带电粒子在匀强磁场中的运动练习题及答案解析
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析

高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a2.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=. r 2=R tanβ=R 由得(3)粒子的轨道半径r 3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr 32+2×π(2r 3)2−r 32=9.0×10-4m 2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)3L T v π= 【解析】 【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则012qv B m v R =由几何关系:222113()()2L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得() min6323L Tvπ+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图,圆心为O、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
带电粒子在匀强磁场中的运动精品习题(1)

高二物理选修3-1学案编写人:楚文明学案类型:限时训练习题使用时间:2012年11月1日——11月3日带电粒子在匀强磁场中的运动(1)1.如图所示,在x轴的上方(y≥0)存在着垂直于纸面向外的匀强磁场,磁感应强度为B.在原点O有一个离子源向x轴上方的各个方向发射出质量为m、电量为q的正离子,速率都为v,对那些在xy平面内运动的离子,在磁场中可能到达的最大x=________,最大y=________.2、如图所示一电子以速度v垂直射入磁感应强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向夹角30°,求电子运动时间和质量3.如图所示为云室中某粒子穿过铅板P前后的轨迹.室中匀强磁场的方向与轨迹所在平面垂直(图中垂直于纸面向里),由此可知此粒子( ).(A)一定带正电(B)一定带负电(C)不带电(D)可能带正电,也可能带负电4、如图,在x>0、y>0的空间中有恒定的匀强磁场,磁感强度的方向垂直于xOy平面向里,大小为B。
现有一质量为m电量为q的带电粒子,在x轴上到原点的距离为x0的P点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场。
不计重力的影响。
由这些条件可知()A、不能确定粒子通过y轴时的位置B、不能确定粒子速度的大小C、不能确定粒子在磁场中运动所经历的时间D、以上三个判断都不对5、如图所示,正方形区域abcd中充满匀强磁场,磁场方向垂直纸面向里。
一个氢核从ad边的中点m沿着既垂直于ad边又垂直于磁场的方向,以一定速度射入磁场,正好从ab边中点n射出磁场。
若将磁场的磁感应强度变为原来的2倍,其他条件不变,则这个氢核射出磁场的位置是()A、在b、n之间某点B、在n、a之间某点C、a点D、在a、m之间某点6、边长为a的正方形,处于有界磁场中,如图所示,一束电子以v0水平射入磁场后,分别从A处和C处射出,则v A:v C= ,所经历的时间之比t A:t B= 。
课时作业7 带电粒子在匀强磁场中的运动(三) 学生版

ⅠⅡR 1 R 2铝板课时作业7 带电粒子在匀强磁场中的运动(三)一、选择题每题6分,多选题不全对得3分。
1.(多选)薄铝板将同一匀强磁场分成Ⅰ、Ⅰ两个区域,高速带电粒子可穿过铝板一次,在两个区域运动的轨迹如图,半径R 1>R 2,假定穿过铝板前后粒子电量保持不变,则该粒子( ) A .带正电 B .在Ⅰ、Ⅰ区域的运动速度相同 C .在Ⅰ、Ⅰ区域的运动时间相同 D .从区域Ⅰ穿过铝板运动到区域Ⅰ2.如图所示,半径为r 的圆形空间内存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )A .032v r π B .0332v r π C .03v r π D .033v rπ 3.(多选) (2015·新课标全国Ⅱ)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k 倍.两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )A .运动轨迹的半径是Ⅰ中的k 倍B .加速度的大小是Ⅰ中的k 倍C .做圆周运动的周期是Ⅰ中的k 倍D .做圆周运动的角速度与Ⅰ中的相等4.(多选)如图所示,边界MN 下方有一垂直纸面向外的匀强磁场,一电子以速度v 从点O 射入MN ,经磁场后能返回到MN 边界上方,以下正确的是( )A .电子从O 点右边返回边界上方B .电子从O 点左边返回边界上方C .当只增加射入速度v 大小,则电子在磁场中运动的路程一定改变D .当只增加射入速度v 大小,则电子在磁场中运动的时间一定改变5.如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正负是( )A .aBv23,正电荷 B .aBv2,正电荷 C .aB v 23,负电荷 D . aBv2,负电荷 6.(多选)如图所示,两个匀强磁场方向相同,磁感应强度分别为B 1、B 2,虚线MN 为理想边界.现有一个质量为m 、电荷量为e 的电子以垂直于边界MN 的速度v 由P 点沿垂直于磁场的方向射入磁感应强度为B 1的匀强磁场中,其运动轨迹为图中虚线所示的心形图线.则以下说法正确的是( )A .电子的运动轨迹为P →D →M →C →N →E →PB .电子运动一周回到P 点所用的时间T =2πmB 1eC .B 1=4B 2D .B 1=2B 27.(多选) [2012·江苏卷]如图所示,MN 是磁感应强度为B 的匀强磁场的边界。
高考物理带电粒子在磁场中的运动基础练习题及解析

高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
高中物理 第三章 磁场 6 带电粒子在匀强磁场中的运动练习(含解析)新人教版选修3-1-新人教版高中

带电粒子在匀强磁场中的运动根底夯实一、选择题(1~3题为单项选择题,4~6题为多项选择题)1.有三束粒子,分别是质子(p )、氚核(31H)和α粒子(氦核)束,如果它们以一样的速度沿垂直于磁场方向射入匀强磁场(方向垂直于纸面向里),在如下图中,哪个图能正确地表示出了这三束粒子的偏转轨迹( C )解析:由Bqv =m v 2R 可知:R =mv Bq; 半径与荷质比成反比;因三束离子中质子的荷质比最大,氚核的最小,故质子的半径最小,氚核的半径最大,故C 正确。
2.1930年劳伦斯制成了世界上第一台盘旋加速器,其原理如下列图,这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,如下说法不正确的答案是( B )A .带电粒子由加速器的中心附近进入加速器B .带电粒子由加速器的边缘进入加速器C .电场使带电粒子加速,磁场使带电粒子旋转D .离子从D 形盒射出时的动能与加速电场的电压无关解析:根据盘旋加速器的加速原理,被加速离子只能由加速器的中心附近进入加速器,从边缘离开加速器,故A 正确,B 错误;在磁场中洛伦兹力不做功,离子是从电场中获得能量,故C 正确;当离子离开盘旋加速器时,半径最大,动能最大,E m =12mv 2=B 2q 2r 22m,与加速的电压无关,故D 正确。
此题选不正确的,应当选B 。
3.如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。
一带电粒子从紧贴铝板上外表的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O 。
粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力。
铝板上方和下方的磁感应强度大小之比为( D )A .2B . 2C .1D .22解析:由E K =12mv 2可知当动能为原来的一半时,速度是原来的22。
由R =mv qB将R 1=2R 2代入可得B 1︰B 2=22,D 正确。
4.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如下列图,一粒子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,以下说法正确的答案是( ABC )A .粒子必带正电荷B .A 点和B 点位于同一高度C .粒子在C 点时速度最大D .粒子到达B 点后,将沿原曲线返回A 点解析:平行板间电场方向向下,粒子由A 点静止释放后在电场力的作用下向下运动,所以粒子必带正电荷,A 正确。
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
高考物理带电粒子在磁场中的运动专题训练答案及解析

高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在匀强磁场中的运动1.电子在匀强磁场中做匀速圆周运动.下列说法正确的是( )A .速率越大,周期越大B .速率越小,周期越大C .速度方向与磁场方向平行D .速度方向与磁场方向垂直解析:由带电粒子在匀强磁场中做匀速圆周运动T =2πm qB 可知T 与v 无关,故A 、B 错;当v 与B 平行时,粒子不受洛伦兹力作用,故粒子不可能做圆周运动,只有v ⊥B 时,粒子才受到与v 和B 都垂直的洛伦兹力,故C 错、D 对.2. 1998年发射的“月球勘探者号”空间探测器,运用最新科技手段对月球进行近距离勘探,在研究月球磁场分布方面取得了新的成果.月球上的磁场极其微弱,探测器通过测量电子在月球磁场中的轨迹来推算磁场强弱的分布,图中是探测器通过月球A 、B 、C 、D 四个位置时,电子运动的轨迹照片.设电子速率相同,且与磁场方向垂直,其中磁场最强的位置是( )解析:选A.由粒子轨道半径公式r =m v qB 可知,磁场越强的地方,电子运动的轨道半径越小.3. 如图,a 和b 带电荷量相同,以相同动能从A 点射入匀强磁场,做圆周运动的半径r a =2r b ,则(重力不计)( )A .两粒子都带正电,质量比m a /m b =4B .两粒子都带负电,质量比m a /m b =4C .两粒子都带正电,质量比m a /m b =1/4D .两粒子都带负电,质量比m a /m b =1/4解析:选B.由于q a =q b 、E k a =E k b ,动能E k =12m v 2和粒子旋转半径r =m v qB ,可得m =r 2q 2B 22E k,可见m 与半径r 的平方成正比,故m a ∶m b =4∶1,再根据左手定则判知粒子应带负电,故B 正确.4.下图是质谱议的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( ) X k b 1 . c o mA .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小 解析:选ABC.因同位素原子的化学性质完全相同,无法用化学方法进行分析,故质谱仪就成为同位素分析的重要工具,A 正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B 正确.再由qE =q v B 有v =E /B ,C 正确.在匀强磁场B 0中R =m v qB ,所以q m =v BR ,D 错误.5. 如下左图所示,在x 轴上方有匀强电场,场强为E ,在x 轴下方有匀强磁场,磁感应强度为B ,方向如图所示.在x 轴上有一点M ,离O 点距离为L ,现有一带电荷量为+q 、质量为m 的粒子,从静止开始释放后能经过M 点,如果此粒子放在y 轴上,其坐标应满足什么关系?(重力不计)左图 右图解析:由于此粒子从静止开始释放,又不计重力,要能经过M 点,其起始位置只能在匀强电场区域,其过程如下: 先在电场中由y 轴向下做加速运动,进入匀强磁场中运动半个圆周再进入电场做减速运动,速度为零后又回头进入磁场,其轨迹如上右图所示(没有画出电场和磁场方向),故有:L =2nR (n =1,2,3,…)①又因在电场中,粒子进入磁场时的速度为v ,则有:qE ·y =12m v 2② 在磁场中,又有:Bq v =m v 2R ③ 由①②③得y =B 2qL 28n 2mE(n =1,2,3……).练习题一、选择题1.一个带电粒子以初速度v 0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图中的虚线所示.在下图所示的几种情况中,可能出现的是( )解析:选AD.A 、C 选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A 图中粒子应逆时针转,正确;C 图中粒子应顺时针转,错误.同理可以判断B 错、D 对.2.如图所示,一电子以与磁场方向垂直的速度v 从P 处沿PQ 方向进入长为d 、宽为h 的匀强磁场区域,从N 处离开磁场,若电子质量为m ,带电荷量为e ,磁感应强度为B ,则( )A .电子在磁场中运动的时间t =d /vB .电子在磁场中运动的时间t =h /vC .洛伦兹力对电子做的功为Be v hD .电子在N 处的速度大小也是v解析:洛伦兹力不做功,所以电子在N 处速度大小也为v ,D 正确、C 错,电子在磁场中的运动时间t =弧长v ≠d v ≠h v ,A 、B 均错.3. 在图中,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小解析:选B.电流下方的磁场方向垂直纸面向外,且越向下B 越小,由左手定则知电子沿a 路径运动,由r =m v qB 知,轨迹半径越来越大.4. 一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电解析:选C.垂直于磁场方向射入匀强磁场的带电粒子受洛伦兹力作用,使粒子做匀速圆周运动,半径R =m v /qB .由于带电粒子使沿途的空气电离,粒子的能量减小,磁感应强度B 、带电荷量不变.又据E k =12m v 2知,v 在减小,故R 减小,可判定粒子从b 向a 运动;另据左手定则,可判定粒子带正电,C 选项正确.5.如图是某离子速度选择器的原理示意图,在一半径R =10 cm 的圆柱形筒内有B =1×10-4 T 的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔a 、b 分别作为入射孔和出射孔.现有一束比荷为q m =2×1011 C/kg 的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而直接从出射孔射出的离子的速度v 大小是( )A .4×105 m/sB .2×105 m/sC .4×106 m/sD .2×106 m/s答案:C6. 如下左图所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设二粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( )A .1∶3B .4∶3C .1∶1D .3∶2解析:选D.如上右图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2πT ,可得:t 1∶t 2=90°∶60°=3∶2,故D 正确. 7. 目前世界上正研究的一种新型发电机叫磁流体发电机,如图表示它的发电原理:将一束等离子体(即高温下电离的气体,含有大量带正电和带负电的微粒,而从整体来说呈中性)沿图所示方向喷射入磁场,磁场中有两块金属板A 、B ,这时金属板上就聚集了电荷.在磁极配置如图中所示的情况下,下列说法正确的是( )A .A 板带正电B .有电流从b 经用电器流向aC .金属板A 、B 间的电场方向向下D .等离子体发生偏转的原因是离子所受洛伦兹力大于所受静电力解析:选BD.等离子体射入磁场后,由左手定则知正离子受到向下的洛伦兹力向B 板偏转,故B 板带正电,B 板电势高,电流方向从b 流向a ,电场的方向由B 板指向A 板,A 、C 错,B 对;当B v q >Eq 时离子发生偏转,故D 对.8.带正电粒子(不计重力)以水平向右的初速度v 0,先通过匀强电场E ,后通过匀强磁场B ,如图甲所示,电场和磁场对该粒子做功为W 1.若把该电场和磁场正交叠加,如图乙所示,再让该带电粒子仍以水平向右的初速度v 0(v 0<E B)穿过叠加场区,在这个过程中电场和磁场对粒子做功为W 2,则( ) A .W 1<W 2 B .W 1=W 2 C .W 1>W 2 D .无法判断解析:选C.电场力做的功W =Eqy ,其中y 为粒子沿电场方向偏转的位移,因图乙中洛伦兹力方向向上,故图乙中粒子向下偏转的位移y 较小,W 1>W 2,故C 正确.9. MN 板两侧都是磁感强度为B 的匀强磁场,方向如图所示,带电粒子从a 位置以垂直磁场方向的速度开始运动,依次通过小孔b 、c 、d ,已知ab =bc =cd ,粒子从a 运动到d 的时间为t ,则粒子的比荷为( )A.3πtBB.4π3tBC.πtBD.tB 2π解析:粒子从a 运动到d 依次经过小孔b 、c 、d ,经历的时间t 为3个T 2,由t =3×T 2和T =2πm Bq .可得:q m =3πtB ,A 对. 二、计算题10.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m .求:(1)质子最初进入D 形盒的动能多大?(2)质子经回旋加速器最后得到的动能多大?(3)交流电源的频率是什么? 解析:(1)粒子在电场中加速,由动能定理得:eU =E k -0,解得E k =eU .(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:e v B =m v 2R ①质子的最大动能:E km =12m v 2② 解①②式得:E km =e 2B 2R 22m. (3)f =1T =eB 2πm. 11.质量为m 、电荷量为q 的带负电粒子自静止开始释放,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.已知M 、N 两板间的电压为U ,粒子的重力不计.求:匀强磁场的磁感应强度B .解析:作粒子经电场和磁场中的轨迹图,如图所示.设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2① 粒子进入磁场后做匀速圆周运动,设其半径为r ,则:q v B =m v 2r ②由几何关系得:r 2=(r -L )2+d 2③联立求解①②③式得:磁感应强度B =2L (L 2+d 2)2mU q . 12. 如图所示,有界匀强磁场的磁感应强度B =2×10-3T ;磁场右边是宽度L =0.2 m 、场强E =40 V/m 、方向向左的匀强电场.一带电粒子电荷量q =-3.2×10-19 C ,质量m =6.4×10-27 kg ,以v =4×104 m/s 的速度沿OO ′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出.(不计重力)求:(1)大致画出带电粒子的运动轨迹;(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子飞出电场时的动能E k .解析:(1)轨迹如图 (2)带电粒子在磁场中运动时,由牛顿运动定律,有q v B =m v 2RR =m v qB =6.4×10-27×4×1043.2×10-19×2×10-3m =0.4 m (3)E k =EqL +12m v 2=40×3.2×10-19×0.2 J +12×6.4×10-27×(4×104)2 J =7.68×10-18 J.。