届九年级数学下册北师大版作业课件:1.专题集训一(共29张PPT)
合集下载
北师大版数学九年级下册全册教学课件

B
解 tanAB C= 55 ≈ 0.286.
A C 2002552
┌
A
C
谢谢 大家
1 锐角三角函数
第2课时 正弦、余弦
北师版 九年级下册
新课导入
如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻 边的比便随之确定.此时,其它边之间的比值也确定吗?
斜边
B ∠A的对边
A
C
∠A的邻边
斜边
A ∠A的邻边
做一做:(1)60 °角的三角函数值分别是多少? 你是怎样得到的?
(2)45 °角的三角函数值分别是多少? 你是怎样得到的?
利用求30 °角的三角函数值相同的方法,可以分别 求得60 °角和45 °角的三角函数值.
(3)完成下表:
三角 角α
函
数值
三角 函数
sinα
1
30°
2
45°
2
2
60°
3
2
cosα
DE
FC
45°
A
B
DE
FC
45°
A
B
解: 如图,由题意可知,BF⊥CD,AE⊥CD.
∴ BF=AE=0.8m.
由AB∥CD可知∠C=45 °,则FC=FB=0.8m.
∴ CD=DE+EF+FC=0.8×2+1.2=2.8m.
∴ S梯形ABCD=(2.8+1.2)×0.8÷2=1.6m2. ∴ V=1.6×1500=2400m3.
本章我们将借助生活中的实例,探索直角三角形边 角之间的关系,并利用三角函数解决生活中一些简单的 实际问题.
进行新课
梯子是我们日常生活中常见的物体. 你能比较两个梯子哪个更陡吗?
北师大版九年级数学下册课件ppt:1

50 25 3 43m.
3 3
3
答:该塔约有43m高.
6┌00 BC
一题多解
解法2:如图,根据题意知,∠A=30º,∠DBC=60º,AB=50m.
则∠ADC=60º,∠BDC=30º, ∴∠BDA=30º
∴∠A=∠BDA ∴BD=AB=50
D
在Rt△DBC中,∠DBC=60º
sin60º=
DC 50
∴DC=50×sin60º=25 3 43 (m)
300 A 50m
6┌00 BC
答:该塔约有43m高
蜗牛
某商场准备改善原有楼梯的安全性能, 把倾角由原来的400减至350,已知原楼 梯的长度为4m,调整后的楼梯会加长多 少?楼梯多占多长一段地面?(结果精确 到0.01m). (sin400=0.643,sin350=0.574)
楼房的底端点
A处观测观光塔顶 端C处的仰角是60°, 然后他
爬到该楼房顶端点B处观测观光塔底部D处的
俯角是30° . 已知楼房高AB约是 45 m, 根据以
上观测数据可求出观光塔的高CD约 是
m.
分析 ∵爬到该楼房顶端点B处观测观光塔
底部D处的俯角是30°, ∴∠ADB=30°.
在Rt△ABD中,
∵在楼房的底端点A处观测 观光塔顶端C处
解:过点A作AE⊥MN于点E, 过 点C作CF⊥MN于点F, 则AB=EN, F ∴EF=AB-CD=1.7-1.5=0.2(m). 在Rt△AEM中, ∠MAE=45° , ∴AE=ME. 设AE=ME=x m, 则MF=(x+0.2)m, FC=(28-x)m.
6 观光塔是潍坊市区的标志性建筑, 为测量其高度, 如图1-6-20所示, 一人先在附近一
九年级数学下册北师大版作业课件:1.专题集训一(共29张PPT)

13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 7:48:36 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/7பைடு நூலகம்021/9/72021/9/7Tuesday, September 07, 2021
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 7:48:36 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/7பைடு நூலகம்021/9/72021/9/7Tuesday, September 07, 2021
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
北师大版九年级数学下册全套课件

学习目标
掌握二次函数、一元 二次方程、相似三角 形等核心概念和性质 。
了解数学在日常生活 和科技领域中的应用 ,提高数学素养。
学会运用数学知识解 决实际问题,培养数 学思维和解决问题的 能力。
02
第一章:二次函数
二次函数的基本概念
二次函数定义
一般形式为$y=ax^2+bx+c$,其中 $a$、$b$、$c$为常数,且$a neq 0$。
北师大版九年级数学下册全 套课件
汇报人: 202X-12-30
目 录
• 引言 • 第一章:二次函数 • 第二章:相似图形 • 第三章:解直角三角形 • 第四章:概率初步知识 • 第五章:投影与视图
01
引言
课程简介
课程名称:北师大版九年级数学下册
适用对象:九年级学生
课程目标:通过学习本册内容,学生将掌握初中数学的核心知识和技能,为进一步 学习高中数学打下基础。
THANKS
感谢观看
03
如一次函数、反比例函数等,可以结合图像进行比较和性质分
析。
03
第二章:相似图形
相似图形的概念和性质
01
02
03
相似图形的定义
两个图形如果形状相同, 大小可以不同,则称这两 个图形相似。
相似图形的性质
相似图形对应边的长度成 比例,对应角的大小相等 。
相似图形的分类
根据相似比的大小,相似 图形可分为相似多边形、 相似三角形等。
航海问题
在航海中,需要利用解直 角三角形的方法来确定船 只的位置和航向。
工程问题
在桥梁、建筑等工程领域 ,解直角三角形可以帮助 设计师进行精确的计算和 设计。
05
第四章:概率初步知识
北师大版九年级数学下全册优质教学课件

你同意小亮的看法吗?
A C2 C1 B1 B2
由感性到理性
直角三角形的边与角的关系
(1).Rt△AB1C1和Rt△AB2C2有什么关系?
B1C1 B2C2 (2). 和 有什么关系? AC1 AC2
B2 B3 B1
如果改变B2在梯子上的位置 (如B3C3 )呢?
AБайду номын сангаас
C3
C2
C1
由此你得出什么结论?
= A ┌ C
tanB;
(2)若tanA=tanB,则∠A = ∠B.
课后作业
见本课时练习“课后巩固提升”
首页
新北师大版版 九年级数学下(BS) 全册优质教学课件
第一章 直角三角形的边角关系
1.1 锐角三角函数
第2课时 正弦与余弦
情景 引入 合作 探究 随堂 训练 课后 作业
情景引入
为了绿化荒山,某地打算从位于山脚下的机井房
A的对边 BC 1 斜边 AB 2
可得AB=2BC=70m,也就是说,需要准 备70m长的水管.
合作探究
在上面的问题中,如果使出水口的高度为50m, 那么需要准备多长的水管?
B' B 30m A C 50m
老师提示: 坡面与水平面的夹角(α)称为 坡角,坡面的铅直高度与水平宽 度的比称为坡度i(或坡比),即坡 度等于坡角的正切.
60 3 i tan . 100 5
i
α
60m
100m
┌
课堂小结
• 定义中应该注意的几个问题:
1.tanA是在直角三角形中定义的,∠A是一个锐角(注 意数形结合,构造直角三角形). 2.tanA是一个完整的符号,表示∠A的正切,习惯省去 “∠”号; 3.tanA是一个比值(直角边之比.注意比的顺序,且 tanA﹥0,无单位. 4.tanA的大小只与∠A的大小有关,而与直角三角形的 边长无关. 5.角相等,则正切值相等;两锐角的正切值相等,则这 两个锐角相等
A C2 C1 B1 B2
由感性到理性
直角三角形的边与角的关系
(1).Rt△AB1C1和Rt△AB2C2有什么关系?
B1C1 B2C2 (2). 和 有什么关系? AC1 AC2
B2 B3 B1
如果改变B2在梯子上的位置 (如B3C3 )呢?
AБайду номын сангаас
C3
C2
C1
由此你得出什么结论?
= A ┌ C
tanB;
(2)若tanA=tanB,则∠A = ∠B.
课后作业
见本课时练习“课后巩固提升”
首页
新北师大版版 九年级数学下(BS) 全册优质教学课件
第一章 直角三角形的边角关系
1.1 锐角三角函数
第2课时 正弦与余弦
情景 引入 合作 探究 随堂 训练 课后 作业
情景引入
为了绿化荒山,某地打算从位于山脚下的机井房
A的对边 BC 1 斜边 AB 2
可得AB=2BC=70m,也就是说,需要准 备70m长的水管.
合作探究
在上面的问题中,如果使出水口的高度为50m, 那么需要准备多长的水管?
B' B 30m A C 50m
老师提示: 坡面与水平面的夹角(α)称为 坡角,坡面的铅直高度与水平宽 度的比称为坡度i(或坡比),即坡 度等于坡角的正切.
60 3 i tan . 100 5
i
α
60m
100m
┌
课堂小结
• 定义中应该注意的几个问题:
1.tanA是在直角三角形中定义的,∠A是一个锐角(注 意数形结合,构造直角三角形). 2.tanA是一个完整的符号,表示∠A的正切,习惯省去 “∠”号; 3.tanA是一个比值(直角边之比.注意比的顺序,且 tanA﹥0,无单位. 4.tanA的大小只与∠A的大小有关,而与直角三角形的 边长无关. 5.角相等,则正切值相等;两锐角的正切值相等,则这 两个锐角相等
北师大版九年级数学下册习题课件全册

13.(中考· 潍坊)如图,点M是正方形ABCD边CD上一 点,连接AM,作DE⊥AM于点E,BF⊥AM于点 F,连接BE.
(1)求证:AE=BF;
(2)已知AF=2,四边形ABED的面积
为24,求∠EBF的正弦值.
(1)证明: ∵∠BAF+∠DAE=90° ,∠ADE+∠DAE=90° ,
∴∠BAF=∠ADE. 在△DEA 和△AFB 中,
A的 邻边
斜边
正弦 、________ 余弦 和 .锐角A的________
返回
正切 都是∠A的三角函数. ________
9.(中考· 哈尔滨)在 Rt△ABC 中,∠C=90° ,AB=4,AC =1,则 cos B 的值为( A ) 15 A. 4 1 B. 4 15 C. 15 4 17 D. 17
∴AC⊥BD.
∴▱ ABCD 是菱形.
AO 7 (2)解:在 Rt△AOB 中,cos ∠OAB= = ,AB=14, AB 8 7 49 ∴AO= AB= . 8 4 AB 7 在 Rt△ABE 中,cos∠EAB= = ,AB=14, AE 8 8 49 15 ∴AE= AB=16. ∴OE=AE-AO=16- = . 返回 7 4 4
C.
2 4
D. 2 2
返回
4.在Rt△ABC中,各边都扩大为原来的4倍,则锐
角A的正切值( B ) A.扩大为原来的4倍
1 C.缩小为原来的 4
B.不变 D.以上都不对
返回
5 . ( 中考 · 荆门 ) 如图,在△ABC 中,∠ BAC = 90°, AB=AC,点D 为边AC的中点,DE⊥BC于点E, 连接BD,则tan ∠DBC的值为( A ) A. 1
北师大版九年级下册数学全册教学PPT课件(精心整理汇编)

=
A
5,B3C=3,则tan A的值是( 4 )
A. 4 3
C. 5
B. 3 4
D. 5
知1-练
2 【中考·包头】在Rt△ABC中,∠C=90°,若斜
边AB是直角边BC的3倍,则tan B的值是( D )
A. 1 3
C. 2
4
B. 3
D. 22
知1-练
3 如图,在△ABC中,∠C=90°,BC∶AC= 1∶3,则tan B的值A 是( )
3
A3 .
4
B54.
5
C5.
6
D3.
4
4
3
知2-练
2 【中考·崇左】如图,在Rt△ABC中,∠C=90°,
3
AB=13,BC=12,则下列三角函数表示正确
的A
4
s是in(A 1)2
5
A. cos
A
13 12
6 B. 13
7
tCa.n
A
5 12
8
tDa.n B 12
5
知2-练
3 已知在Rt△ABC中,∠C=90°,如果BC=2,
解:∵∠C=90°,AC=12,BC=5,
∴AB= AC2 BC2 122 52 13.
∴sin A= BC 5 , cos A= AC 12 .
AB 13
AB 13
总结
知2-讲
在直角三角形中,求锐角的正弦和余弦时,一定 要根据正弦和余弦的定义求解.其中未知边的长度往 往借助勾股定理进行求解.
tanA的值越大,梯子越陡.
知1-讲
知1-讲
1. 当梯子与地面所成的角为锐角A时,
tan A=
梯子的竖直高度 水平宽度 ,
【新版】最新北师大版九年级数学下册课件【全册_精品】

2020/12/29
sin A,cos A与梯子倾斜程度的关系
在教材图1-3中,梯子的倾斜程度与sin A和cos A有关系吗?
问题2
如图所示,AB=A1B1,在
Rt△ABC中,sin A= BC ,
AB
在Rt△A1B1C1中sinA1=
B1C1 A1B1
.
∵AB=A1B1,
BC B1C1 . AB A1B1
以∠A为例,共同总结:
A的对边 ∠A的对边与斜边的比叫做∠A的正弦(sine),记作sin A,即sin A= 斜边
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cos
A,即cos
A=
A的邻边 斜边
锐角A的正弦、余弦和正切都是∠A的三角函数.
提示:当锐角A变化时,相应的正弦、余弦和正切值也随之变化.
B1C1 = B2C2 . AC1 AC2
2020/12/29
总结提升
如图所示,在Rt△ABC中,如果锐角A确定,那么锐角A的 对边与邻边的比便随之确定,这个比叫做∠A的正切,记作tanA, 即
能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?
tan
A=
1 tanB
,即任意锐角的正切值与它的余角的正切值互为
倒数.
2020/12/29
[知识拓展] 正切的注意事项: (1)tan A是一个完整的符号,它表示∠A的正 切,记号里习惯省去角的符号“∠”. (2)tan A没有单位,它表示一个比值,即直角三 角形中∠A的对边与邻边的比. (3)tan A不表示“tan”乘以“A”. (4)初中阶段,我们只学习直角三角形中锐角 的正切.
最新北师大版(BS)九年级数学下册