4π.故选C.答案:C15.已知数列{an}的前n项和为Sn,且a1=-10,an+1=an+3(n∈N*),则Sn取最小值时,n的值是()A.3B.4C.5D.6解析:在数列{an}中,由an+1=an+3,得an+1-an=3(n∈N*),所以数列{an}是公差为3的等差数列.又a1=-10,所以数列{an}是公差为3的递增等差数列.由an=a1+(n-1)d=-10+3(n-1)=3n-13≥0,解得n≥.因为n∈N*,所以数列{an}中从第五项开始为正值.所以当n=4时,Sn取最小值.故选B.答案:B二、填空题(共4小题,每小题4分,共16分.)16.若点(2,1)在y=ax(a>0,且a≠1)关于y=x对称的图象上,则a=________.解析:因为点(2,1)在y=ax(a>0,且a≠1)关于y=x对称的图象上,所以点(1,2)在y=ax(a>0,且a≠1)的图象上,所以2=a1,解得a=2.答案:217.已知f(x)=x2+(m+1)x+(m+1)的图象与x轴没有公共点,则m的取值范围是________(用区间表示).解析:依题意Δ=(m+1)2-4(m+1)=(m+1)(m-3)<0⇒-1<m<3,故m的取值范围用区间表示为(-1,3).答案:(-1,3)18.设f(x)=则f(f(-2))=________.解析:因为x=-2<0,所以f(-2)=10-2=>0,所以f(10-2)=lg10-2=-2,即f(f(-2))=-2.答案:-219.已知+=1,且x>0,y>0,则x+y的最小值是________.解析:因为+=1,且x>0,y>0,所以x+y=(x+y)=13++≥13+2=25,当且仅当=,即x=10且y=15时取等号.答案:25三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知△ABC的内角A,B,C的对边分别为a,b,c,且2c·cosB-b=2a.(1)求角C的大小;(2)设角A的平分线交BC于D,且AD=,若b=,求△ABC的面积.解:(1)由已知及余弦定理得2c×=2a+b,整理得a2+b2-c2=-ab,所以cosC===-,又0<C<π,所以C=,即角C的大小为.(2)由(1)知C=,依题意画出图形.在△ADC中,AC=b=,AD=,由正弦定理得sin∠CDA==×=,又△ADC中,C=,所以∠CDA=,故∠CAD=π--=.因为AD是角∠CAB的平分线,所以∠CAB=,所以△ABC为等腰三角形,且BC=AC=.所以△ABC的面积S=BC·AC·sin=×××=.21.已知圆C经过A(3,2)、B(1,6)两点,且圆心在直线y=2x上.(1)求圆C的方程;(2)若直线l经过点P(-1,3)且与圆C相切,求直线l的方程.解:(1)方法1:设圆C的方程为(x-a)2+(y-b)2=r2(r>0),依题意得,解得a=2,b=4,r2=5.所以圆C的方程为(x-2)2+(y-4)2=5.方法2:因为A(3,2)、B(1,6),所以线段AB中点D的坐标为(2,4),直线AB的斜率kAB==-2,因此直线AB的垂直平分线l'的方程是y-4=(x-2),即x-2y+6=0.圆心C的坐标是方程组的解.解此方程组,得即圆心C的坐标为(2,4).圆C的半径长r=|AC|==.所以圆C的方程为(x-2)2+(y-4)2=5.(2)由于直线l经过点P(-1,3),当直线l的斜率不存在时,x=-1与圆C:(x-2)2+(y-4)2=5相离,不合题意.当直线l的斜率存在时,可设直线l的方程为y-3=k(x+1),即kx-y+k+3=0.因为直线l与圆C相切,且圆C的圆心为(2,4),半径为,所以有=.解得k=2或k=-.所以直线l的方程为y-3=2(x+1)或y-3=-(x+1),即2x-y+5=0或x+2y-5=0.高中学业水平考试模拟测试卷(二)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1,2}B.{-1,0,1}C.{-1,0,2}D.{0,1}解析:因为集合M={-1,0,1},N={0,1,2},所以M∪N={-1,0,1,2}.答案:A2.“sinA=”是“A=30°”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为sin30°=,所以“sinA=”是“A=30°”的必要条件;150°,390°等角的正弦值也是,故“sinA =”不是“A=30°”的充分条件.故选B.答案:B3.已知a=(4,2),b=(6,y),且a⊥b,则y的值为()A.-12B.-3C.3D.12解析:因为a=(4,2),b=(6,y),且a⊥b,所以a·b=0,即4×6+2y=0,解得y=-12.故选A.答案:A4.若a<b<0,则下列不等式:①|a|>|b|;②>;③+>2;④a2<b2中,正确的有()A.1个B.2个C.3个D.4个解析:对于①,根据不等式的性质,可知若a<b<0,则|a|>|b|,故正确;对于②,若a<b<0,两边同除以ab,则<,即<,故正确;对于③,若a<b<0,则>0,>0,根据基本不等式即可得到+>2,故正确;对于④,若a<b<0,则a2>b2,故不正确.故选C.答案:C5.已知α是第二象限角,sinα=,则cosα=()A.-B.-C.D.解析:因为α是第二象限角,sinα=,所以cosα=-=-.故选B.答案:B6.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是()A.y=x-2B.y=x-1C.y=x2-2D.y=logx解析:因为y=x-1是奇函数,y=logx不具有奇偶性,故排除B,D;又函数y=x2-2在区间(0,+∞)上是单调递增函数,故排除C.故选A.答案:A7.不等式组表示的平面区域是()解析:由题意可知,(0,0)在x-3y+6=0的下方,满足x-3y+6≥0;(0,0)在直线x-y+2=0的下方,不满足x-y+2<0.故选B.答案:B8.一个容量为20的样本数据,分组后,组距与频数如下,组距(10,20](20,30](30,40](40,50](50,60](60,70]频数234542则样本在(10,50]上的频率为()A.B.C.D.解析:根据题意,样本在(10,50]上的频数为2+3+4+5=14,所求的频率为P==.故选D.答案:D9.cos40°sin80°+sin40°sin10°=()A.B.-C.cos50°D.解析:cos40°sin80°+sin40°sin10°=cos40°cos10°+sin40°sin10°=cos(40°-10°)=.答案:D10.函数y=log2(x2-3x+2)的递减区间是()A.(-∞,1)B.(2,+∞)C.D.解析:由x2-3x+2>0,得x<1或x>2,又y=log2(x2-3x+2)的底数是2,所以在(-∞,1)上递减.故选A.答案:A11.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》《水浒传》《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为()A.B.C.D.解析:记《三国演义》《水浒传》《红楼梦》和《西游记》为a、b、c、d,则该校高一(1)班本学期领到两套书的所有情况有ab、ac、ad、bc、bd、cd共6种,符合条件的情况为ab共1种,故概率为,选D.答案:D12.将函数y=sin的图象沿x轴向左平移m(m>0)个单位后,得到一个奇函数的图象,则m的最小值为()A.B.C.D.解析:y=sin的图象向左平移m个单位长度后得到y=sin,因为y=sin为奇函数,所以sin=0.所以2m+=kπ,k∈Z,即有m=-,k∈Z,所以正数m的最小值为.答案:A13.已知双曲线-=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x解析:由双曲线的离心率为,则e==,即c=a,b===a,由双曲线的渐近线方程为y=±x,得其渐近线方程为y=±x.故选D.答案:D14.函数f(x)=log2x+x-2的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解析:函数f(x)=log2x+x-2的图象在(0,+∞)上连续不断,f(1)=0+1-2<0,f(2)=1+2-2>0,故函数f(x)=log2x+x-2的零点所在的区间是(1,2).故选B.答案:B15.已知向量,和在正方形网格中的位置如图所示,若=λ+μ,则λ+μ=()A.2B.-2C.3D.-3解析:以A为原点,AD所在直线为x轴,与AD垂直的直线为y轴建立直角坐标系,那么=(1,0),=(1,2),=(2,-2),那么解得λ=-1,μ=3,所以λ+μ=2.故选A.答案:A二、填空题(共4小题,每小题4分,共16分.)16.函数y=ax-1+1(a>0,且a≠1)的图象恒过定点________.解析:当x-1=0,即x=1时,y=2.所以函数y=ax-1+1(a>0,且a≠1)的图象恒过定点(1,2).答案:(1,2)17.等差数列{an}中,a2=3,a3+a4=9,则a1a6=________.解析:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3,所以a1=2,d=1,所以a1a6=2×7=14.答案:1418.某学院A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟用分层抽样的方法抽取一个容量为120的样本.已知该学院A专业有380名学生,B专业有420名学生,则该学院C专业应抽取________名学生.解析:抽样比为1∶10,而C学院的学生有1200-380-420=400(名),所以按抽样比抽取40名.答案:4019.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则∠A的度数为________.解析:根据正弦定理可得,sinBcosC+sinCcosB=sin2A⇔sin(B+C)=sin2A,而sin(B+C)=sinA,所以sinA=sin2A,所以sinA=1,所以∠A=90°.答案:90°三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知函数f(x)=2sin+a,a为常数.(1)求函数f(x)的最小正周期;(2)若x∈时,f(x)的最小值为-2,求a的值.解:(1)f(x)=2sin+a.所以f(x)的最小正周期T==π.(2)当x∈时,2x-∈,所以x=0时,f(x)取得最小值,即2sin+a=-2,故a=-1.21.已知函数f(x)=1+-xα(α∈R),且f(3)=-.(1)求α的值;(2)求函数f(x)的零点;(3)判断f(x)在(-∞,0)上的单调性,并给予证明.解:(1)由f(3)=-,得1+-3α=-,解得α=1.(2)由(1),得f(x)=1+-x.令f(x)=0,即1+-x=0,也就是=0,解得x=.经检验,x=是1+-x=0的根,所以函数f(x)的零点为.(3)函数f(x)=1+-x在(-∞,0)上是减函数.证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)=-=(x2-x1).因为x1<x2<0,所以x2-x1>0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)=1+-x在(-∞,0)上是减函数.高中学业水平考试模拟测试卷(三)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={-1,0,1},N={x|x2=x},则M∩N=()A.{1}B.{0,1}C.{-1,0}D.{-1,0,1}解析:x2-x=0⇒x(x-1)=0⇒N={0,1},所以M∩N={0,1}.答案:B2.已知等比数列{an}的公比为2,则值为()A.B.C.2D.4解析:=q2=4.答案:D3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()A.-B.C.±D.1解析:命题“存在x0∈R,x-1=0”的否定为“对任意的x∈R,x2-1≠0”.答案:D4.直线l过点(1,-2),且与直线2x+3y-1=0垂直,则l的方程是()A.2x+3y+4=0B.2x+3y-8=0C.3x-2y-7=0D.3x-2y-1=0解析:设直线l:3x-2y+c=0,因为(1,-2)在直线上,所以3-2×(-2)+c=0,解得c=-7,即直线l的方程为3x-2y-7=0.答案:C5.已知直线的点斜式方程是y-2=-(x-1),那么此直线的倾斜角为()A.B.C.D.解析:因为k=tanα=-,所以α=π-=,故选C.答案:C6.已知复数z满足zi=2+i,i是虚数单位,则|z|=()A.B.C.2D.解析:由题意得z==1-2i,所以|z|=.答案:D7.要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x的图象()A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位解析:y=cos2x→y=cos(2x+1)=cos.故选C.答案:C8.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直解析:A.一组对边平行且相等就决定了是平行四边形,故A正确;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B正确;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C正确;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D不正确.故选D.答案:D9.函数f(x)=x3-2的零点所在的区间是()A.(-2,0)B.(0,1)C.(1,2)D.(2,3)解析:因为f(1)=13-2=-1<0,f(2)=23-2=6>0.所以零点所在的区间为(1,2).答案:C10.已知等差数列{an}中,a2=2,a4=6,则前4项的和S4等于()A.8B.10C.12D.14解析:设等差数列{an}的公差为d,则a4=a2+(4-2)d⇒d==2,a1=a2-d=2-2=0,所以S4==2(0+6)=12.故选C.答案:C11.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A.6B.9C.18D.36解析:由题意可知,几何体是以正视图为底面的三棱柱,其底面面积S=×4×=6,高是3,所以它的体积为V=Sh=18.故选C.答案:C12.双曲线-=1的一个焦点为(2,0),则m的值为()A.B.1或3C.D.解析:因为双曲线的焦点为(2,0),在x轴上且c=2,所以m+3+m=c2=4,所以m=.答案:A13.设x,y满足约束条件则z=x-2y的最小值为()A.-10B.-6C.-1D.0解析:由z=x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分),平移直线y=x-,由图象可知,当直线y=x-过点B时,直线y=x-的截距最大,此时z最小,由解得即B(2,4).代入目标函数z=x-2y,得z=2-8=-6,所以目标函数z=x-2y的最小值是-6.故选B.答案:B14.=()A.-B.-C.D.解析:====sin30°=.故选C.答案:C15.小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲、乙两地的平均速度为v,则()A.v=B.v=C.<v<D.b<v<解析:设甲地到乙地的距离为s.则他往返甲、乙两地的平均速度为v==,因为a>b>0,所以>1,所以v=>b.v=<=.所以b<v<.故选D.答案:D二、填空题(共4小题,每小题4分,共16分.)16.首项为1,公比为2的等比数列的前4项和S4=________.解析:S4==15.答案:1517.若函数f(x)=loga(x+m)+1(a>0且a≠1)恒过定点(2,n),则m+n的值为________.解析:f(x)=loga(x+m)+1过定点(2,n),则loga(2+m)+1=n恒成立,所以⇒所以m+n=0.答案:018.已知函数f(x)=则f的值是________.解析:f=log2=-2,f=f(-2)=3-2=.答案:19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________.解析:设椭圆的方程为+=1(a>b>0),将点(-5,4)代入得+=1,又离心率e==,即e2===,所以a2=45,b2=36,故椭圆的方程为+=1.答案:+=1三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.解:(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因为直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-(x-2),即x+2y-6=0.(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.圆心到直线l的距离为,圆的半径为3,所以弦AB的长为2=.21.已知等差数列{an}满足a2+a5=8,a6-a3=3.(1)求数列{an}的前n项和Sn;(2)若bn=+3·2n-2,求数列{bn}的前n项和Tn.解:(1)由a6-a3=3得数列{an}的公差d==1,由a2+a5=8,得2a1+5d=8,解得a1=,所以Sn=na1+d=.(2)由(1)可得==-,所以bn=+3·2n-2=-+3·2n-2.所以Tn=b1+b2+b3+…+bn=++…++(1+2+…+2n-1)=-(++…+++)+×=--+×(2n-1)=3·2n-1--.高中学业水平考试模拟测试卷(四)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P={1,2},Q={2,3},全集U={1,2,3},则∁U(P∩Q)等于()A.{3}B.{2,3}C.{2}D.{1,3}解析:因为全集U={1,2,3},集合P={1,2},Q={2,3},所以P∩Q={2},所以∁U(P∩Q)={1,3},故选D.答案:D2.圆x2+y2-4x+6y+11=0的圆心和半径分别是()A.(2,-3);B.(2,-3);2C.(-2,3);1D.(-2,3);解析:圆x2+y2-4x+6y+11=0的标准方程为(x-2)2+(y+3)2=2,据此可知圆心坐标为(2,-3),圆的半径为,故选A.答案:A3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()A.-B.C.±D.1解析:因为3a+2b与ka-b互相垂直,所以(3a+2b)·(ka-b)=0,所以3ka2+(2k-3)a·b-2b2=0,因为a⊥b,所以a·b=0,所以12k-18=0,k=.答案:B4.若cos=,则sin=()A.B.C.-D.-解析:因为cos=,所以sin=sin=cos=,故选A.答案:A5.已知函数f(x)=+,则f(x)的定义域是()A.[-1,2)B.[-1,+∞)C.(2,+∞)D.[-1,2)∪(2,+∞)解析:根据题意得解得x≥-1且x≠2,故f(x)的定义域为[-1,2)∪(2,+∞),故选D.答案:D6.若双曲线-y2=1的一条渐近线方程为y=3x,则正实数a的值为()A.9B.3C.D.解析:双曲线-y2=1的渐近线方程为y=±,由题意可得=3,解得a=,故选D.答案:D7.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程为()A.3x+2y-1=0B.2x+3y-1=0C.3x+2y+1=0D.2x-3y-1=0解析:因为2x-3y+4=0的斜率k=,所以直线l的斜率k′=-,由点斜式可得l的方程为y-2=-(x+1),即3x+2y-1=0,故选A.答案:A8.已知=(1,-1,0),C(0,1,-2),若=2,则点D的坐标为()A.(-2,3,-2)B.(2,-3,2)C.(-2,1,2)D.(2,-1,-2)解析:设点D的坐标为(x,y,z),又C(0,1,-2),所以=(x,y-1,z+2),因为=(1,-1,0),=2,所以(x,y-1,z+2)=(2,-2,0),即则点D的坐标为(2,-1,-2).故选D.答案:D9.已知平面α,β和直线m,直线m不在平面α,β内,若α⊥β,则“m∥β”是“m⊥α”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由α⊥β,m∥β,可得m⊥α或m∥α或m与α既不垂直也不平行,故充分性不成立;由α⊥β,m⊥α可得m∥β,故必要性成立,故选B.答案:B10.将函数y=sin的图象经怎样平移后,所得的图象关于点成中心对称()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位解析:将函数y=sin的图象向左平移φ个单位,得y=sin的图象,因为该图象关于点成中心对称,所以2×+2φ+=kπ(k∈Z),则φ=-(k∈Z),当k=0时,φ=-,故应将函数y=sin的图象向右平移个单位,选B.答案:B11.△ABC的内角A,B,C的对边分别为a,b,c,若C=,c=,b=3a,则△ABC的面积为()A.B.C.D.解析:已知C=,c=,b=3a,所以由余弦定理可得7=a2+b2-ab=a2+9a2-3a2=7a2,解得a=1,则b=3,所以S△ABC=absinC=×1×3×=.故选B.答案:B12.函数y=的图象大致是()解析:因为y=的定义域为{x|x≠0},所以排除选项A;当x=-1时,y=>0,故排除选项B;当x→+∞时,y→0,故排除选项D,故选C.答案:C13.若实数x,y满足约束条件则z=x2+y2的最大值是()A.B.4C.9D.10解析:作出约束条件的可行域,如图中阴影部分所示,因为A(0,-3),C(0,2),所以|OA|>|OC|.联立解得B(3,-1).因为x2+y2的几何意义为可行域内的动点与原点距离的平方,且|OB|2=9+1=10,所以z=x2+y2的最大值是10.故选D.答案:D14.已知等差数列{an}的前n项和是Sn,公差d不等于零,若a2,a3,a6成等比数列,则()A.a1d>0,dS3>0B.a1d>0,dS3<0C.a1d<0,dS3>0D.a1d<0,dS3<0解析:由a2,a3,a6成等比数列,可得a=a2a6,则(a1+2d)2=(a1+d)(a1+5d),即2a1d+d2=0,因为公差d不等于零,所以a1d<0,2a1+d=0,所以dS3=d(3a1+3d)=d2>0.故选 C.答案:C15.如图所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点.将△ABC沿DE,EF,DF折成三棱锥以后,HG与IJ所成角的度数为()A.90°B.60°C.45°D.0°解析:将△ABC沿DE,EF,DF折成三棱锥以后,点A,B,C重合为点M,得到三棱锥M-DEF,如图.因为I、J分别为BE、DE的中点,所以IJ∥侧棱MD,故GH与IJ所成的角等于侧棱MD与GH所成的角.因为∠AHG=60°,即∠MHG=60°,所以GH与IJ所成的角的度数为60°,故选B.答案:B二、填空题(共4小题,每小题4分,共16分.)16.设公比不为1的等比数列{an}满足a1a2a3=-,且a2,a4,a3成等差数列,则公比q=______,数列{an}的前4项的和为_______.解析:公比不为1的等比数列{an}满足a1a2a3=-,所以a=-,解得a2=-,a3=-q,a4=-q2,又a2,a4,a3成等差数列,故2a4=a2+a3,解得q=-,a1=1,由Sn=可得S4=.答案:-17.设函数f(x)(x∈R)满足|f(x)-x2|≤,|f(x)+1-x2|≤,则f(1)=________.解析:由|f(x)-x2|≤,得-≤f(x)-x2≤.由|f(x)+1-x2|≤,得-≤f(x)-x2+1≤,即-≤f(x)-x2≤-,所以f(x)-x2=-,则f(1)-1=-,故f(1)=.答案:18.若半径为10的球面上有A、B、C三点,且AB=8,∠ACB=60°,则球心O到平面ABC的距离为________.解析:在△ABC中,AB=8,∠ACB=60°,由正弦定理可求得其外接圆的直径为=16,即半径为8,又球心在平面ABC上的射影是△ABC的外心,故球心到平面ABC的距离、球的半径及三角形外接圆的半径构成了一个直角三角形,设球面距为d,则有d2=102-82=36,解得d=6.故球心O到平面ABC的距离为6.答案:619.已知动点P是边长为的正方形ABCD的边上任意一点,MN是正方形ABCD的外接圆O的一条动弦,且MN=,则·的取值范围是________.解析:如图,取MN的中点H,连接PH,则=+=-,=+.因为MN=,所以·=2-2=2-≥-,当且仅当点P,H重合时取到最小值.当P,H不重合时,连接PO,OH,易得OH=,则2=(+)2=2+2·+2=2+-2||||·cos∠POH=2+-||·cos∠POH≤2++||≤+,当且仅当P,O,H三点共线,且P在A,B,C,D其中某一点处时取到等号,所以·=2-≤+1,故·的取值范围为.答案:三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知△ABC的三个内角A,B,C的对边分别为a,b,c.若sin2A+sin2B-sin2C=sinAsinB.(1)求角C的大小;(2)若△ABC的面积为2,c=2,求△ABC的周长.解:(1)由sin2A+sin2B-sin2C=sinAsinB及正弦定理,得a2+b2-c2=ab,由余弦定理得cosC==,因为C∈(0,π),所以C=.(2)由(1)知C=.由△ABC的面积为2得ab·=2,解得ab=8,由余弦定理得c2=a2+b2-2ab×=(a+b)2-3ab=12,所以(a+b)2=36,a+b=6,故△ABC的周长为6+2.21.如图,直线l与椭圆C:+=1交于M,N两点,且|MN|=2,点N关于原点O的对称点为P.(1)若直线MP的斜率为-,求此时直线MN的斜率k的值;(2)求点P到直线MN的距离的最大值.解:(1)设直线MP的斜率为k′,点M(x,y),N(s,t),则P(-s,-t),k′=-,且+=1,+=1,所以y2=2-,t2=2-.又k′·k=·===-.且k′=-,所以k=1.(2)当直线MN的斜率k存在时,设其方程为y=kx+m,由消去y,得(1+2k2)x2+4kmx+2m2-4=0,则Δ=8(4k2-m2+2)>0,x1+x2=,x1·x2=,由|MN|=|x1-x2|=·=2,化简得m2=.设点O到直线MN的距离为d,则P到MN的距离为2d,又d=,则4d2===8-<8,所以0<2d<2.当直线MN的斜率不存在时,则M(-,1),N(-,-1),则P(,1),此时点P到直线MN的距离为2.综上,点P到直线MN的距离的最大值为2.高中学业水平考试模拟测试卷(五)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={1,2,3},B={2,4,5},则A∪B=()A.{2}B.{6}C.{1,3,4,5,6}D.{1,2,3,4,5}解析:A∪B={1,2,3}∪{2,4,5}={1,2,3,4,5},故选D.答案:D2.设p:log2x2>2,q:x>2,则p是q成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由log2x2>2得,x2>4,解得x<-2或x>2,所以p是q成立的必要不充分条件.故选A.答案:A3.角θ的终边经过点P(4,y),且sinθ=-,则tanθ=()A.-B.C.-D.解析:因为角θ的终边经过点P(4,y),且sinθ=-=,所以y=-3,则tanθ==-,故选C.答案:C4.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8桶B.9桶C.10桶D.11桶解析:易得第一层有4桶,第二层最少有3桶,第三层最少有2桶,所以至少共有9桶,故选B.答案:B5.在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8等于()A.45B.75C.180D.360解析:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=450,得到a5=90,则a2+a8=2a5=180.故选C.答案:C6.已知过点A(-2,m)和B(m,4)的直线与直线2x+y+1=0平行,则m的值为()A.-8B.0C.2D.10解析:因为直线2x+y+1=0的斜率等于-2,且过点A(-2,m)和B(m,4)的直线与直线2x+y+1=0平行,所以kAB=-2,所以=-2,解得m=-8,故选A.答案:A7.已知向量a=(,0),b=(0,-1),c=(k,),若(a-2b)⊥c,则k=()A.2B.-2C.D.-解析:由a=(,0),b=(0,-1),得a-2b=(,2),若(a-2b)⊥c,则(a-2b)·c=0,所以k+2=0,所以k=-2,故选B.答案:B8.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β解析:由α,β是两个不同的平面,l是一条直线,知:在A中,若l⊥α,α⊥β,则l∥β或l⊂β,故A错误;在B中,若l∥α,α∥β,则l∥β或l⊂β,故B错误;在C中,若l⊥α,α∥β,则由线面垂直的判定定理得l⊥β,故C正确;在D中,若l∥α,α⊥β,则l与β相交、平行或l⊂β,故D错误,故选C.答案:C9.在△ABC中,内角A,B,C的对边分别是a,b,c,若sin2A+sin2B-sin2C=0,a2+c2-b2-ac=0,c=2,则a=()A.B.1C.D.解析:因为sin2A+sin2B-sin2C=0,所以a2+b2-c2=0,即C为直角,因为a2+c2-b2-ac=0,所以cosB==,B=,因此a=ccos=1.故选B.答案:B10.已知等比数列{an}的前n项和为Sn,且满足2Sn=2n+1+λ,则λ的值为()A.4B.2C.-2D.-4解析:根据题意,当n=1时,2S1=2a1=4+λ,当n≥2时,an=Sn-Sn-1=2n-1.因为数列{an}是等比数列,所以a1=1,故=1,解得λ=-2.故选C.答案:C11.若以双曲线-=1(b>0)的左、右焦点和点(1,)为顶点的三角形为直角三角形,则b等于()A.B.1C.D.2解析:由题意,双曲线-=1(b>0)的左、右焦点分别为(-c,0)、(c,0),因为两焦点和点(1,)为顶点的三角形为直角三角形,所以(1-c,)·(1+c,)=0,所以1-c2+2=0,所以c=,因为a=,所以b=1.故选B.答案:B12.已知函数f(x)=2sin,若将它的图象向右平移个单位长度,得到函数g(x)的图象,则函数g(x)图象的一条对称轴方程为()A.x=B.x=C.x=D.x=解析:由题意得g(x)=2sin[2(x-)+]=2sin,令2x-=kπ+,k∈Z,得x=+,k∈Z,当k=0时,得x=,所以函数g(x)图象的一条对称轴方程为x=.故选C.答案:C13.已知正方体ABCD-A1B1C1D1中,点E是线段BC的中点,点M是直线BD1上异于B,D1的点,则平面DEM可能经过下列点中的()A.AB.C1C.A1D.C解析:连接A1D,A1E,因为A1D1∥BE,所以A1,D1,B,E四点共面.设A1E∩BD1=M,显然平面DEM与平面A1DE重合,从而平面DEM经过点A1.故答案为C.答案:C14.已知x、y满足则3x-y的最小值为()A.4B.6C.12D.16解析:由约束条件作出可行域如图,联立解得A(2,2),令z=3x-y,化为y=3x-z,由图可知,当直线y=3x-z过点A时,直线在y轴上的截距最大,z有最小值为4.故选A.答案:A15.若正数x,y满足x+4y-xy=0,则的最大值为()A.B.C.D.1解析:由x+4y-xy=0可得x+4y=xy,左右两边同时除以xy得+=1,求的最大值,即求=+的最小值,所以×1=×=+++≥2++=3,当且仅当=时取等号,所以的最大值为.所以选A.答案:A二、填空题(共4小题,每小题4分,共16分.)16.函数f(x)=+-1的定义域是________.解析:要使函数f(x)有意义,则即解得-3≤x≤1,故函数的定义域为[-3,1].答案:[-3,1]17.已知一个长方体的同一顶点处的三条棱长分别为1,,2,则其外接球的半径为________,表面积为________.解析:设长方体的外接球的半径为R,则长方体的体对角线长就等于外接球的直径,即2R=,解得R=,所以外接球的表面积为S=4πR2=8π.答案:8π18.在平面直角坐标系xOy中,已知过点A(2,-1)的圆C和直线x+y=1相切,且圆心在直线y=-2x上,则圆C的标准方程为________.解析:因为圆心在y=-2x上,所以可设圆心坐标为(a,-2a),又因为圆过A(2,-1),且圆C和直线x+y=1相切,所以=,解得a=1,所以圆半径r==,圆心坐标为(1,-2),所以圆方程为(x-1)2+(y+2)2=2.答案:(x-1)2+(y+2)2=219.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=+m,若函数f(x)有5个零点,则实数m的取值范围是________.解析:由题意,函数f(x)是奇函数,f(x)有5个零点,其中x=0是1个,只需x>0时有2个零点即可,当x>0时,f(x)=+m,转化为函数y=-m和f(x)=的图象交点个数即可,画出函数的图象,如图所示.结合图象可知只需<-m<1,即-1<m<-.答案:三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.在锐角△ABC中,a,b,c分别为内角A,B,C的对边,且满足(2c-a)cosB-bcosA=0.(1)求角B的大小;(2)已知c=2,AC边上的高BD=,求△ABC的面积S的值.解:(1)因为(2c-a)cosB-bcosA=0,所以由正弦定理得(2sinC-sinA)cosB-sinBcosA=0,所以2sinCcosB-sin(A+B)=0,因为A+B=π-C且sinC≠0,所以2sinCcosB-sinC=0,即cosB=.因为B∈(0,π),所以B=.(2)因为S=acsin∠ABC=BD·b,代入c,BD=,sin∠ABC=,得b=a,由余弦定理得:b2=a2+c2-2ac·cos∠ABC=a2+4-2a.代入b=a,得a2-9a+18=0,解得或又因为△ABC是锐角三角形,所以a2<c2+b2,所以a=3,所以S△ABC=acsin∠ABC=×2×3×=.21.设椭圆C:+=1(a>b>0),其右顶点是A(2,0),离心率为.(1)求椭圆C的方程;(2)若直线l与椭圆C交于两点M,N(M,N不同于点A),若·=0,求证:直线l过定点,并求出定点坐标.(1)解:因为椭圆C的右顶点是A(2,0),离心率为,所以a=2,=,所以c=1,则b=,所以椭圆的标准方程为+=1.(2)证明:当直线MN斜率不存在时,设MN:x=m,与椭圆方程+=1联立得:|y|=,|MN|=2.设直线MN与x轴交于点B,则|MB|=|AB|,即=2-m,所以m=或m=2(舍),所以直线l过定点.当直线MN斜率存在时,设直线MN斜率为k,M(x1,y1),N(x2,y2),则直线MN:y=kx+n(k≠0),与椭圆方程+=1联立,得(4k2+3)x2+8knx+4n2-12=0,所以x1+x2=-,x1x2=,Δ=(8kn)2-4(4k2+3)(4n2-12)>0,k∈R.所以y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2,由·=0,则(x1-2,y1)·(x2-2,y2)=0,即x1x2-2(x1+x2)+4+y1y2=0,所以7n2+4k2+16kn=0,所以n=-k 或n=-2k,所以直线MN:y=k或y=k(x-2),所以直线过定点或(2,0)(舍去).综上知,直线过定点.五年级下册数学期中试卷一、填空。
安徽省2024届普通高中学业水平合格考试数学模拟试题

安徽省2024届普通高中学业水平合格考试数学模拟试题一、单选题1.设集合{}3,5,6,8A =,{}4,5,8B =,则A B =I ( ) A .{}3,6B .{}5,8C .{}4,6D .{}3,4,5,6,82.在复平面内,(3i)i +对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.某学校高一、高二、高三分别有600人、500人、700人,现采用分层随机抽样的方法从该校三个年级中抽取18人参加全市主题研学活动,则应从高三抽取( ) A .5人B .6人C .7人D .8人4.“a b >”是“ac bc >”的什么条件( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件5.已知(),4a x =r ,()2,1b =-r ,且a b ⊥r r ,则x 等于( ) A .4B .-4C .2D .-26.已知角α的始边在x 轴的非负半轴上,终边经过点()3,4-,则cos α=( ) A .45B .35C .45-D .35-7.下列关于空间几何体结构特征的描述错误的是( ) A .棱柱的侧棱互相平行B .以直角三角形的一边为轴旋转一周得到的几何体不一定是圆锥C .正三棱锥的各个面都是正三角形D .棱台各侧棱所在直线会交于一点8.某地一年之内12个月的降水量分别为:71,66,64,58,56,56,56,53,53,51,48,46,则该地区的月降水量75%分位数( ) A .61B .53C .58D .649.已知函数πsin ,1()6ln ,1x x f x x x ⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪>⎩,则()(e)f f =( )A .1B .12CD10.抛掷两个质地均匀的骰子,则“抛掷的两个骰子的点数之和是6”的概率为( )A .17B .111C .536D .11211.在ABC V 中,13BD BC =u u u r u u u r ,设,AB a AC b ==u u u r u u u r r r ,则AD =u u u r( )A .2133a b +r rB .2133a b -+r rC .4133a b -r rD .4133a b +r r12.设0.20.10.214,,log 42a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .<<c a bD .a c b <<13.在ABC V 中,下列结论正确的是( )A .若AB ≥,则cos cos A B ≥ B .若A B ≥,则tan tan A B ≥C .cos()cos +=A B CD .若sin A ≥sin B ,则A B ≥14.已知某圆锥的母线长为4,高为 )A .10πB .12πC .14πD .16π15.若函数()()2212f x x a x =+-+在区间(],4-∞-上是减函数,则实数a 的取值范围是A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞16.已知幂函数()f x 为偶函数,且在(0,)+∞上单调递减,则()f x 的解析式可以是( )A .12()f x x = B .23()f x x = C .2()f x x -=D .3()f x x -=17.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是( )A .“至少有1个红球”与“都是黑球”B .“恰好有1个红球”与“恰好有1个黑球”C .“至少有1个黑球”与“至少有1个红球”D .“都是红球”与“都是黑球”18.已知函数()f x 是定义域为R 的偶函数,且在(],0-∞上单调递减,则不等式()()12f x f x +>的解集为( )A .1,03⎛⎫- ⎪⎝⎭B .1,3∞⎛⎫+ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .1,13⎛⎫- ⎪⎝⎭二、填空题19.已知i 是虚数单位,复数12iiz -=,则||z =. 20.已知()()321f x x a x =+-为奇函数,则实数a 的值为.21.已知非零向量a r ,b r 满足||2||a b =r r ,且()a b b -⊥rr r ,则a r 与b r 的夹角为.22.在对树人中学高一年级学生身高(单位:cm )调查中,抽取了男生20人,其平均数和方差分别为174和12,抽取了女生30人,其平均数和方差分别为164和30,根据这些数据计算出总样本的方差为.三、解答题23.已知函数()f x 是二次函数,且满足(0)2f =,(1)()2f x f x x +=+. (1)求函数()f x 的解析式; (2)当x >0时,求函数()f x xy x+=的最小值. 24.如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF =FC ,求证:P A ∥平面BDF ; (2)若BF ⊥PC ,求证:平面BDF ⊥平面PBC . 25.已知()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.f x的最小正周期及单调增区间;(1)求()(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若()f A △ABC的外接圆半径为2,求△ABC面积的最大值.。
湖南高中学业水平考试数学(必修一)模拟考试试题

高一数学必修一学考检测卷(考试时间: 120分钟 满分: 100)班级: 姓名:本试题卷包括选择题、填空题和解答题三部分。
时量120分钟, 满分100分。
一. 选择题:本大题共10小题, 每小题4分, 满分40分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.已知集合A= , 那么下列结论正确的是( ) .0.1.1.0A AB AC AD A ∈∉-∈∉2. 下列幂函数中过点(0,0),(1,1)的偶函数是( )A....B.....C....D.3.已知集合 = {1.2}, ={2.3}.则 =. ....A {1, 2};B {2, 3} ;C {1, 3} ;D {1, 2, 3}4.函数 的值域是.. ).(,4]A -∞- .(,4]B -∞ .[4,)C -+∞ .[4,)D +∞5.方程 仅有一正实根 , 则 ..)A (0,1)B (1,2)C (2,3)D (3,4)7.下列函数中, 在区间(0, + )上为增函数的......... ....)A.xy )31(= B.y=log 3x C.xy 1=D.y=cosx 8.如图, 纵轴表示行走距离d, 横轴表示行走时间t, 下列四图中, 哪一种表示先快后慢的行走方法。
( )9.已知函数 , 则 的值为.. )A.0B.1C.2D.1-A 12-=x y B 12-=x yC 12-=X yD 2.52.512+-=x x y二. 填空题: 本大题共5小题, 每小题4分, 满分20分.11.已知 12.用“二分法”求方程 在区间 内的实根,取区间中点为 ,那么下一个有根的区间........ 。
13.化简 的结果......... 。
14.已知集合 , 若 , 则实数 ...... 15.不等式: 的解为......。
三. 解答题: 本大题共5小题, 满分40分.解答应写出文字说明、证明过程或演算步..16.(本小题满分6分)已知全集U=R, 集合 ,求: (1) (2)17.(本小题满分8分)已知二次函数f(x)=x2+ax+b,满足f(0)=6,f(1)=5,1.求函数y=f(x)的解析式,2.当x∈[-2,2]时,求函数y=f(x)的最小值和最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业水平考试模拟卷数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合{|14},{|28},A x x B x x =≤≤=≤≤,则A B U 等于( )A .{|18}x x ≤≤ B .{|24}x x ≤≤ C .{|24}x x x ≤≥或 D. {|18}x x x ≤≥或 2.2cos 3π的值为( )A .12-B .12C.2 D .2-3. 函数()lg(2)f x x =+的定义域是( ) A .),2[+∞ B .),2(+∞ C .(2,)-+∞ D .[2,)-+∞4. 函数f (x )=-x 3-3x +5的零点所在的大致区间是( )A.(-2,0)B.(0,1)C.(1,2)D.(2,3) 5.设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .12B .9C .6D .3 6.要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位 7.已知f (x )是偶函数,且在区间(0,+∞)上是增函数,则f (-0.5),f (-1),f (0)的大小关系是( )A. f (-0.5)<f (0)<f (1)B. f (-1)<f (-0.5)<f (0)C. f (0)<f (-0.5)<f (-1)D. f (-1)<f (0)<f (-0.5)8.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S 4的概率是( )A.14B. 34C. 12D.239.图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 210.若变量x ,y满足约束条件⎩⎨⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( )A .-52 B.-2 C .-32D.211.如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r等于 ( )A .0r B. BE u u u r C.AD u u u r D.CF uuu r二、填空题:本大题共4小题,每小题3分,共12分. 13. 指数函数f (x )=a x +1的图象恒过定点________.14. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_______.16.已知向量(),2a m =v ,向量()2,3b =-v ,若a b a b +=-v v v v,则实数m 的值是_______.三、解答题:本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f (x )=2sin x 2cos x 2-2sin 2x2.(Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间[-π,0]上的最小值.18.(本小题满分10分) 如图,在圆锥PO 中,AB 是⊙O 的直径,C 是⊙O 上的一点,D 为AC 的中点,证明:平面POD ⊥平面PAC .19.(本小题满分10分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且13,21,1355311=+=+==b a b a b a(Ⅰ)求{}n a ,{}n b 的通项公式.(Ⅱ)求数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和n S .20. (本小题满分10分)某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:M M(Ⅰ)求表中的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;(Ⅱ)如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,再从这6人中选2人,求2人服务次数都在的概率.21. (本小题满分12分)已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0. (Ⅰ)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程; (Ⅱ)求过P 点的圆C 的弦的中点的轨迹方程.,n p a [10,15)[25,30)[10,15)普通高中学生学业水平考试模拟卷参考答案 一、选择题1.A2.A3.C4.C5.B6.B7.C8.B9.D 10.A 11.D 二、填空题:13. (-1,1) 14. 7π 15. 15 16. 3三、解答题17. 解: (1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π…………………………5分(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为 f ⎝⎛⎭⎪⎫-3π4=-1-22.…………………………10分 18. 证明:∵OA =OC ,D 为AC 中点,∴AC ⊥OD .又∵PO ⊥底面⊙O ,AC ⊂底面⊙O ,∴AC ⊥PO . …………………………5分 ∵OD ∩PO =O ,∴AC ⊥平面POD .而AC ⊂平面PAC ,∴平面POD ⊥平面PAC . …………………………10分 19. 解:(1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0,且⎩⎨⎧1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2,所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1. …………………………5分(2)a n b n =2n -12n -1, S n =1+321+522+…+2n -32n -2+2n -12n -1,① 2S n =2+3+52+…+2n -32n -3+2n -12n -2,②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1 =2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1.…………………………10分20.可以看出,中位数位于区间[15,20),设中位数为x 则0.250.125(15)0.125(20)0.0750.05x x +⨯-=⨯-++17x ∴=………………………5分(2)由题意知样本服务次数在有20人,样本服务次数在有4人, 如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,则抽取的服务次数在和的人数分别为:和. 记服务次数在为,在的为. 从已抽取的6人任选两人的所有可能为:共15种,设“2人服务次数都在”为事件,则事件包括[10,15)[25,30)[10,15)[25,30)[10,15)[25,30)206524⨯=46124⨯=[10,15)12345,,,,a a a a a [25,30)b 121314151232425234(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a a a b a a a a a a a b a a 3534545(,),(,),(,),(,),(,),a a a b a a a b a b [10,15)A A共10种,所有.…………………………10分 21.解 (1)设|AB |=43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16, ∴圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB , 又|AD |=23,|AC |=4.在Rt △ACD 中,可得|CD |=2.设所求直线l 的斜率为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0. 由点C 到直线l 的距离公式:|-2k -6+5|k 2+(-1)2=2,得k =34.故直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0.∴所求直线l 的方程为x =0或3x -4y +20=0. …………………………6分 (2)设过P 点的圆C 的弦的中点为D (x ,y ), 则CD ⊥PD ,即CD →·PD →=0, ∴(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0. …………………………12分1213141523242534(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a a a a a a a a a a 3545(,),(,)a a a a 102()153P A ==。