14精馏塔控制
精馏塔温度控制系统设计

精馏塔温度控制系统设计精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。
精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。
下面将详细介绍精馏塔温度控制系统的设计原理和步骤。
精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺要求,通过控制介质的流量和温度来实现温度的稳定控制。
精馏塔内部通常分为多个段落,每个段落都有一个特定的温度要求。
温度的控制涉及到对塔釜的加热和冷却以及介质的流量调节。
1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范围和偏差,以及控制精度要求。
2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。
常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。
3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。
常见的温度传感器包括热电偶、热敏电阻等。
4.确定执行器:根据控制目标和方法,选择合适的执行器。
常见的执行器包括电动调节阀、蒸汽控制阀等。
5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。
控制回路包括传感器、控制器和执行器。
6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。
参数整定通常包括比例增益、积分时间和微分时间等。
7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况进行反馈调整和优化。
总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。
设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。
合理的设计能够使温度控制更加稳定和可靠。
精馏塔控制

控制结构 (1)方案1:D — LR, B — LB, V — TB; (2)方案2:D — LR, V — LB, B — TB。
提馏段控制方案之一
FC F
TC
FC
LC B
LC D
提馏段控制方案之二
FC F
FC
TC LC
B
LC D
精馏塔两端质量指标控制问题
基本控制系统的分析与设计方法; 5、了解精馏塔的复杂控制与先进控制方法。
连续精馏装置的工艺流程
原料
精 馏 塔
冷凝器
操作目的:
塔顶产品
通过反复的部分汽化 与部分冷凝,将混合
回流罐
液中沸点不同的各组
分分离成产品。
回流泵
再 沸 器
塔底产品
操作代价:
消耗能量,塔底需要 加热使塔底液部分汽 化;塔底需要冷却使 塔顶组分冷凝;
W
D
TR
L
精 馏
LD
塔
B
TS
QH
LB
两端质量指标控制方案
方案 控制变量
D
L
QH
B
1
LD
TR
TS
LB
2
TR
LD
TS
LB
受控变量
3
LD
TR
LB
TS
4
TR
LD
LB
TS
两端质量指标控制方案之一
F
TC
TB V V2
TD
TC
R V1
B
控制方案
(1)若相互耦合不严重, 则可通过调节器参数的整 定,使相关回路的工作频 率拉开以减少关联; (2)若耦合严重,则可 考虑静态解耦或其他先进 控制方法:变结构控制、 预测控制等。
精馏塔塔底温度控制方案

精馏塔塔底温度控制方案精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。
在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。
本文将对精馏塔塔底温度控制方案进行详细的介绍。
一、精馏塔塔底温度控制的重要性1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。
如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。
2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。
3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。
因此,对塔底温度进行有效的控制是非常必要的。
二、精馏塔塔底温度控制方案1. 串级控制方案串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。
具体实施步骤如下:(1)选择主控制器和副控制器:根据精馏塔的特点和工艺要求,选择合适的控制器类型,如PID控制器、模糊控制器等。
(2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。
(3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。
(4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。
2. 前馈控制方案前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。
具体实施步骤如下:(1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。
(2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。
(3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。
精馏塔的控制要求

精馏塔的控制要求2.1 质量指标混合物分离的纯度是精馏塔控制的主要指标。
在精馏塔的正常操作中,产品质量指标就必须符合预定的要求,即保证在塔底或塔顶产品中至少有一种组分的纯度达到规定的要求,其他组分也应保持在规定的范围内,因此,应当取塔底或塔顶产品的纯度作为被控变量。
但是,在线实时监测产品纯度有一定的困难,因此,大多数情况下是用精馏塔内的“温度和压力”来间接反应产品纯度。
对于二元精馏塔,当塔压恒定时,温度与成分之间有一一对应的关系,因此,常用温度作为被控变量。
对于多元精馏塔,由于石油化工过程中精馏产品大多数是碳氢化合物的同系物,在一定的塔压下,温度与成分之间仍有较好的对应关系,误差较小。
因此,绝大多数精馏塔当塔压恒定时采用温度作为间接质量指标。
2.2 平稳操作为了保证精馏塔的平稳操作,首先必须尽可能克服进塔之前的主要可控扰动,同时缓和一些不可控的主要扰动,例如,对塔进料温度进行控制、进料量的均匀控制、加热剂和冷却剂的压力控制等。
此外,塔的进出物料必须维持平衡,即塔顶馏出物与塔底采出物之和应等于进料量,并且两个采出量的变化要缓慢,以保证塔的平稳操作。
另外,控制塔内的压力稳定,也是塔平衡操作的必要条件之一。
2.3 约束条件为了保证塔的正常、平稳操作,必须规定某些变量的约束条件。
例如,对塔内气体流速的限制,塔内气体流速过高易产生液泛,流速过低会降低塔板效率;再沸器的加热温差不能超过临界值的限制等。
3精馏塔的温度控制精馏塔控制最直接的质量指标是产品的组分,但产品组分分析周期长,滞后严重,因而温度参数成了最常用的控制指标,即通过灵敏板进行控制[3]。
3.1 精馏段温度控制精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。
适用于对塔顶产品质量要求高或是气相进料的场合。
调节手段是根据灵敏板温度,适当调节回流比。
例如,灵敏板温度升高时,则反映塔顶产品组成XD下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。
精馏塔控制系统设计

精馏塔控制系统设计精馏塔控制系统是指用于控制精馏装置运行的自动化系统。
精馏塔是化工过程中常用的一种分离设备,用于将混合物按照不同组分进行分离,并获得精馏产品。
精馏塔控制系统设计的目标是实现对塔内温度、压力、流量等参数的自动调节,以保持塔的稳定运行和达到设定的产品品质和产量要求。
1.系统的安全性:由于精馏塔操作涉及到高温高压的条件,系统的安全性是首要考虑因素。
安全系统应该能及时发现并处理可能的危险情况,如超压、超温等,确保塔内的操作条件始终处于安全范围内。
2.过程控制策略:根据塔的物料性质和操作要求,设计合理的控制策略。
常见的控制策略包括温度控制、压力控制、流量控制等。
需要根据塔内的反应动力学特性和传热传质特性来优化控制策略,比如采用多变量控制或者模型预测控制等。
3.仪表设备选型:根据控制策略选择合适的仪表设备,如温度传感器、压力传感器、流量计等。
仪表设备应具有高精度、稳定性好和耐高温高压等特点,以满足精馏塔操作的要求。
4.控制系统架构设计:根据控制策略和仪表设备的选择,设计控制系统的架构。
控制系统通常包括传感器、执行器、控制器和通信网络等部分。
传感器用于测量塔内的物理参数,执行器用于调节塔内的操作条件,控制器用于处理传感器的测量信号并确定下一步的控制策略,通信网络用于传输和共享数据。
5.监控系统设计:精馏塔的操作过程需要实时监控,及时发现和处理异常情况。
监控系统应能对塔内各项参数进行实时显示和记录,并提供报警、故障诊断和数据分析等功能。
监控系统可以采用人机界面、数据采集系统、故障诊断系统等多种形式。
在精馏塔控制系统的设计中,需要充分考虑各种可能的操作变量、工艺的稳定性、产量和能耗等方面的要求。
通过合理的控制系统设计,可以实现对精馏塔的准确控制,提高产品质量和产量,降低能耗和运行成本。
精馏塔常用控制方案简介

精馏塔常用控制方案简介1.1.2 精馏塔常用控制方案简介a)传统控制方案1)按物料平衡关系控制精馏塔物料平衡控制方式并不对塔顶或塔底产品质量进展直接的控制,而依据精馏塔的物料平衡及能量平衡关系进展间接控制。
其根本原理是,当进料成分不变和进料温度一定时,在持全塔物料平衡的前提下,保持进料量F、再沸器加热量、塔顶产品量D一定;或者说保持D/F和B/F一定,就可保证塔顶、塔底产品质量指标一定。
2)质量指标控制精馏塔质量指标由精馏塔产品的纯度表达,精馏塔产品的纯度直接影响因素为精馏段灵敏板温度与提馏段灵敏板温度。
因此,精馏塔质量指标控制方案与温度控制有直接联系。
3)温度控制当为了生产两种合格的产品,只有塔顶、塔底两种。
而没有侧线产品时,常用的控制方案是:利用回流量来控制顶部塔板的温度,改变通往再沸器加热蒸汽量来控制底部塔板的温度。
b)先进控制方案1)自适应解耦控制一些学者将自适应控制应用于精馏塔的不同组分控制。
但是.没有考虑控制回路之问耦合的影响。
目前已提出的多变量自适应解耦控制算法,只能对最小相位系统实现动态解耦,对非最小相位系统实现近似动态解耦,近来,有人根据精馏塔的特点提出了一种可以对闭环系统实现动静态解耦的自适应控制器,并在精馏塔上进展了实验。
2)多变量预测控制预测控制是一类以对象模型为根底的计算机控制算法,依据对象模型的不同,预测算法可粉为模型算法(MAC)、动态矩阵控制算法(DMC)、广义预测控制(GPC)等详细实现形式。
工业上应用说明:多变量预测控制到达了期望的效果,实现了常压塔的平稳操作,提高了装置适应处理量与原料性质变化的能力;并简化了控制过程,减少了劳动强度及人工干预,显著提高了产品的合格率。
1.2 问题的提出及解决问题的途径对于精馏过程中的温度控制系统,当只有塔顶、塔底两种产品,而没有侧线产品时,常用的控制方案是:利用回流量来控制顶部塔板的温度,改变通往再沸器加热蒸汽量来控制底部塔板的温度。
精馏塔的安全运行分析——精馏塔的压力控制

精馏塔的安全运行分析——精馏塔的压力控制精馏塔是一种常见的化工设备,用于对混合物进行物理分离,通常是通过不同成分的挥发性差异来实现的。
精馏塔的安全运行非常重要,特别是在对压力的控制方面。
本文将对精馏塔的压力控制进行安全运行分析。
首先,精馏塔的设计压力应该满足相关的安全标准和规范要求。
在设计阶段,需要根据精馏塔的尺寸、操作条件和处理介质的性质确定合适的设计压力,并确保其足够安全。
设计压力应该考虑到可能的异常情况,如供料中断、热载剂或冷却剂中断等。
其次,在精馏塔的运行过程中,需要采取措施确保压力的稳定。
首先,应该对精馏塔进行定期的检查和维护,以确保设备的完整性和密封性。
任何漏气或泄漏都应该及时检修。
其次,需要对液位进行监测,并及时调整进料量、出料量以及蒸汽或冷却剂的供给,以保持压力的稳定。
如果压力过高,可以适当减少进料量或增加出料量等方式进行调整,反之亦然。
此外,精馏塔的压力控制还需要考虑应急措施。
在遇到紧急情况时,需要能够迅速采取措施降低压力,以防止设备的破裂或爆炸。
一种常见的应急措施是通过紧急排放装置将过高的压力释放到安全区域。
在选择紧急排放装置时,需要确保其能够在压力超过设定值时自动启动,并且能够有效地将压力降低到安全范围内。
最后,精馏塔的压力控制还需要考虑操作员的培训和安全意识。
操作员应该了解精馏塔的运行原理和常见问题,能够正确操作设备,并在发生异常情况时及时采取措施。
他们应该熟悉压力控制系统的操作,包括了解设备上的压力传感器、控制阀和紧急排放装置的位置和使用方法。
总之,精馏塔的压力控制是确保设备安全运行的关键环节。
在设计和运行过程中,需要采取一系列措施来确保压力的稳定,并能够在紧急情况下采取应急措施。
操作员的培训和安全意识也非常重要,他们应该了解设备的运行原理,并能够正确操作压力控制系统。
通过以上措施的综合实施,可以确保精馏塔的安全运行。
精馏塔常用的一些控制方案

精馏塔常用的一些控制方案塔的作用是在同一个设备中进行质量和热量的交换,是石油化工装置非常重要的设备。
塔的型式有板式塔(泡罩塔、浮阀塔、栅板塔等)、填料塔(高效填料、常规填料、散装填料、规整填料等)、空塔。
塔由筒体和内件组成。
蒸馏塔由精馏段和提馏段组成,进料口以上是精馏段,进料口以下是提馏段。
精馏塔的控制方案主要从塔压、釜温、顶温、塔釜液面四个方面来说明:1.精馏操作中塔压的控制调节方法塔的压力是精馏塔主要的控制指标之一。
任何一个精馏塔的操作,都应当把塔压控制在规定的指标内,以相应地调节其它参数。
塔压波动过大,就会破坏全塔的物料平衡和气液平衡,使产品达不到所要求的质量。
所以,许多精馏塔都有其具体的措施,确保塔压稳定在适宜范周内。
对于加压塔的塔压,主要有以下三种调节方法(1)塔顶冷凝器为分凝器时,塔压一般是靠气相采出量来调节的,如图6-1所示。
在其它条件不变的情况下,气相采出量增大,塔压下降,气相采出量减小,塔压上升。
(2)塔顶冷凝器为全凝器时,塔压多是靠冷剂量的大小来调节,即相当于调节回流液温度,如图6-2所示。
在其它条件不变的前提下,加大冷剂量,则回流液的温度降低,塔压降低,若减少冷剂量,回流液温度上升,塔压上升。
(3)热旁通(浸没式)法调节塔压。
对于常压塔的压力控制,主要有以下三种方法(1)对塔顶压力在稳定性要求不高的情况下,无需安装压力控制系统,应当在精馏设备(冷凝器或回流罐)上设置一个通大气的管道,以保证塔内压力接近于大气压。
(2)对塔顶压力的稳定性要求较高或被分离的物料不能和空气接触时,塔顶压力的控制可采用加压塔塔压的控制方法,如图6-1、图6-2。
(3)用调节塔釜加热蒸汽量的方法来调节塔釜的气相压力,如图6-6所示。
2.精馏操作中塔釜温的控制调节方法釜温是由釜压和物料组成决定的。
精馏过程中,只有保持规定的釜温,才能确保产品质量。
因此釜温是精馏操作中重要的控制指标之一。
当釜温变化时,通常是用改变蒸发釜的加热蒸汽量,将釜温调节至正常,见图6-7a、图6-7b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精馏塔的静态特性
总组分与轻组分的物料平衡方程:
F = DB
D
F , xF
V
Fx
xF xB
F
= Dx D Bx
B F =
B
=
F
D , xD
xD xB
或
xD xF xD xB
能耗与分离度S的关系:
V x D (1 x B ) = ln S = ln x (1 x ) F D B
QH
B
一个产品质量控制之方案十
PC
LC FC FC 精 馏 塔 LC TC
与方案六类似,也 是物料平衡控制方 式。实质是通过B的 变化使LB改变,从 而在 LB的液位控制 作用下使QH变化。 底部产品流量小时 采用;并且质量不 合格时可以暂停出 料。
F
L
D
QH B
精馏塔两端质量指标控制问题
目的:为了使操作成本特别是能耗减少
精馏塔质量指标的选取
直接质量指标
(1)产品质量在线分析仪 / 软测量仪
间接质量指标
(1)灵敏板温度,与塔顶/塔底温度相比,可提高 温度变化的灵敏度(对于同样的浓度变化); (2)温差信息,与灵敏板温度相比,可减弱压力 波动对温度的影响; (3)双温差信息,可用于精馏塔的适宜分离度控 制,即使塔顶/塔底产品纯度均适中。
前馈反馈控制系统
TC
F×FC DFC×TCB
组分滞后的影响
——组分滞后随着塔板上液相蓄存量和塔板数的增加而增加
回流罐蓄液量和塔釜液量引起的滞后影响
——回流罐和塔釜液位必须保持一定,否则会影响控制品质
精馏塔的控制问题
外部扰动 (进料的流量,组成与温度等) 操作变量/控制变量 被控变量
塔顶采出量 回流量 塔底采出量 再沸器加热量 冷凝器冷却量 塔顶汽相采出量
D
F
LC
QH B
一个产品质量控制之方案七
LC FC 精 馏 塔 LC FC TC
F
L
D
QH
B
塔顶温度回路和塔底液位回路之间存在着较严重的关 联,多为负相关,不使用。
一端产品质量控制:塔底质量
被控变量:TS, LD, LB (即只对塔底产品质量指标进行控 制,对塔顶产品质量指标不作严格要求)
W D L B QH
精 馏 塔
方案 操纵变量
D LD
L L L LD LD
QH TS LB TS LB
B LB TS LB TS
LD TS LB
9 10 11 12 受控变量
LD D D
一个产品质量控制之方案九
PC
采用再沸器加热量 控制温度,动态响 应快,反应迅速。
LC FC FC 精 馏 塔 TC LC
F
L
D
方案中回流采用定 值控制,当回流量 不足时容易引起液 泛。
7 8
TR
LD TR
LD
TR LD
QH
LB LB
LB
B B
一个产品质量控制之方案五
PC
LC FC TC 精 馏 塔 FC LC
F
L
D
直接控制塔内能 量平衡关系来实 现对分离精度的 控制, 但是回流L的波动 对精馏塔的平稳 操作是不利的。 再沸器加热量需 要足够大,以保 证最大负荷时的 产品质量。
QH
B
一个产品质量控制之方案六
PC
FC 精 馏 塔 FC
TC LC
一种物料平衡控制方 案。实质是通过D的变 化使LD改变,从而在 LD的液位控制作用下 使L变化。因此温度回 路滞后较大。 回流量较大时控制D 较灵敏。当产品质量 不合格时,可采取全 回流保证产品质量。 再沸器加热量也要保 持较高的值。
L
1
xD
精馏塔的其他控制方案
进料热焓控制, 以克服进料温度与进料状态对产品质量的影响; 进料前馈反馈控制, 以适应进料量的变化,并提高控制质量; 浮动塔压控制:尽可能降低塔压,以节约能耗;但应 相应改变灵敏板温度控制的设定,以保证产品合格。 产品质量指标的“卡边”控制: 关键技术:在线分析仪 (软测量仪) + 先进控制系统
TR
LC
F
TC
L TS V
D
x D (1 x B ) = ln S = ln x (1 x ) F D B
则可求出相对增益:
B
QH
x
D
,D
= x B ,V = 1
x z
D f
x B x D 1
z f x B 1 x B
D L B QH QC DV 精馏 过程
塔顶产品纯度 回流罐液位 塔底产品纯度 塔底液位
xD L
D
xB LB
塔顶压力
P
精馏塔的压力控制
PC
PC
L
L
D
F
F
D
塔顶汽相采出量 DV — 塔压 P
冷凝器冷却量 QC — 塔压 P
精馏塔的简化控制问题
外部扰动 (进料的流量,组成与温度等) 操作变量/控制变量 塔顶采出量 D 回流量 L 塔底采出量 B 再沸器加热量 QH 精馏 过程 被控变量 塔顶产品纯度 回流罐液位 塔底产品纯度 塔底液位 xD LD xB LB
W D L B QH
精 馏 塔
D
TR LD TS LB
L
LD TR TS LB
QH × ×
B × ×
× ×
× ×
两端质量指标控制方案
方案 13 14 受控变量 15 16 LD TR TR LD LB LB TS TS 控制变量 D LD TR L TR LD QH TS TS B LB LB
两端质量指标控制之方案十三
B , xB
结论:对于给定的进料,若D/F和V/F保持一定,则该塔 的分离结果xD, xB就完全确定。
塔内部平衡关系
——进料板的物料平衡
F LR VS = LS V R
VR LR
泡点进料:
LS = F LR VS = VR
F VS L s
露点进料:
VR = VS F LR = LS
当B<<D时采用
LC FC 精 馏 塔 LC FC
F
L
D
FC
QH
B
一端产品质量控制:塔顶质量
被控变量:TR, LD, LB (即只对塔顶产品质量指标进行控 制,对塔底产品质量指标不作严格要求)
W D L B QH
精 馏 塔
方案 操纵变量 D LD L TR QH QH B LB
TR LD LB
5
6
PC
该方案在应用前应先 分析两个质量回路的 相关性:
LC TC
F
精 馏 塔 TC
L
D
(1)若相互耦合不严重, 则可通过调节器参数的整 定,使相关回路的工作频 率拉开以减少关联; (2)若耦合严重,则要 考虑采用解耦控制。
LC
QH B
两端质量指标控制之方案十四
根据精馏塔静态特性有:
TC
B F
V
=
xD xF xD xB
物料平衡控制方案之方案一
PC
对产品的质量控制较弱
LC FC FC 精 馏 塔 FC LC
F
L
D
QH
B
物料平衡控制方案之方案二
PC
LC FC 精 馏 塔 FC
FC
当D<<B时采用 1、如果对B自控, B的小波动会造成 D的大波动 2、小流量控制液 位太慢
D
F
L
LC
QH
B
物料平衡控制方案之方案三
PC
精馏塔设备的控制
于玲 浙江大学控制系 2007/06/04
内
容
精馏塔的控制目标 精馏塔的静态特性 精馏塔质量指标的选取 精馏塔的基本控制方案 精馏塔的复杂控制方案
连续精馏装置的工艺流程
冷凝器 塔顶产品
原料 精 馏 塔
回流罐
操作目的: 通过反复的部分汽化 与部分冷凝,将混合 液中沸点不同的各组 分分离成产品。 操作代价: 消耗能量,塔底需要 加热使塔底液部分汽 化;塔顶需要冷却使 塔顶组分冷凝;
塔内部平衡关系
——精馏段和提馏段的物料平衡
VR LR=L i yi+1 x i D, xD
V =Vs
yj x j-1 j
Ls B, xB
V R y i 1 = L R x i D x D
V S y j = L S x j 1 B x B
动态影响分析
上升蒸汽和回流的影响
——除了顶部塔板外,再沸器加热量对汽液比的影响比回流 量快
120 100 80 60 40 20 0 80 90 95 98 99 99.5 99.8
V =2 F
4
6
8
产品回收率: 进料中每单位产品组分所 能得到的可售产品的数量; 能耗指标: 用单位进料的塔底上升蒸 气量V/F来表示;
产品回收率*100%
产品纯度*100%
若能耗一定,随着产品纯度提高,回收率迅速下降; 若产品纯度一定,在一定范围内随着能耗提高,回收率也明显提 高;到一定程度后,增加能耗的效果就不显著了。
回流泵
再 沸 器
塔底产品
精馏塔的控制目标
安全 平稳操作 产品质量
对于仅有塔顶、塔底出料的简单精馏塔,其质量指 标可用塔顶与塔底料中关键组分的纯度来表示。
产品回收率 经济效益
在保证产品质量的前提下,尽可能提高产品的回收 率并设法降低装置的能耗。
精馏塔产品纯度、产品回收率 和能耗之间的相互关系