高一数学下学期期中考试 新人教B版

合集下载

河北省石家庄市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

河北省石家庄市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(共11小题,每小题3分,满分33分)1.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆D.梯形2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B.C. D.3.如果两直线a∥b,且a∥平面α,则b与α的位置关系是()A.相交 B.b∥α或b⊂αC.b⊂αD.b∥α4.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交 D.任意一条直线不相交5.将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.6.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定是等腰三角形7.如图所示,三视图的几何体是()A.六棱台B.六棱柱C.六棱锥D.六边形8.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为()A. a 2B. a 2C. a 2D. a 29.等腰三角形ABC的直观图是()A.①② B.②③ C.②④ D.③④10.两条相交直线的平行投影是()A.两条相交直线 B.一条直线C.一条折线 D.两条相交直线或一条直线11.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点二、(填空题)12.不重合的三个平面把空间分成n部分,则n的可能值为.13.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.14.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为.15.如果一个几何体的俯视图中有圆,则这个几何体中可能有.16.已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若m⊂α,l⊂β且l⊥m,则α⊥β;④若l⊂β,l⊥α,则α⊥β;⑤若m⊂α,l⊂β且α∥β,则m∥l.其中正确命题的序号是.(把你认为正确命题的序号都填上)17.如图是一个空间几何体的三视图,则该几何体为.18.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x轴和正三角形的一边平行,则这个正三角形的直观图的面积是.19.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是.20.等腰梯形ABCD中,上底CD=1,腰,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.21.如图已知梯形ABCD的直观图A′B′C′D′的面积为10,则梯形ABCD的面积为.22.一个空间几何体的三视图如图所示,该几何体的表面积为.2016-2017学年某某省某某实验中学高一(下)期中数学试卷参考答案与试题解析一、选择题(共11小题,每小题3分,满分33分)1.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆D.梯形【考点】LA:平行投影及平行投影作图法.【分析】本题考查投影的概念,由于图形的投影是一个线段,根据平行投影与中心投影的规则对选项中几何体的投影情况进行分析找出正确选项.【解答】解:线段、圆、梯形都是平面图形,且在有限X围内,投影都可能为线段.长方体是三维空间图形,其投影不可能是线段;直线的投影,只能是直线或点.故选:B.【点评】本题考查平行投影及平行投影作图法,解题的关键是熟练掌握并理解投影的规则,由投影的规则对选项作出判断,得出正确选项.2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B. C. D.【考点】L7:简单空间图形的三视图.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.3.如果两直线a∥b,且a∥平面α,则b与α的位置关系是()A.相交 B.b∥α或b⊂αC.b⊂αD.b∥α【考点】LP:空间中直线与平面之间的位置关系.【分析】若两直线a∥b,且a∥平面α,根据线面平行的性质定理及线面平行的判定定理,分b⊂α和b⊄α两种情况讨论,可得b与α的位置关系【解答】解:若a∥平面α,a⊂β,α∩β=b则直线a∥b,故两直线a∥b,且a∥平面α,则可能b⊂α若b⊄α,则由a∥平面α,令a⊂β,α∩β=c则直线a∥c,结合a∥b,可得b∥c,由线面平行的判定定理可得b∥α故两直线a∥b,且a∥平面α,则可能b∥α故选:B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,熟练掌握空间直线与平面平行的判定定理和性质定理是解答的关键.4.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交 D.任意一条直线不相交【考点】LT:直线与平面平行的性质.【分析】根据直线与平面平行的定义可知直线与平面无交点,从而直线与平面内任意直线都无交点,从而得到结论.【解答】解:根据线面平行的定义可知直线与平面无交点∵直线a∥平面α,∴直线a与平面α没有公共点从而直线a与平面α内任意一直线都没有公共点,则不相交故选:D【点评】本题主要考查了直线与平面平行的性质,以及直线与平面平行的定义,同时考查了推理能力,属于基础题.5.将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.【考点】L7:简单空间图形的三视图.【分析】图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,易得选项.【解答】解:解题时在图2的右边放扇墙(心中有墙),图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,可得答案A.故选A.【点评】本题考查空间几何体的三视图,考查空间想象能力,是基础题.6.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定是等腰三角形【考点】LD:斜二测法画直观图.【分析】根据斜二侧画法画水平放置的平面图形时的画法原则,可得:等腰三角形的直观图不再是等腰三角形,梯形的直观图还是梯形,正方形的直观图是平行四边形,正三角形的直观图是一个钝角三角形,进而得到答案.【解答】解:根据斜二侧画法画水平放置的平面图形时的画法原则,可得:等腰三角形的直观图不再是等腰三角形,梯形的直观图还是梯形,正方形的直观图是平行四边形,正三角形的直观图是一个钝角三角形,故选:C【点评】本题考查的知识点是斜二侧画法,熟练掌握斜二侧画法的作图步骤及实质是解答的关键.7.如图所示,三视图的几何体是()A.六棱台B.六棱柱C.六棱锥D.六边形【考点】L7:简单空间图形的三视图.【分析】根据三视图的形状判断.【解答】解:由俯视图可知,底面为六边形,又正视图和侧视图j均为三角形,∴该几何体为六棱锥.故选:C【点评】本题考查了常见几何体的三视图,属于基础题.8.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为()A. a 2B. a 2C. a 2D. a 2【考点】LB:平面图形的直观图.【分析】根据斜二测画法原理作出△ABC的平面图,求出三角形的高即可得出三角形的面积.【解答】解:如图(1)所示的三角形A′B′C′为直观图,取B′C′所在的直线为x′轴,B′C′的中点为O′,且过O′与x′轴成45°的直线为y′轴,过A′点作M′A′∥O′y′,交x′轴于点M′,则在直角三角形A′M′O′中,O′A′=a,∠A′M′O′=45°,∴M′O′=O′A′=a,∴A′M′=a.在xOy坐标平面内,在x轴上取点B和C,使OB=OC=,又取OM=a,过点M作x轴的垂线,且在该直线上截取MA=a,连结AB,AC,则△ABC为直观图所对应的平面图形.显然,S △ABC=BC•MA=a•a= a 2.故选:C.【点评】本题考查了平面图形的直观图,斜二测画法原理,属于中档题.9.等腰三角形ABC的直观图是()A.①② B.②③ C.②④ D.③④【考点】LB:平面图形的直观图.【分析】根据斜二测画法,讨论∠x′O′y′=45°和∠x′O′y′=135°时,得出等腰三角形的直观图即可.【解答】解:由直观图画法可知,当∠x′O′y′=45°时,等腰三角形的直观图是④;当∠x′O′y′=135°时,等腰三角形的直观图是③,综上,等腰三角形ABC的直观图可能是③④.故选:D.【点评】本题考查了斜二测法画直观图的应用问题,也考查作图与识图能力,是基础题目.10.两条相交直线的平行投影是()A.两条相交直线 B.一条直线C.一条折线 D.两条相交直线或一条直线【考点】NE:平行投影.【分析】利用平行投影知识,判断选项即可.【解答】解:当两条直线所在平面与投影面垂直时,投影是一条直线,所在平面与投影面不垂直时,是两条相交直线.故选:D.【点评】本题考查空间平面与平面的位置关系,直线的投影,是基础题.11.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点【考点】LA:平行投影及平行投影作图法.【分析】利用平行投影的定义,确定图形平行投影的结论,即可得出结论.【解答】解:矩形的平行投影可以是线段、矩形或平行四边形,∴A错.梯形的平行投影是梯形或线段,∴B不对;平行投影把平行直线投射成平行直线或一条直线,把相交直线投射成相交直线或一条直线,把线段中点投射成投影的中点,∴C错,D对,故选:D.【点评】本题考查平行投影的定义,考查学生分析解决问题的能力,正确理解平行投影的定义是关键.二、(填空题)12.不重合的三个平面把空间分成n部分,则n的可能值为4,6,7或8 .【考点】LJ:平面的基本性质及推论.【分析】分别讨论三个平面的位置关系,根据它们位置关系的不同,确定平面把空间分成的部分数目.【解答】解:若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;若三个平面交于一线,则可将空间分为6部分;若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分;若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分;故n等于4,6,7或8.故答案为4,6,7或8.【点评】本题考查平面的基本性质及推论,要讨论三个平面不同的位置关系.考查学生的空间想象能力.13.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.【考点】LB:平面图形的直观图.【分析】由原图和直观图面积之间的关系=,求出直观图三角形的面积,再求原图的面积即可.【解答】解:直观图△A′B′C′是边长为a的正三角形,故面积为,而原图和直观图面积之间的关系=,那么原△ABC的面积为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.14.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为.【考点】LH:多面体和旋转体表面上的最短距离问题.【分析】分类讨论,若把面ABA1B1和面B1C1BC展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度.若把把面ABA1B1和面A1B1C1展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度若把把面ACC1A1和面A1B1C1展开在同一个面内,构造直角三角形,由勾股定理得 EF 的长度.以上求出的EF 的长度的最小值即为所求.【解答】解:直三棱柱底面为等腰直角三角形,①若把面ABA1B1和面B1C1CB展开在同一个平面内,线段EF就在直角三角形A1EF中,由勾股定理得EF===.②若把把面ABA1B1和面A1B1C1展开在同一个平面内,设BB1的中点为G,在直角三角形EFG中,由勾股定理得EF===.③若把把面ACC1A1和面A1B1C1展开在同一个面内,过F作与CC1行的直线,过E作与AC平行的直线,所作的两线交与点H,则EF就在直角三角形EFH中,由勾股定理得EF===,综上,从E到F两点的最短路径的长度为,故答案为:.【点评】本题考查把两个平面展开在同一个平面内的方法,利用勾股定理求线段的长度,体现了分类讨论的数学思想,属于中档题.15.如果一个几何体的俯视图中有圆,则这个几何体中可能有圆柱、圆台、圆锥、球.【考点】L!:由三视图求面积、体积.【分析】运用空间想象力并联系所学过的几何体列举得答案.【解答】解:一个几何体的俯视图中有圆,则这个几何体中可能有:圆柱、圆台、圆锥、球.故答案为:圆柱、圆台、圆锥、球.【点评】本题考查由三视图确定几何体的形状,考查学生的空间想象能力和思维能力,是基础题.16.已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若m⊂α,l⊂β且l⊥m,则α⊥β;④若l⊂β,l⊥α,则α⊥β;⑤若m⊂α,l⊂β且α∥β,则m∥l.其中正确命题的序号是①④.(把你认为正确命题的序号都填上)【考点】LP:空间中直线与平面之间的位置关系;2K:命题的真假判断与应用.【分析】对于①,由直线与平面垂直的判定定理能够判断真假;对于②,由直线平行于平面的性质知l与α内的直线平行或异面;对于③,由平面与平面垂直的判定定理知α与β不一定垂直;对于④,由平面与平面垂直的判定定理能够判断真假;对于⑤,由平面与平面平行的性质知m∥l或m与l异面.【解答】解:①l垂直于α内的两条相交直线,由直线与平面垂直的判定定理知l⊥α,故①正确;②若l∥α,则l与α内的直线平行或异面,故②不正确;③若m⊂α,l⊂β且l⊥m,则α与β不一定垂直.故③不正确;④若l⊂β,l⊥α,则由平面与平面垂直的判定定理知α⊥β,故④正确;⑤若m⊂α,l⊂β且α∥β,则m∥l或m与l异面,故⑤不正确.故答案为:①④.【点评】本题考查直线与直线、直线与平面、平面与平面间的位置关系的判断,是基础题.解题时要认真审题,注意空间思维能力的培养.17.如图是一个空间几何体的三视图,则该几何体为六棱台.【考点】L!:由三视图求面积、体积.【分析】根据正视图、侧视图得到几何体为台体,由俯视图得到的图形六棱台.【解答】解:正视图、侧视图得到几何体为台体,由俯视图得到的图形六棱台,故答案为:六棱台【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查18.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x轴和正三角形的一边平行,则这个正三角形的直观图的面积是.【考点】LB:平面图形的直观图.【分析】根据斜二测画法与平面直观图的关系进行求解即可.【解答】解:如图△A'B'C'是边长为2的正三角形ABC的直观图,则A'B'=2,C'D'为正三角形ABC的高CD的一半,即C'D'==,则高C'E=C'D'sin45°=,∴三角形△A'B'C'的面积为.故答案为:.【点评】本题主要考查斜二测画法的应用,要求熟练掌握斜二测对应边长的对应关系,比较基础.19.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是①②③④.【考点】L3:棱锥的结构特征.【分析】根据题意画出图形,然后对应选项一一判定即可.【解答】解:①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H 是△ABC的垂心,正确.②若PA,PB,PC两两互相垂直,容易推出AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.③若∠ABC=90°,H是AC的中点,容易推出△PHA≌△PHB≌△PHC,则PA=PB=PC;正确.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,正确.故答案为:①②③④【点评】本题考查棱锥的结构特征,考查学生发现问题解决问题的能力,三垂线定理的应用,是中档题.20.等腰梯形ABCD中,上底CD=1,腰,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.【考点】LD:斜二测法画直观图.【分析】根据斜二测画法的规则分别求出等腰梯形的直观图的上底和下底,以及高即可求出面积.【解答】解:在等腰梯形ABCD中,上底CD=1,腰,下底AB=3,∴高DE=1,根据斜二测画法的规则可知,A'B'=AB=3,D'C'=DC=1,O'D'=,直观图中的高D'F=O'D'sin45°═,∴直观图A′B′C′D′的面积为,故答案为:;【点评】本题主要考查斜二测画法的规则,注意平行于坐标轴的直线平行性不变,平行x轴的线段长度不变,平行于y轴的长度减半.21.如图已知梯形ABCD的直观图A′B′C′D′的面积为10,则梯形ABCD的面积为20.【考点】LB:平面图形的直观图.【分析】根据平面图形与它的直观图的面积比为定值,列出方程即可求出结果.【解答】解:设梯形ABCD的面积为S,直观图A′B′C′D′的面积为S′=10,则=sin45°=,解得S=2S′=20.答案:20.【点评】本题考查了平面图形的面积与它对应直观图的面积的应用问题,是基础题目.22.一个空间几何体的三视图如图所示,该几何体的表面积为152 .【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,求出棱柱的底面面积,底面周长及棱柱的高,代入可得答案.【解答】解:由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,底面面积S=×6×4=12,底面周长c=6+2=16,高h=8,故这个零件的表面积为2S+ch=152,故答案为:152【点评】本题考查的知识点是由三视图求表面积,其中根据已知分析出几何体的形状是解答的关键.。

云南省曲靖市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

云南省曲靖市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某市高一(下)期中数学试卷一.选择题(本大题共12小题,每题5分共60分)1.sin15°cos15°的值是()A.B.C.D.2.已知角α的终边过点P(1,2),则tan()=()A.B.﹣ C.3 D.﹣33.已知向量,的夹角为120°,且||=1,||=2,则•(﹣2)=()A.﹣1 B.1 C.﹣3 D.34.已知正方形ABCD的边长为1,则|﹣|=()A.1 B.2 C.D.25.设向量的模为,则cos2α=()A.B.C.D.6.下列函数中,最小正周期为π的偶函数是()A.y=sinx+cosx B.y=cos4x﹣sin4xC.y=cos|x| D.y=7.如图,已知△ABC, =3, =, =,则=()A.+B.+C.+D.+8.函数y=﹣xcosx的部分图象是()A.B.C.D.9.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[﹣,]上的最小值是()A.﹣B.﹣1 C.﹣ D.﹣10.已知向量,的夹角为,||=1,||=,若=+, =﹣,则在上的投影是()A.﹣B.C.﹣2 D.211.若直线xcosα+ysinα﹣1=0与圆(x﹣1)2+(y﹣sinα)2=相切,α为锐角,则斜率k=()A.﹣B.C.﹣D.12.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin),b=f(cos),c=f(tan),则()A.a>b>c B.c>a>b C.b>a>c D.c>b>a二.填空题(本大题共4小题,每题5分共20分)13.已知,是两个不共线的非零向量,若2+k与k+共线,则k的值是.14.计算﹣=.15.若函数y=sinx+cosx的图象向左平移φ>0个单位后,所得图象关于y轴对称,则φ的最小值是.16.已知函数y=cos2x+2cos(x+),则y的取值X围是.三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在平面直角坐标系中,O为坐标原点,已知A(﹣2,0),B(0,﹣2),C(cosφ,sinφ),其中0<φ<π.(Ⅰ)若•=,求sin2φ的值;(Ⅱ)若|+|=,求与的夹角θ.18.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为,.(Ⅰ)求sin(α﹣β)的值;(Ⅱ)求α+2β的值.19.已知函数f(x)=sin2x+2sinxcosx+3cos2x+α的最大值与最小值之和为﹣2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求使得函数f(x)≥0成立的x的集合.20.已知函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,0<φ<π),对于任意x ∈R满足f(﹣x)=f(x),且相邻两条对称轴间的距离为.(Ⅰ)求y=f(x)的解析式;(Ⅱ)求函数的单调减区间.21.已知f(x)=(1+)sin2x﹣2sin(x+)sin(x﹣).(Ⅰ)若sinθ+cosθ=,其中,求f(θ)的值;(Ⅱ)当≤x时,求函数f(x)的值域.22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<0)的图象上任意两点(x1,f (x1),(x2,f(x2)),且φ的终边过点(1,﹣),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(Ⅰ)求f(x)的解析式;(Ⅱ)若对于任意的x∈[0,],不等式mf(x)=2m≥f(x)恒成立,某某数m的取值X 围.2016-2017学年某某省某某市宣威九中高一(下)期中数学试卷参考答案与试题解析一.选择题(本大题共12小题,每题5分共60分)1.sin15°cos15°的值是()A.B.C.D.【考点】GS:二倍角的正弦.【分析】根据二倍角的正弦公式将sin15°cos15°化为sin30°,再进行求值.【解答】解:sin15°cos15°=sin30°=,故选B.2.已知角α的终边过点P(1,2),则tan()=()A.B.﹣ C.3 D.﹣3【考点】G9:任意角的三角函数的定义.【分析】直接利用任意角的三角函数,求出tanα,根据二倍角求解即可.【解答】解:角α的终边为点P(1,2),即x=1,y=2,∴tanα=.tan()==故选:A.3.已知向量,的夹角为120°,且||=1,||=2,则•(﹣2)=()A.﹣1 B.1 C.﹣3 D.3【考点】9R:平面向量数量积的运算.【分析】将式子展开计算即可.【解答】解: =1, =4, =1×2×cos120°=﹣1,∴则•(﹣2)=﹣2=1﹣2×(﹣1)=3.故选D.4.已知正方形ABCD的边长为1,则|﹣|=()A.1 B.2 C.D.2【考点】9R:平面向量数量积的运算.【分析】作出图形,利用平面向量加法的三角形法及向量的模的几何意义即可求得|﹣|=||=,从而可得答案.【解答】解:正方形ABCD的边长为1,如图:则|﹣|=|+|=||=,故选:C.5.设向量的模为,则cos2α=()A.B.C.D.【考点】GT:二倍角的余弦;93:向量的模.【分析】由向量的模为,可求出sinα的平方,代入cos2α=1﹣2sin2α 可求出cos2α 的值.【解答】解:∵向量的模为,∴+cos2α=,cos2α=,∴cos2α=2cos2α﹣1=﹣,故选B.6.下列函数中,最小正周期为π的偶函数是()A.y=sinx+cosx B.y=cos4x﹣sin4xC.y=cos|x| D.y=【考点】H1:三角函数的周期性及其求法.【分析】利用三角函数的奇偶性和周期性,判断各个选项中的函数的奇偶性和周期性,从而得出结论.【解答】解:由于y=sinx+cosx=sin(x+),故它的最小正周期为2π,故排除A;由于y=cos4x﹣sin4x=(cos2x﹣sin2x)•(cos2x+sin2x)=cos2x,故它的最小正周期为π,且它是偶函数,故B满足条件;由于y=cos|x|=cosx,它的最小正周期为2π,故排除C;由于y==•tan2x,故该函数为奇函数,不满足条件,故排除D,故选:B.7.如图,已知△ABC, =3, =, =,则=()A.+B.+C.+D.+【考点】9F:向量的线性运算性质及几何意义.【分析】利用三角形法则得出结论.【解答】解: ====.故选C.8.函数y=﹣xcosx的部分图象是()A.B.C.D.【考点】3O:函数的图象.【分析】由函数奇偶性的性质排除A,C,然后根据当x取无穷小的正数时,函数小于0得答案.【解答】解:函数y=﹣xcosx为奇函数,故排除A,C,又当x取无穷小的正数时,﹣x<0,cosx→1,则﹣xcosx<0,故选:D.9.若函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,则函数f(x)在[﹣,]上的最小值是()A.﹣B.﹣1 C.﹣ D.﹣【考点】H7:余弦函数的图象.【分析】利用余弦函数的图象对称性,诱导公式,求得f(x)的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[﹣,]上的最小值.【解答】解:∵函数f(x)=cos(2x+θ)(0<θ<π)的图象关于(π,0)对称,故有f (π)=cos(2π+θ)=0,故有θ=kπ+,k∈Z,∴θ=,f(x)=﹣sin2x.在[﹣,]上,2x∈[﹣,],故当2x=﹣时,f(x)取得最小值是﹣1,故选:B.10.已知向量,的夹角为,||=1,||=,若=+, =﹣,则在上的投影是()A.﹣B.C.﹣2 D.2【考点】9R:平面向量数量积的运算.【分析】依题意,可求得•=,•=(+)•(﹣)=﹣2,及||=1,于是可求在上的投影==﹣2.【解答】解:∵向量,的夹角为,||=1,||=,∴•=||||cos=1××=,又=+, =﹣,∴•=(+)•(﹣)=﹣=1﹣3=﹣2,又=﹣2•+=1﹣2×1××+3=1,∴||=1,∴在上的投影为==﹣2,故选:C.11.若直线x cosα+ysinα﹣1=0与圆(x﹣1)2+(y﹣sinα)2=相切,α为锐角,则斜率k=()A.﹣B.C.﹣D.【考点】J9:直线与圆的位置关系.【分析】根据圆心到直线的距离等于半径即可求解.【解答】解:直线xcosα+ysinα﹣1=0,圆(x﹣1)2+(y﹣sinα)2=,可知圆心为(1,sinα).半径r=.圆心到直线的距离d=.可得:cos2a﹣cosα±=0,∵α为锐角,∴cosα=.∴sinα=.那么斜率k==﹣.故选:A.12.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin),b=f(cos),c=f(tan),则()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【考点】3N:奇偶性与单调性的综合.【分析】根据题意,由三角函数的诱导公式可得a=f(sin)=f(﹣sin),b=f(﹣cos),结合函数的奇偶性可得a=f(sin),b=f(cos),结合三角函数的定义分析可得0<cos<sin<1<tan,结合函数的奇偶性即可得答案.【解答】解:根据题意,sin=sin(2π﹣)=﹣sin,则a=f(sin)=f(﹣sin),cos=cos(π﹣)=﹣cos,b=f(﹣cos),又由函数f(x)是定义在R上的偶函数,则a=f(sin)=f(﹣sin)=f(sin),b=f(﹣cos)=f(cos),又由<<,则有0<cos<sin<1<tan,又由函数在[0,+∞)上是增函数,则有c>a>b;故选:B.二.填空题(本大题共4小题,每题5分共20分)13.已知,是两个不共线的非零向量,若2+k与k+共线,则k的值是.【考点】9K:平面向量共线(平行)的坐标表示.【分析】2+k与k+共线,可得存在实数λ使得2+k=λ(k+),又,是两个不共线的非零向量,根据平面向量基本定理即可得出.【解答】解:∵2+k与k+共线,∴存在实数λ使得2+k=λ(k+),又,是两个不共线的非零向量,∴2=λk,k=λ,解得k=.故答案为:.14.计算﹣=.【考点】GI:三角函数的化简求值.【分析】将切化弦,通分,利用和与差公式换化角度相同,可得答案.【解答】解:由﹣====.故答案为:.15.若函数y=sinx+cosx的图象向左平移φ>0个单位后,所得图象关于y轴对称,则φ的最小值是.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;GL:三角函数中的恒等变换应用.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的最小值.【解答】解:把函数y=sinx+cosx=2sin(x+)的图象向左平移φ>0个单位,所得的图象对应的函数的解析式为y=2sin(x++φ),再根据所得图象关于y轴对称,可得+φ=kπ+,k∈z,可得:φ=kπ+,k∈z,则m的最小值为,故答案为:.16.已知函数y=cos2x+2cos(x+),则y的取值X围是[﹣3,].【考点】GL:三角函数中的恒等变换应用.【分析】利用二倍角,诱导公式化简,转化为二次函数即可求y的取值X围.【解答】解:函数y=cos2x+2cos(x+)=1﹣2sin2x﹣2sinx=1﹣2(sin2x+sinx+)+=﹣2(sinx+)2.当sinx=时,y可取得最大值为.当sinx=1时,y可取得最小值为sinx==﹣3.则y的取值X围是[﹣3,].故答案为:[﹣3,].三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在平面直角坐标系中,O为坐标原点,已知A(﹣2,0),B(0,﹣2),C(cosφ,sinφ),其中0<φ<π.(Ⅰ)若•=,求sin2φ的值;(Ⅱ)若|+|=,求与的夹角θ.【考点】9J:平面向量的坐标运算.【分析】(I)=(cosφ+2,sinφ),=(cosφ,si nφ+2),利用•=,可得cosφ+sinφ=,两边平方即可得出.(II)由|+|=,可得=,化为:cosφ=,0<φ<π.解答φ.利用cosθ=,即可得出.【解答】解:(I)=(cosφ+2,sinφ),=(cosφ,sinφ+2),•=,∴cosφ(cosφ+2)+sinφ(sinφ+2)=,∴cosφ+sinφ=,两边平方可得:sin2φ=﹣.(II)∵|+|=,∴=,化为:cosφ=,∵0<φ<π.∴φ=.∴C.∴cosθ===﹣,∴θ=.即与的夹角为.18.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为,.(Ⅰ)求sin(α﹣β)的值;(Ⅱ)求α+2β的值.【考点】GI:三角函数的化简求值;G9:任意角的三角函数的定义.【分析】(Ⅰ)由已知求出cosα,cosβ的值,再由平方关系求出sinα,sinβ的值,结合两角差的正弦求得sin(α﹣β)的值;(Ⅱ)由(Ⅰ)求出sin(α+β)、cos(α+β)的值,利用拆角配角思想求得sin(α+2β),结合角的X围求得α+2β的值.【解答】解:(Ⅰ)由已知可得,,∵α,β为锐角,∴sinα=,sinβ=.∴sin(α﹣β)=sinαcosβ﹣cosαsinβ=﹣=;(Ⅱ)sin(α+β)=sinαcosβ+cosαsinβ=+=,cos(α+β)==.∴sin(α+2β)=sin[(α+β)+β]=sin(α+β)cosβ+cos(α+β)sinβ==.又0<α+2β<,∴α+2β=.19.已知函数f(x)=sin2x+2sinxcosx+3cos2x+α的最大值与最小值之和为﹣2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求使得函数f(x)≥0成立的x的集合.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin (ωx+φ)的形式,结合三角函数的图象和性质,求出f(x)的最大值和最小值,可得a的值,即得到f(x)的解析式.(Ⅱ)函数f(x)≥0,结合三角函数的图象和性质,求解即可.【解答】解:函数f(x)=sin2x+2sinxcosx+3cos2x+α.化简可得:f(x)=cos2x+sin2x+cos2x++a=cos2x+sin2x+2+a=2sin(2x+)+2+a.(Ⅰ)∵sin(2x+)的最大值为1,最小值为﹣1.∴4+2a=﹣2,则 a=﹣3.∴函数f(x)的解析式为f(x)=2sin(2x+)﹣1.(Ⅱ)函数f(x)≥0,即2sin(2x+)﹣1≥0.得:sin(2x+).∴≤2x+≤.k∈Z.解得:kπ≤x≤,故得使得函数f(x)≥0成立的x的集合为{x|kπ≤x≤,k∈Z}.20.已知函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,0<φ<π),对于任意x ∈R满足f(﹣x)=f(x),且相邻两条对称轴间的距离为.(Ⅰ)求y=f(x)的解析式;(Ⅱ)求函数的单调减区间.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,相邻两条对称轴间的距离为.根据周期公式,可得ω,f(﹣x)=f(x),函数f(x)是偶函数,可得φ.即得f(x)的解析式;(Ⅱ)函数,将f(x)代入化简,求解函数y,结合三角函数的图象和性质,可得单调减区间.【解答】解:函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,0<φ<π),化简可得:f(x)=2sin(ωx+φ)(Ⅰ)∵f(﹣x)=f(x),即函数f(x)是偶函数.∴φ=,k∈Z.∵0<φ<π∴φ=.相邻两条对称轴间的距离为.即T=.∵T=.∴ω=2.故得f(x)=2f(x)=2sin(2x+)=2cos2x.(Ⅱ)函数,f(x)=2cos2x.∴y=2cos2x+2cos2(x+)=2cos2x﹣2sin2x=﹣2sin(2x﹣)令2x﹣,k∈Z.得:≤x≤∴函数y的单调减区间:[,],k∈Z.21.已知f(x)=(1+)sin2x﹣2sin(x+)sin(x﹣).(Ⅰ)若sinθ+cosθ=,其中,求f(θ)的值;(Ⅱ)当≤x时,求函数f(x)的值域.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)切化弦,利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,利用sinθ+cosθ=,其中,转化思想构造出f(θ),即可求解.(Ⅱ)当≤x时,求出内层函数的取值X围,结合三角函数的图象和性质,即得到f(x)的值域.【解答】解:函数f(x)=(1+)sin2x﹣2sin(x+)sin(x﹣).化简可得:f(x)=sin2x+2sin(x+)cos(x+)=sin2x+sinxcosx+sin2(x+)=cos2x+sin2x+cos2x═cos2x+sin2x+=sin(2x+).(Ⅰ)∴f(θ)=sin(2θ+).∵sinθ+cosθ=,其中,∴1+sin2θ=,即sin2θ=.∴cos2θ=.∴f(θ)=sin(2θ+)=(sin2θ+cos2θ)+=(Ⅱ)当≤x时,可得: 2x+≤.当2x+=时,f(x)取得最大值为=.当2x+=时,f(x)取得最大值为=0.故得当≤x时,函数f(x)的值域为[0,].22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<0)的图象上任意两点(x1,f(x1),(x2,f(x2)),且φ的终边过点(1,﹣),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(Ⅰ)求f(x)的解析式;(Ⅱ)若对于任意的x∈[0,],不等式mf(x)=2m≥f(x)恒成立,某某数m的取值X 围.【考点】H2:正弦函数的图象;GL:三角函数中的恒等变换应用.【分析】(1)由函数的图象经过定点求得φ,由函数的最大值和最小值求出ω,可得函数的解析式.(2)条件即等价于,利用正弦函数的定义域和值域求得函数1﹣的最大值,可得m的X围.【解答】解:(1)角φ的终边经过点,,∵,∴.由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3,∴.(2)当时,3x﹣∈[﹣,],sin(3x﹣)∈[﹣,],∴,于是,2+f(x)>0,即mf(x)+2m≥f(x),等价于,由,得的最大值为,所以,实数m的取值X围是.。

山东省济南市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

山东省济南市高一数学下学期期中试卷(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形7.P是△ABC所在平面上一点,若,则P是△ABC的()A.外心 B.内心 C.重心 D.垂心8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]11.函数y=lncosx()的图象是()A.B.C.D.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上二、填空题(4*5=20分)13.cos =.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是.15.已知||=||=1,|+|=1,则|﹣|=.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||20.求函数的周期、对称轴、对称中心及单调递增区间.21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.2016-2017学年某某省某某外国语学校三箭分校高一(下)期中数学试卷参考答案与试题解析一、选择题(12*5=60分)1.下列说法中正确的是()A.第一象限角一定不是负角B.﹣831°是第四象限角C.钝角一定是第二象限角D.终边与始边均相同的角一定相等【考点】G3:象限角、轴线角;2K:命题的真假判断与应用.【分析】通过特例判断A的正误,角所在象限判断B的正误;钝角的X围判断C的正误;角的终边判断D的正误;【解答】解:例如﹣390°是第一象限的角,它是负角,所以A不正确;﹣831°=﹣3×360°+249°所以﹣831°是第三象限角,所以B不正确;钝角一定是第二象限角,正确;终边与始边均相同的角一定相等,不正确,因为终边相同,角的差值是360°的整数倍.故选:C.2.下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量【考点】96:平行向量与共线向量;93:向量的模.【分析】利用平面向量的性质,决定向量的有大小和方向,结合共线向量的定义进行选择.【解答】解:对于A,若|,;错误;因为向量没有大小之分;对于B,,错误;因为两个向量方程可能不同;对于C,相等的向量大小和方向都相同;故正确;对于D,,则与可能是共线向量;故错误;故选:C.3.已知角α终边上一点P(﹣4,3),则sinα=()A.B.C.D.﹣【考点】G9:任意角的三角函数的定义.【分析】由题意可得,x=﹣4、y=3、r=|OP|=5,再由三角函数的定义求得结果.【解答】解:由题意可得,x=﹣4、y=3、r=|OP|=5,故sinα==,故选:A.4.已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)【考点】9J:平面向量的坐标运算.【分析】设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐标.【解答】解:设B(x,y),由得(x+1,y﹣5)=(6,9),故有,解得,故选 D.5.cos(﹣225°)+sin(﹣225°)等于()A.B.﹣C.0 D.【考点】GO:运用诱导公式化简求值.【分析】直接利用诱导公式化简所给式子的值,可得答案.【解答】解:cos(﹣225°)+sin(﹣225°)=cos225°﹣sin225°=cos﹣sin=﹣cos45°+sin45°=0.故选:C.6.在△ABC中, =, =,当<0时,△ABC为()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】由<0知∠BAC>90°,由此可知△ABC的形状.【解答】解:∵<0,∴,∴,∴△ABC为钝角三角形,故选C.7.P是△ABC所在平面上一点,若,则P 是△ABC的()A.外心 B.内心 C.重心 D.垂心【考点】9R:平面向量数量积的运算;9T:数量积判断两个平面向量的垂直关系.【分析】本题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法则,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.【解答】解:∵,则由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心故选D8.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin,要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.9.已知函数f(x)=sin(πx﹣)﹣1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数【考点】H3:正弦函数的奇偶性;H1:三角函数的周期性及其求法.【分析】直接求出函数的周期,化简函数的表达式,为一个角的一个三角函数的形式,判定奇偶性,即可得到选项.【解答】解:因为:T==2,且f(x)=sin(πx﹣)﹣1=﹣cosπx﹣1,因为f(﹣x)=f(x)∴f(x)为偶函数.故选B.10.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值X围是()A.[,] B.[,] C.(0,] D.(0,2]【考点】H5:正弦函数的单调性.【分析】由条件利用正弦函数的减区间可得,由此求得实数ω的取值X围.【解答】解:∵ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则,求得≤ω≤,故选:A.11.函数y=lncosx()的图象是()A.B.C.D.【考点】35:函数的图象与图象变化.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.12.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是()A.C可能是线段AB的中点B.D可能是线段AB的中点C.C、D可能同时在线段AB上D.C、D不可能同时在线段AB的延长线上【考点】9B:向量加减混合运算及其几何意义.【分析】由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件+=2,根据题意考查方程+=2的解的情况,用排除法选出正确的答案即可.【解答】解:由已知不妨设A(0,0)、B(1,0)、C(c,0)、D(d,0),则(c,0)=λ(1,0),(d,0)=μ(1,0),∴λ=c,μ=d;代入+=2,得+=2;(*)若C是线段AB的中点,则c=,代入(*)得,d不存在,∴C不可能是线段AB的中点,A错误;同理B错误;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(*)得,c=d=1,此时C和D点重合,与已知矛盾,∴C错误.若C,D同时在线段AB的延长线上时,则λ>1.μ>1,∴1λ+1μ<2,这与1λ+1μ=2矛盾;∴C、D不可能同时在线段AB的延长线上,D正确.故选:D.二、填空题(4*5=20分)13.cos =.【考点】GO:运用诱导公式化简求值.【分析】直接由三角函数的诱导公式化简计算得答案.【解答】解:cos =cos=cos(25π+)=cos()=﹣cos=.故答案为:.14.已知θ∈{α|α=kπ+(﹣1)k+1•,k∈Z},则角θ的终边所在的象限是三,四.【考点】G3:象限角、轴线角.【分析】对k分奇数与偶数讨论利用终边相同的角的集合的定义即可得出.【解答】解:当k=2n+1(n∈Z)时,α=(2n+1)π+,角θ的终边在第三象限.当k=2n(n∈Z)时,α=2nπ﹣,角θ的终边在第四象限.故答案为:三,四.15.已知||=||=1,|+|=1,则|﹣|=.【考点】9R:平面向量数量积的运算.【分析】法一、由已知求出,然后求出,开方后得答案;法二、由题意画出图形,然后求解直角三角形得答案.【解答】解:法一、由||=||=1,|+|=1,得,即,∴,则|﹣|=;法二、由题意画出图形如图,设,则图中A、B两点的距离即为|﹣|.连接AB后解直角三角形可得|AB|=.故答案为:.16.如图,已知△ABC中,D为边BC上靠近B点的三等分点,连接AD,E为线段AD的中点,若,则m+n=.【考点】9V:向量在几何中的应用.【分析】根据向量加法的平行四边形法则,向量加减法的几何意义,以及向量的数乘运算即可得出,这样便可得出m+n的值.【解答】解:根据条件,====;又;∴.故答案为:.二、解答题(共70分,其中17题10分,18,19,20,21,22各12分)17.已知tanα=2,求下列各式的值:(1);(2)3sin2α+3sinαcosα﹣2cos2α.【考点】GH:同角三角函数基本关系的运用.【分析】(1)原式分子分母除以cosα,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值;(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值.【解答】解:(1)∵tanα=2,∴原式===;(2)∵tanα=2,∴原式===.18.已知f(α)=,(1)化简f(α)(2)若cosα=,求f(α)的值.【考点】GO:运用诱导公式化简求值.【分析】(1)根据诱导公式化简可得答案.(2)由cosα=,利用同角三角函数间的关系式可求解.【解答】解:(1)由f(α)=,==2sinα.(2)∵cosα=,∴当α在第一象限时,sinα==.∴f(α)=2sinα=1;∴当α在第四象限时,sinα=﹣=﹣.∴f(α)=2sinα=﹣1.19.已知||=2,||=3,||与||的夹角为120°,求(1)(2)﹣(3)(2)()(4)||【考点】9R:平面向量数量积的运算.【分析】(1)直接由已知结合数量积公式得答案;(2)由运算得答案;(3)展开多项式乘以多项式,代入数量积得答案;(4)求出,开方后得答案.【解答】解:∵||=2,||=3,||与||的夹角为120°,∴(1)=;(2)﹣=22﹣32=﹣5;(3)(2)()==2×22+5×(﹣3)﹣3×32=﹣34;(4)||==.20.求函数的周期、对称轴、对称中心及单调递增区间.【考点】H5:正弦函数的单调性;H3:正弦函数的奇偶性;H4:正弦函数的定义域和值域;H6:正弦函数的对称性.【分析】根据正弦函数的图象及性质求解即可.【解答】解:函数=﹣sin(2x+)+1.∴周期T=.令2x+=,得:x=kπ+,k∈Z即对称轴方程为:x=kπ+,k∈Z;令2x+=kπ,得:x=∴对称中心为(,1),k∈Z;由2x++2kπ得:≤x≤.∴单调递增区间为[,],k∈Z;综上得:周期T=π,对称轴方程为:x=kπ+,k∈Z;对称中心为(,1),k∈Z;单调递增区间为[,],k∈Z;21.设,是不共线的两个向量=3+4, =﹣2+5,若实数λ,μ满足λ+μ=5﹣,求λ,μ的值.【考点】9F:向量的线性运算性质及几何意义.【分析】根据平面向量的线性运算,利用向量相等,列出方程组求出λ与μ的值.【解答】解:∵,是不共线的两个向量,且=3+4, =﹣2+5,∴λ+μ=λ(3+4)+μ(﹣2+5)=(3λ﹣2μ)+(4λ+5μ)=5﹣,∴,解得λ=1,μ=﹣1.22.求函数y=cos2x+asinx+a+1(0≤x≤)的最大值.【考点】HW:三角函数的最值.【分析】根据二倍角公式整理所给的函数式,得到关于正弦的二次函数,根据所给角x的X围,得到二次函数的定义域,根据对称轴与所给定义域之间的关系,分类求得函数的最大值.【解答】解:函数y=f(x)=cos2x+asinx+a+1=1﹣sin2x+asinx+a+1=﹣++a+2;∵函数f(x)的定义域为,∴sinx∈,∴当0≤≤1,即0≤a≤2时,f(x)的最大值是f(x)max=f()=+a+2;当<0,即a<0时,f(x)在sinx=0时取得最大值是f(x)max=f(0)=a+2;当>1,即a>2时,f(x)在sinx=1取得最大值是f(x)max=f()=a+1;综上可知:a<0时,f(x)max=a+1;0≤a≤2时,f(x)max=+a+2;a>2时,f(x)max=a+1.。

高一下期中数学试题(人教B版)

高一下期中数学试题(人教B版)

高一下学期新课程联合期中考试数学试题(人教B 版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至9页。

考试时间120分钟,满分150分。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)注意事项:1.答第一卷前,考生将自己的姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一.选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、 x sin x cos y 42-=的最小正周期为 ( ) A.4π B. 2πC. πD. 2π 2. 若函数y=2sin(8x+θ)+1的图象关于直线6x π=对称,则θ的值为 A .0 B.2πC .k π(k ∈Z)D .k π+6π(k ∈Z )3. .若]0,2[π-∈x ,则函数x x x x f cos 3)6cos()6cos()(+--+=ππ的最小值是( )A .1B .-1C .3-D .-24. 已知向量a = (2,4,x),b = (2,y ,2) ,若a =6,且a b ⊥,则x+y 的值为( )A .-3或1B .3或-1C .-3D .15.设、为两个非零向量,且则),,(),,(2211y x y x ==①0=⋅ ②||||+=- ③222)(-=+ ④02121=+y y x x ,这四个式子是⊥的充要条件的个数有( )A .1个B .2个C .3个D .4个6.已知=+-∈=+ααπααπcos sin ),0,4(,2524)2sin(则 ( )A .51-B .51C .-57D .577.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足 1,,=+∈+=βαβαβα且其中R ,则点c 的轨迹方程为 ( )A .5)1()1(22=-+-y xB .01123=-+y xC .02=-y xD .052=-+y x8. 已知函数f(x)=x •sinx 则)(及3)1(),4(ππf f f -的大小关系为( ) (A))3()1()4(ππf f f >>-(B))4()3()1(ππ->>f f f(C))4()1()3(ππ->>f f f (D))1()4()3(f f f >->ππ9. 已知函数0)(R Rxsin3f (x) π=图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f(x)最小正周期是 A.1 B .2 C .3 D .4(10)ABC ∆中D 为BC 边的中点,已知=a ,=b 则在下列向量中与同向的向量是 ( )(A )b b a a + (B )b b a a - (C )ba ba ++ (D )b a a b +11. 设函数)R x (x )x (f 3∈= , 若20π≤θ≤时, 0)m 1(f )sin m (f >-+θ⋅恒成立, 则实数m 的 取值范围是 ( )A. )1,0(B. )0,( -∞C. )1,( -∞D. )21,( -∞ 12.过△ABC 的重心任作一直线分别交AB ,AC 于点D 、E ,若 =x ,=y AC ,xy ≠0,则x 1+y1的值为( ) A .1 B .2 C .3 D .405鲁东南三市四校高一下学期新课程联合期中考试数学试题(人教B 版) 2005.4第Ⅱ卷(非选择题 共72分)注意事项:1. 用钢笔或圆珠笔直接答在试题中。

高一数学下学期(人教A版B卷)-(考试版)(范围:必修第二册第6、7、8章)

高一数学下学期(人教A版B卷)-(考试版)(范围:必修第二册第6、7、8章)

2022-2023学年高一下学期期中考前必刷卷数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:必修第二册第6、7、8章。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。

全部选对的得5分,选对但不全的得2分,有选错的得0分。

一、单选题1.在ABC 中,20,10,32a b B ===︒,则此三角形的解的情况是()A .有两解B .有一解C .有无数个解D .无解2.设a ,b是两个非零向量,下列四个条件中,使a a bb = 成立的充分条件是()A .a b =r r 且//a br r B .a b =-r r C .//a br r D .4a b= 3.已知正四面体S ABC -的外接球表面积为6π,则正四面体S ABC -的体积为()A B C .23D 4.一个正四棱锥的侧棱长为10,底面边长为台,正四棱台的侧棱长为5,则正四棱台的高为()A .5B .4C .3D .25.设1e ,2e是平面内不共线的两个向量,则以下各组向量中不能作为基底的是()A .122e e + 与212e e +u r u rB .2e 与12e e - C .122e e -与2142e e - D .12e e - 与12e e +6.如图四边形ABCD 为平行四边形,11,22AE AB DF FC == ,若AF AC DE λμ=+,则λμ-的值为A .12B .23C .13D .17.三棱锥-P ABC 的侧棱,,PA PB PC 上分别有E ,F ,G ,且111,,324PE PF PG PA PB PC ===,则三棱锥P EFG -的体积与三棱锥-P ABC 的体积之比是()A .124B .112C .16D .188.已知△ABC 的三边为3,4,5,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅的值为()A .-25B .52-C .0D .67二、多选题9.已知复数12z =,则下列结论正确的有()A .1z z ⋅=B .2z z=C .31z =-D .2020122z i=-+10.ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则下列说法正确的是()A .若AB >,则sin cos A B>B .若30A = ,4b =,3a =,则ABC 有两解C .若ABC 为锐角三角形,则222a b c +>D .若60A = ,2a =,则ABC11.给出下列四个命题,其中正确的选项有()A .()()a b c a b c⋅⋅=⋅⋅r r r r r r B .若a c c b ⋅=⋅ ,则a b=C .若()()0AB AC AB AC +⋅-= ,则ABC 为等腰三角形D .非零向量a ,b 满足a b a b ==- ,则a 与a b +的夹角是30︒12.引入平面向量之间的一种新运算“⊗”如下:对任意的向量()11,m x y =u r,()22,n x y =r,规定1212m n x x y y ⊗=- ,则对于任意的向量a ,b ,c,下列说法正确的有()A .a b b a⊗=⊗ B .()()a b a b λλ⊗=⊗ C .()()a b c a b c⋅⊗=⊗⋅ D .||||||a b a b ⋅≥⊗ 二、填空题:本题共4小题,共20分。

高中数学 本册综合测试题(B)新人教B版必修1-新人教B版高一必修1数学试题

高中数学 本册综合测试题(B)新人教B版必修1-新人教B版高一必修1数学试题

本册综合测试题(B)(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014~2015学年度某某德阳五中高一上学期月考)若集合A ={x |1<x <2},B ={x |x >a },满足A ⊆B ,则实数a 的取值X 围是( )A .a ≤1B .a <1C .a ≥1D .a ≤2[答案] A[解析] 将集合A 、B 分别表示在数轴上,如图所示.∵A ⊆B ,∴a ≤1.2.(2014~2015学年度某某市第一中学高一上学期期中测试)函数g (x )=2x+5x 的零点所在的一个区间是( )A .(0,1)B .(-1,0)C .(1,2)D .(-2,-1)[答案] B[解析] g (-1)=12-5<0,g (0)=20=1>0,故选B .3.已知f (x 2)=ln x ,则f (3)的值是( ) A .ln3 B .ln8 C .12ln3 D .-3ln2[答案] C[解析] 设x 2=t ,∵x >0,x =t , ∴f (t )=ln t =12ln t ,∴f (x )=12ln x ,∴f (3)=12ln3.4.(2014~2015学年度某某某某中学高一上学期月考)设f (x )是定义在R 上的偶函数,且x >0时,f (x )=x 2+1,则f (-2)=( )A .-5B .5C .3D .-3[答案] B[解析] ∵x >0时,f (x )=x 2+1,∴f (2)=5. 又∵f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=5.5.若m =(2+3)-1,n =(2-3)-1,则(m +1)-2+(n +1)-2的值是( ) A .1 B .14 C .22D .23[答案] D[解析] ∵m =(2+3)-1=2-3,n =(2-3)-1=2+ 3.∴(m +1)-2+(n +1)-2=(3-3)-2+(3+3)-2=3+32+3-323-323+32=2436=23. 6.函数f (x )=x 2-5x +6x -2的定义域是( )A .{x |2<x <3}B .{x |x <2或x >3}C .{x |x ≤2或x ≥3}D .{x |x <2或x ≥3}[答案] D[解析] 解法一:验证排除法:x =3时,函数f (x )有意义,排除A 、B ;x =2时,函数f (x )无意义,排除C ,故选D .解法二:要使函数有意义,应满足⎩⎪⎨⎪⎧x 2-5x +6≥0x -2≠0,解得x <2或x ≥3,故选D .7.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y =x 2+bx +c 的图象经过(1,0),…,求证这个二次函数的图象关于直线x =2对称.根据已知信息,题中二次函数图象不具有的性质是( ) A .过点(3,0) B .顶点(2,-2) C .在x 轴上截线段长是2 D .与y 轴交点是(0,3) [答案] B[解析] ∵二次函数y =x 2+bx +c 的图象经过点(1,0), ∴1+b +c =0,又二次函数的图象关于直线x =2对称,∴b =-4,∴c =3.∴y =x 2-4x +3,其顶点坐标为(2,-1),故选B .8.(2015·某某文,3)设a =0.60.6,b =0.61.5,c =1.50.6,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a[答案] C[解析] ∵c =1.50.6>1,0<b =0.61.5<0.60.6=a <1,∴b <a <c .9.(2014~2015学年度某某某某市金台区高一上学期期中测试)若lg a +lg b =0(a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称[答案] C[解析] ∵lg a +lg b =0,∴lg ab =0,∴ab =1,∴b =1a.∴f (x )=a x 与g (x )=b x=⎝ ⎛⎭⎪⎫1ax 的图象关于y 轴对称.10.函数f (x )=log 2(-x 2+1)的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-1,0]D .[0,1)[答案] C[解析] 由-x 2+1>0,得-1<x <1.令u =-x 2+1(-1<x <1)的单调递增区间为(-1,0], 又y =log2u 为增函数,∴函数f (x )的单调递增区间为(-1,0].11.(2015·某某理,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f (f (a ))=2f (a )的a 的取值X 围是( )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[答案] C[解析] 由f (f (a ))=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C . 12.已知某产品的总成本y (万元)与产量x (台)之间的函数关系是y =0.1x 2-11x +3 000,每台产品的售价为25万元,则生产者为获得最大利润,产量x 应定为( )A .55台B .120台C .150台D .180台[答案] D[解析] 设利润为S ,由题意得,S =25x -y =25x -0.1x 2+11x -3 000=-0.1x 2+36x -3 000=-0.1 (x -180)2+240, ∴当产量x =180台时,生产者获得最大利润,故选D .二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.(2014~2015学年度潍坊四县市高一上学期期中测试)已知f (x )=x 22-x+(3x +1)0,则函数f (x )的定义域为________________.[答案] ⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2 [解析] 由题意,得⎩⎪⎨⎪⎧2-x >03x +1≠0,∴x <2,且x ≠-13,故函数f (x )的定义域为⎝⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2.14.(2014~2015学年度某某南开中学高一上学期期中测试)已知f (x )=⎩⎪⎨⎪⎧x 2+1x <1-2x +3x ≥1,则f [f (2)]=____.[答案] 2[解析] f (2)=-4+3=1,f (-1)=(-1)2+1=2, ∴f [f (2)]=f (-1)=2.15.(2014~2015学年度某某一中高一上学期期中测试)函数y =x 2+1,x ∈[-1,2]的值域为__________.[答案] [1,5][解析] ∵x ∈[-1,2],∴当x =0时,y min =1,当x =2时,y max =5. ∴函数y =x 2+1,x ∈[-1,2]的值域为[1,5].16.设M 、N 是非空集合,定义M ⊙N ={x |x ∈M ∪N 且x ∉M ∩N }.已知M ={x |y =2x -x 2},N ={y |y =2x ,x >0},则M ⊙N 等于________.[答案] {x |0≤x ≤1或x >2}[解析] ∵M ={x |2x -x 2≥0}={x |0≤x ≤2},N ={y |y >1},∴M ∩N ={x |1<y ≤2},M ∪N ={x |x ≥0}, ∴M ⊙N ={x |0≤x ≤1或x >2}.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(2014~2015学年度某某某某市十三校高一上学期期中测试)已知非空集合A ={x |2a -2<x <a },B ={x |x ≤1或x ≥2},且A ∩B =A ,某某数a 的取值X 围.[解析] ∵A ∩B =A ,∴A ⊆B . ∴当A =∅时,2a -2≥a ,∴a ≥2.当A ≠∅时,由题意得⎩⎪⎨⎪⎧2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a2a -2≥2,解得a ≤1.综上可知,实数a 的取值X 围是a ≤1或a ≥2.18.(本小题满分12分)(2014~2015学年度某某某某中学高一上学期期中测试)计算下列各式的值:(1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4; (2)lg 25+lg2×lg500-12lg 125-log 29×log 32.[解析] (1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4=⎝ ⎛⎭⎪⎫9412 -(-9.6)0-⎝ ⎛⎭⎪⎫27823 +⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫212×3144=32-1-94+94+12=252. (2)lg 25+lg2×lg500-12lg 125-log 29×l og 32=lg 25+lg2(2+lg5)-lg 15-lg9lg2×lg2lg3=lg5(lg2+lg5)+lg4+lg5-2 =lg100-2=2-2=0.19.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知二次函数f (x )=2kx 2-2x -3k -2,x ∈[-5,5].(1)当k =1时,求函数f (x )的最大值和最小值;(2)某某数k 的取值X 围,使函数y =f (x )在区间[-5,5]上是单调函数. [解析] (1)当k =1时,f (x )=2x 2-2x -5=2⎝⎛⎭⎪⎫x -122-112,∵x ∈[-5,5],∴当x =12时,f (x )min =-112,当x =-5时,f (x )max =55.(2)当k =0时,f (x )=-2x -2在区间[-5,5]上是减函数,当k ≠0时,由题意得12k ≥5或12k≤-5, ∴0<k ≤110或-110≤k <0.综上可知,实数k 的取值X 围是⎣⎢⎡⎦⎥⎤-110,110.20.(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收入最大?最大月收入是多少元? [解析] (1)当每辆车的月租金定为3 600元时,未租出的车辆数为3 600-3 00050=12,所以能租出100-12=88辆车.(2)设每辆车的月租金定为x (x 为50的整数倍)元时,租赁公司的月收入为y 元,则y =⎝⎛⎭⎪⎫100-x -3 00050·(x -150)-x -3 00050×50=-150x 2+162x -21 000=-150(x -4 050)2+307 050.所以当x =4 050时,y max =307 050.故当每辆车的月租金定为4 050元时,租赁公司的月收入最大,最大月收入为307 050元.21.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).(1)求f (1)的值;(2)已知f (3)=1,且f (a )>f (a -1)+2,求a 的取值X 围; (3)证明:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).[解析] (1)令x =y =1, 则f (1)=f (1)+f (1)=2f (1), ∴f (1)=0.(2)∵f (xy )=f (x )+f (y ), f (3)=1, ∴f (9)=f (3)+f (3)=2.∴f (a )>f (a -1)+2化为f (a )>f (a -1)+f (9)=f (9a -9),由题意得⎩⎪⎨⎪⎧a >0a -1>0a >9a -9, 解得1<a <98.(3)∵f (x )=f ⎝ ⎛⎭⎪⎫x y·y =f ⎝ ⎛⎭⎪⎫x y +f (y ),∴f ⎝ ⎛⎭⎪⎫x y=f (x )-f (y ).22.(本小题满分14分)已知函数f (x )=lg(m x-2x)(0<m <1). (1)当m =12时,求f (x )的定义域;(2)试判断函数f (x )在区间(-∞,0)上的单调性并给出证明; (3)若f (x )在(-∞,-1]上恒取正值,求m 的取值X 围.[解析] (1)当m =12时,要使f (x )有意义,须(12)x -2x >0,即2-x >2x,可得:-x >x ,∴x <0∴函数f (x )的定义域为{x |x <0}.(2)设x 2<0,x 1<0,且x 2>x 1,则Δ=x 2-x 1>0 令g (x )=m x-2x,则g (x 2)-g (x 1)=m x2-2 x2-m x1+2 x1 =m x2-m x1+2 x1-2 x 2 ∵0<m <1,x 1<x 2<0, ∴m x2-m x1<0,2 x1-2 x2<0g (x 2)-g (x 1)<0,∴g (x 2)<g (x 1)∴lg[g (x 2)]<lg[g (x 1)], ∴Δy =lg(g (x 2))-lg(g (x 1))<0, ∴f (x )在(-∞,0)上是减函数.(3)由(2)知:f (x )在(-∞,0)上是减函数, ∴f (x )在(-∞,-1]上也为减函数,∴f (x )在(-∞,-1]上的最小值为f (-1)=lg(m -1-2-1) 所以要使f (x )在(-∞,-1]上恒取正值, 只需f (-1)=lg(m -1-2-1)>0,即m -1-2-1>1,∴1m >1+12=32,∵0<m <1,∴0<m <23.。

人教版B版-高中数学高一年级下册期中测试试卷01(含答案在前)

人教版B版-高中数学高一年级下册期中测试试卷01(含答案在前)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!期中测试 答案解析一、 1.【答案】A【解析】因为()7,3a =-,(),6b m =,且a b ∥,所以7630m ⨯+=,解得14m =-. 2.【答案】C【解析】由3121a a d =+=,91813a a d =+=,解得13a =-,2d =. 3.【答案】D【解析】因为0a b <<,所以2a ab >. 4.【答案】B【解析】因为2sin b A =sin sin 2B A A =.因为sin 0A ≠,所以sin B =,又a b >,所以4B π=.5.【答案】B【解析】由()23167264a a a a ++=,得213367264a a a a a ++=,则222277264a a a a ++=,即()22764a a +=.又0n a >,故278a a +=.6.【答案】D【解析】对于A ,当0x <时,不符合题意;对于B ,224sin sin x x=成立的条件为2sin 21x =>,不符合题意;对于C ,当ln 0x <时,不符合题意. 7.【答案】B【解析】设轮船甲、乙在下午1时所处的位置分别为A 和B ,由题可知50CA =,CB =,135ACB =∠︒,则(222222cos 5025097002AB CA CB CA CB ACB ⎛⎫=+-⋅⋅∠=+-⨯⨯= ⎪ ⎪⎝⎭,故10AB =海里. 8.【答案】A【解析】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.9.【答案】D【解析】因为()c o s c o s a A B c +=,所以()sin cos cos sin sin cos cos sin A A B C A B A B +==+,整理得()cos sin sin 0A A B -=,即cos 0A =或sin sin 0A B -=,则2A π=或A B =,故ABC △的形状为等腰三角形或直角三角形. 10.【答案】C【解析】由316a =,3112S =,解得164a =,12q =(13q =-舍去),则72n n a -=,()13212n n n T -⎛⎫= ⎪⎝⎭=,要使1n T >,则()1302n n -<,解得013n <<,故n 的最大值为12.11.【答案】A【解析】连接AF (图略),因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,因为2CF DF =,所以1133DF DC AB ==,所以()2113m AP AB m AD +=+-.因为E 是BC 的中点,所以1122AE AB BC AB AD =+=+.因为A P A E λ=,所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭,则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩,解得34λ=. 12.【答案】C【解析】因为0a >,0b >,且347a b +=,()()9419432()32732a b a b a b a b a b a b +=⎡+++⎤+=⎣⎦++++ ()()9243125137327a b a b a b a b ⎡++⎤++⎢⎥++⎣⎦≥, 当且仅当()()924332a b a b a ba b++=++,即2125a =,2825b =时,等号成立. 二、13.【答案】10【解析】因为()8,a k =,()3,4b =,且a b ⊥,所以8340k ⨯+=,得6k =-,则10a =.14.【答案】112x x x ⎧⎫<->-⎨⎬⎩⎭或(或()1,1,2⎛⎫-∞--+∞ ⎪⎝⎭) 【解析】由不等式20ax bx c ++>的解集为{}31x x -<<,知0a <,31b a -+=-,31ca-⨯=,得2b a =,3c a =-,则不等式20bx cx a -+<等价于22310x x ++>,故不等式20bx cx a -+<的解集为112x x x ⎧⎫--⎨⎬⎩⎭<或>.15.【答案】16【解析】由222312c 222os A a b c bc bc bc bc =+--=≥,得16bc ≤,当且仅当4b c ==时等号成立,故bc 的最大值为16. 16.【答案】15【解析】因为32318S a ==,所以26a =,又31390n n n S S a ---==,所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =.三、17.【答案】解:(1)由余弦定理及题设知,222co 1222s b c a bc bc b A c +-===,又因为0A π<<,所以3A π=.(2)因为3A π=,512B π=,所以4C π=. 由正弦定理知,sin sin a CA C=,则sin sin 23CAa c ⨯==.18.【答案】解:(1)由题设,知建筑总面积为12150018000⨯=平方米, 总的费用为()4675010950501218000+-⨯⨯⨯元, 故楼房每平方米的平均综合费用为()467501095050121800053018000⨯++⨯⨯=元.(2)记楼房每平方米的平均综合费用为y 元,由题设得4675010950501500y x x⨯=++45000509503950x x=++≥,当且仅当4500050x x=,即30x =时取等号.故为了使楼房每平方米的平均综合费用最少,该楼房应建30层. 19.【答案】解:(1)在ABD △中,s n sin i BAD BD ADB=∠,在ACD △中,s n sin i CAD CD ADC=∠.因为AD 平分BAC ∠,且3CD BD =, 所以3sin sin B C CDBD==. (2)由正弦定理及(1)可知sin sin 3AC AB BC==. 因为2AB =,3B π=,所以6AC =,sin C =. 因为()sin sin sin cos cos sin BAC B C B C B C ∠=+=+12=,所以1sin 22ABC S AC AB BAC ⋅∠=⋅=.20.【答案】解:(1)因为223n S n n =++,所以116a S ==. 当2n ≥时,1n n n a S S -=-()()22232113n n n n =+------ 41n =-.综上,6,141,2n n a n n =⎧=⎨-⎩≥.(2)由(1)知3,141,22n nn b n n =⎧⎪=⎨-⎪⎩≥,当2n ≥时,234711154132222n nn T -=+++++①, 则345137111541222222n n T n +-=+++++②. -①②得2341371114142222222nn n n +-⎛⎫=+++++- ⎪⎝⎭ 11111134117472241424212n n n n n n +++--+=+⨯-=--, 则174722n nn T +=-. 又1117417322T b ⨯+==-=,故174722n nn T +=-.21.【答案】解:(1)如图,以O 为坐标原点,建立直角坐标系xOy ,则()0,0O ,()0,2A ,()2,0B,)N,所以()0,2OA =,()2,0OB =,()3,1ON =.设ON xOA yOB =+,则212x y =⎧⎪⎨=⎪⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,所以1322ON OA OB =+.(2)设()0090BON θ∠=︒≤≤︒,则()2cos ,2sin N θθ,()0,1M , 则()2,1MB =-,()2cos ,2sin ON θθ=, 所以()4cos 2sin MB ON θθθϕ⋅=-=+, 其中cosϕ=,sin ϕ(ϕ为锐角). 因为090θ︒︒≤≤,所以90ϕθϕϕ+=+︒≤,则()max cos cos θϕϕ+==,()()min cos cos 90sin θϕϕϕ+=︒+=-=, 所以MB ON ⋅的取值范围为[]2,4-.22.【答案】解:(1)由题意知,3127a a d =+=,6161548S a d =+=, 解得13a =,2d =,所以()1121n a a n d n =+-=+. (2)因为()()12525222123n n nn n n n b a a nn +++==++()()1112221223n n n n +⎡⎤=⨯-⎢⎥++⎢⎥⎣⎦,所以12n n T b b b =+++()()12231111111232525272221223n n n n +⎡⎤=⨯-+-++-⎢⎥⨯⨯⨯⨯++⎢⎥⎣⎦()11126223n n +⎡⎤=⨯-⎢⎥+⎢⎥⎣⎦()113223nn =-+.期中测试第Ⅰ卷―、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()7,3a =-,(),6b m =,若a b ∥,则m =( ) A .14-B .14C .8-D .82.在等差数列{}n a 中,31a =,913a =,则1a =( ) A .5-B .4-C .3-D .2-3.若0a b <<,则下列不等式成立的是( )A .11a b-<B .2ab b <C .11a b-->D .2a ab >4.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若sin 2b A =,且a b >,则B =( ) A .6πB .4π C .3π D .4π或34π5.在正项等比数列{}n a 中,()23167264a a a a ++=,则27a a +=( ) A .4 B .8 C .12 D .166.下列式子中最小值为4的是( ) A .263x x+B .224sin sin x x+C .ln 13ln 2xx +D .455x x +7.轮船甲和轮船乙在上午11时同时离开海港C ,两船航行方向的夹角为135︒,两船的航行速度分别为25海里/小时、/小时,则当天下午1时两船之间的距离为( )A .海里B .C .100海里D .海里8.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( )AB .3CD9.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()c o s c o s a A B c +=,则ABC △的形状一定为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.已知等比数列{}n a 的前n 项和与前n 项积分别为n S ,n T ,公比为正数,且316a =,3112S =,则使1n T >成立的n 的最大值为( ) A .8B .9C .12D .1311.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2312.已知0a >,0b >,且347a b +=,则9432a b a b+++的最小值为( ) A .4312B .4112C .257D .237第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知向量()8,a k =,()3,4b =,若a b ⊥,则a =________.14.已知不等式20ax bx c ++>的解集为{}31x x -≤<,则不等式20bx cx a -+<的解集为________.15.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos 34A =,a =bc 的最大值为________. 16.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知222b c a bc +=+. (1)求A ; (2)若512B π=,2a =,求c .18.(12分)某企业用6750万元购得一块空地,计划在该块地建造一栋至少12层,且每层面积为1500平方米的楼房,经测算,如果将楼房建为()*12,x x x N ∈≥层,则每平方米的平均建筑费用为95050x +(单位:元).(1)若楼房建12层,则楼房每平方米的平均综合费用为多少元? (2)为了使楼房每平方米的平均综合费用最少,该楼房应建多少层? (注:平均综合费用=平均建筑费用+平均购地费用.平均购地费用=购地总费用建筑总面积)19.(12分)如图,在ABC △中,AD 平分BAC ∠,且3CD BD =.(1)求sin sin BC的值; (2)若2AB =,3B π=,求ABC △的面积.20.(12分)已知数列{}n a 的前n 项和为n S ,且223n S n n =++. (1)求{}n a 的通项公式; (2)若2nn na b =,求数列{}n b 的前n 项和n T .21.(12分)如图,扇形OAB 的圆心角为90︒,2OA =,点M 为线段OA 的中点,点N 为弧AB 上任意一点.高中数学 必修第二册 4 / 4(1)若30BON ∠=︒,试用向量OA ,OB 表示向量ON ;(2)求MB ON ⋅的取值范围.22.(12分)已知等差数列{}n a 的前n 项和为n S ,且37a =,648S =.(1)求{}n a 的通项公式;(2)若1252n n n n n b a a ++=,求数列{}n b 的前n 项和n T .。

人教B版高一数学下期中复习试题及答案

人教B版高一数学下期中复习试题及答案

2013年黑山一高中高一数学下 第八周 周末练习卷班级:一年 班 出题教师:邱 文 鹏 姓名: 做题时间:2013-4-20一、 选择题 1. 如图所示,D,E,F 分别是ABC ∆的边AB,BC,CA 的中点,则AF DB -等于……( ) A:FD B: FC C: FE D: BE2. 已知点C 在线段AB 的延长线上,且2BC AB =,BC CA λ=,则λ等于( )A: 3 B:13 C: -3 D: 13- 3. 若P 是ABC ∆所在平面内的一点,2BC BA BP +=,则………( )A:0PA PB += B:0PC PA += C:0PB PC += D:0PA PB PC ++=4. 设a ,b 是不共线的向量,AB a kb =+,AC ma b =+,当AB ,AC 共线时有……( )A: k m = B: 10k m ⋅-= C: 10k m ⋅+= D: 0k m += 5. 已知1e ,2e 是不共线,则以下选项中,a 与b 不一定共线的是……( )A: 125a e e =- ,21210b e e =- B: 12245a e e =-,12110b e e =-C: 122a e e =- ,212b e e =- D: 1233a e e =-,1222b e e =-+6. 如图,在ABC ∆中,AD=DB, AE=EC, CD 与BE 相交于F ,设AB a =,AC b =,AF xa yb =+,则(),x y 为……( )A: 1,2⎛⎫⎪⎝⎭ B: 22,33⎛⎫ ⎪⎝⎭ C: 11,33⎛⎫ ⎪⎝⎭ D: 21,32⎛⎫ ⎪⎝⎭ 二、 填空题7. 在菱形ABCD 中,60DAB ∠=,1AB =,则B C C D+= . 8. 在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,其中a ,b 不共线,则四边形ABCD 的形状为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下学期期中考试数学考试时间:2011年5月5日:14:00------16:00本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色签字笔将自己的班级、姓名和考号、座位填写在答题卷的相应位置上。

2.选择题每小题选出答案后,填在答题卷的答题栏内。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上。

4.考生必须保持答题卷的整洁。

考试结束后,将答题卷交回。

第一部分 选择题 (共40分)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,并把答案填在答题卷的答题栏内) 1.70y -+=的倾斜角是 ( ) A.030 B.045 C.060 D.01202.已知圆x 2+y 2+2x-6y+m=0与x+2y-5=0交于A, B 两点, O 为坐标原点, 若OA ⊥OB, 则m 的值为( ) A. 0 B . 1 C. -1 D. 23.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点( ) A .(1,2)-B .(1,2)C .(1,2)-D .(1,2)--4. 在空间直角坐标系中, 点P(2,3,4)与Q (2, -3,4)两点的位置关系是 ( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .关于xOz 平面对称5.已知圆22:(1)(2)5C x y -+-=,直线0:=-y x l ,则C 关于l 的对称圆/C 的方程为( )A .5)2()1(22=+++y xB .5)1()2(22=-+-y x C .5)1()2(22=++-y xD .5)2()1(22=++-y x6.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥ 7.如图长方体中,AB=AD=23,CC 1=2,则二面角 C 1—BD —C 的大小为( )(A )900 (B )450 (C )600 (D )3008、如图:直三棱柱ABC —A /B /C /的体积为V ,点P 、Q分别在侧棱AA /和CC /上,AP=C /Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5VQPC'B'A'C BAABC DA 1B 1C 1D 1第二部分 非选择题(共110分)二.填空题:(本大题共7小题,每小题5分, 共35分.)9.已知几何体的三视图(如右图),则该几何体的表面积为 。

10、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,则平 行四边形ABCD 一定是 .11. 已知点(45)(61)A B ---,,,,则以线段AB 为直径的圆的方 程为 。

12,四个顶点在同一球面上,则此球的表面积为 。

13、已知直线l 1:2x-y+6=0与y 轴交于C 点,直线l 2与x 轴交于点A(8,0),l 1与l 2交于B 点,O 为座标原点,若A 、B 、C 、O 四点共圆,则直线l 2的方程为 , 圆的方程为 。

14.由曲线y x =,y x =-,2x =,2x =-围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足224x y +≤,22(1)1x y +-≥,22(1)1x y ++≥的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,试写出1V 与2V 的一个关系式1V :2V = 。

15.P 在直线210x y +-=上,点Q 在直线230x y ++=上,PQ 的中点为00(,)M x y ,002y x >+,则y x 的取值范围是___ _.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)已知点()3 -2A ,和直线l :34490x y ++=.(1)求过点A 和直线l 垂直的直线方程;(2)求点A 在直线l 上的射影的坐标.17、(本小题满分12分)如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC , AF ⊥PC,PA=AB=BC=2(1)求证:平面AEF ⊥平面PBC ; (2)求二面角P —BC —A 的大小。

A BC PEF18、(本小题满分12分)如图ABCD —A 1B 1C 1D 1是正方体, M 、N 分别是线段AD 1和BD 上的中点(Ⅰ)证明: 直线MN∥平面B 1D 1C ;(Ⅱ)设正方体ABCD -A 1B 1C 1D 1棱长为a ,若以D 为坐标原点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,试写出B 1、M 两点的坐标,并求线段B 1M 的长. 19、(本小题满分13分)设直线l 与直线50x y --=之间的距离是l 不过第四象限。

(1)求直线l 的方程;(2)若x 、y 满足直线l 的方程, 求229304341062222+--+++-++=y x y x y x y x d 的最小值。

D 1 NDBAC 1 B 1A 1CM20、(本小题满分13分)如图所示,在正方体1111ABCD A BC D 中,E 是棱DD 1的中点。

(Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;(II )在棱C 1D 1上是否存在一点F ,使B 1F//平面A 1BE? 证明你的结论。

21、(本小题满分13分) 已知圆C :x 2+y 2+2x-8y+9=0。

(I )若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程。

(II )从圆C 外一点P(x 0,y 0)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P 的坐标。

A DB CA 1 D 1B 1C 1E20题图数学试题卷答案第一部分 选择题 (共40分)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,并把答案填在答题卷的答题栏内) 1.70y -+=的倾斜角是 ( C ) A.030 B.045 C.060 D.01202.已知圆x 2+y 2+2x-6y+m=0与x+2y-5=0交于A, B 两点, O 为坐标原点, 若OA ⊥OB, 则m 的值为( A ) A. 0 B . 1 C. -1 D. 23.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点( A ) A .(1,2)-B .(1,2)C .(1,2)-D .(1,2)--4. 在空间直角坐标系中, 点P(2,3,4)与Q (2, -3,4)两点的位置关系是 ( D ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .关于xOz 平面对称 5.已知圆22:(1)(2)5C x y -+-=,直线0:=-y x l ,则C 关于l 的对称圆/C 的方程为( B ) A .5)2()1(22=+++y x B .5)1()2(22=-+-y x C .5)1()2(22=++-y x D .5)2()1(22=++-y x6.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( C )A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂ C .若,//l ααβ⊥,则l β⊥ D .若//,l ααβ⊥,则l β⊥ 7.如图长方体中,AB=AD=23,CC 1=2,则二面角 C 1—BD —C 的大小为( D )(A )900 (B )450 (C )600 (D )3008、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( B ) A 、2V B 、3V C 、4V D 、5V 第二部分 非选择题(共110分) 二.填空题:(本大题共7小题,每小题5分, 共35分.) 9.已知几何体的三视图(如右图),则该几何体的表面积为)4110、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是 菱形 .11. 已知点(45)(61)A B ---,,,,则以线段AB 为直径的圆的方程为29)3()1(22=++-y x 12,四个顶点在同一球面上,则此球的表面积为 3π 。

QPC'B'A'CBAABCDA 1B 1C 1D 113、已知直线l 1:2x-y+6=0与y 轴交于C 点,直线l 2与x 轴交于点A(8,0),l 1与l 2交于B 点,O 为座标原点,若A 、B 、C 、O 四点共圆,则直线l 2的方程为x+2y-8=0 ,圆的方程为()()22x-4+y-3=2514.由曲线y x =,y x =-,2x =,2x =-围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足224x y +≤,22(1)1x y +-≥,22(1)1x y ++≥的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,试写出1V 与2V 的一个关系式1V :2V = 4:3 。

15.P 在直线210x y +-=上,点Q 在直线230x y ++=上,PQ 的中点为00(,)M x y ,002y x >+,则0y x 的取值范围是___11,25⎛⎫-- ⎪⎝⎭_. 三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)已知点()3 -2A ,和直线l :34490x y ++=. (1)求过点A 和直线l 垂直的直线方程; (2)求点A 在直线l 上的射影的坐标.解:(1)设过点A 且与直线l 垂直的直线的方程为4x-3y+c=0,将A (3,-2)的坐标代入, 得1c =-8,故所求直线的方程为4x-3y-18=0.………… 6分(2)由3449043180x y x y ++=⎧⎨--=⎩解得:310x y =-⎧⎨=-⎩点A 在直线l 上的射影的坐标是()3,10--。

……… 12分. 17、(本小题满分12分)如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2 (1)求证:平面AEF ⊥平面PBC ; (2)求二面角P —BC —A 的大小。

(1)证:∵PA ⊥平面ABC ,BC ABC ⊂又,面,∴ PA ⊥BC又AB ⊥BC ,AB 与PA 相交于点A ,∴BC ⊥平面PAB ,AE PAB ⊂又面, ∴BC ⊥AE ,又AE ⊥PB ,而PB 与BC 相交于点B ,∴AE ⊥平面PBCAE AEF ⊂又面,故,平面AEF ⊥平面PBC ………… 6分(2)由(1)知,BC ⊥平面PAB ,PB PAB ⊂又面,∴PB ⊥BC又AB ⊥BC ,∴∠PBA 就是二面角P —BC —A 的平面角,在R tΔPAB 中,∵PA=AB ,∴∠PBA=450,即二面角P —BC —A 的大小为450。

相关文档
最新文档