第十一章稳恒电流的磁场[一]作业答案解析

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

最新第十一章稳恒电流的磁场(一)作业答案

最新第十一章稳恒电流的磁场(一)作业答案

第十一章 稳恒电流的磁场(一)一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220•=R I B 电荷转动形成的电流:πωωπ22q q T q I ===【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8()82,,22135cos 45cos 244,221200020102121ππμπμμ===-⨯⨯⨯==a a B B a Ia IB a IB o o o o 得由【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) bb a b I +πln 20μ. (D) )2(0b a I +πμ.解法:b b a a I r dr a I r rdIdB dr aIdI a b b+======⎰⎰⎰+ln222dI B B B ,B d B ,2P ,)(dr r P 0000πμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式)cos (cos 4210θθπμ-=aIB 和圆弧电流产生磁场公式πθμ220⋅=a I B 可得 aI B P πμ20=、)221(2)221(4200+=+⨯=a I a I B Q πμπμ )21(2442000ππμμπμ+=+⨯=a I a I a I B O 【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ,)22(a b b OC AO ===式中, ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为 πω2q I =当正方形绕AC 轴旋转时,一个点电荷在O 点产生的磁感应强度的大小为bIB 20μ=,实际AC 旋转产生电流,在O 点产生的总磁感小为b IbIB B 001222μμ=⨯==O 点产生的磁感应强度的大小为bIb IB B 0022244μμ=⨯== 故有122B B =基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

11稳恒电流和稳恒磁场习题解答讲解

11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

高考物理电磁学知识点之稳恒电流解析含答案

高考物理电磁学知识点之稳恒电流解析含答案

高考物理电磁学知识点之稳恒电流解析含答案一、选择题1.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。

半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。

若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =2.某些肿瘤可以用“质子疗法”进行治疗。

在这种疗法中,为了能让质子进入癌细胞,首先要实现质子的高速运动,该过程需要一种被称作“粒子加速器”的装置来实现。

质子先被加速到较高的速度,然后轰击肿瘤并杀死癌细胞。

如图所示,来自质子源的质子(初速度为零),经加速电压为U 的加速器加速后,形成细柱形的质子流。

已知细柱形的质子流横截面积为S ,其等效电流为I ;质子的质量为m ,其电量为e .那么这束质子流内单位体积的质子数n 是A 2I U eS mB I m eS eUC 2I eU eS mD 2Im eS eU3.如图所示为某同学利用传感器研究电容器放电过程的实验电路,实验时先使开关S 与1 端相连,电源向电容器充电,待电路稳定后把开关S 掷向2 端,电容器通过电阻放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i ﹣t 曲线,这个曲线的横坐标是放电时间,纵坐标是放电电流。

仅由这个i﹣t曲线所提供的信息可以估算出A.电容器的电容B.一段时间内电容器放电的电荷量C.某时刻电容器两极板间的电压D.一段时间内电阻产生的热量4.在温控电路中,通过热敏电阻阻值随温度的变化可实现对电路相关物理量的控制.如图所示,R1为电阻箱,R2为半导体热敏电阻,C为电容器.已知热敏电阻的阻值随温度的升高而减小,则有()A.若R1固定,当环境温度降低时电压表的示数减小B.若R1固定,当环境温度降低时R1消耗的功率增大C.若R1固定,当环境温度降低时,电容器C的电荷量减少D.若R1固定,环境温度不变,当电容器C两极板间的距离增大时极板之间的电场强度减小5.物理学中常用两个物理量的比值定义一个新的物理量,如速度是用位移与时间的比值来定义的,即xvt=.下面四个物理量的表达式不属于...比值定义的是A.电流qIt=B.电势PEqϕ=C.电容QCU=D.电阻lRSρ=6.如图所示,电路中A灯与B灯的电阻相同,电源的内阻不可忽略,则当滑动变阻器R 的滑动片P向上滑动时,两灯亮度的变化情况是()A.A灯变亮,B灯变亮B.A灯变暗,B灯变亮C.A灯变暗,B灯变暗D.A灯变亮,B灯变暗7.如图是某款能一件自动上水的全自动智能电热壶,当壶内水位过低时能自动加满水,加热之后的水,时间长了冷却,机器又可以自动加热到设定温度。

第十一章稳恒电流的磁场(一)作业解答

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

高考物理新电磁学知识点之稳恒电流解析含答案

高考物理新电磁学知识点之稳恒电流解析含答案

高考物理新电磁学知识点之稳恒电流解析含答案一、选择题1.图甲为某电源的U I -图线,图乙为某小灯泡的U I -图线,则下列说法中正确的是( )A .电源的内阻为5ΩB .小灯泡的电阻随着功率的增大而减小C .把电源和小灯泡组成闭合回路,小灯泡的功率约为0.3WD .把电源和小灯泡组成闭合回路,电路的总功率约为0.4W2.如图所示的电路中,E 为电源,其内阻为r ,L 为小灯泡(其灯丝电阻可视为不变),R 1、R 2为定值电阻,R 3为光敏电阻,其阻值大小随所受照射光强度的增大而减小,V 为理想电压表.若将照射R 3的光的强度减弱,则( )A .电压表的示数变大B .小灯泡消耗的功率变小C .通过R 2的电流变小D .电源内阻消耗的电压变大3.如图所示为某同学利用传感器研究电容器放电过程的实验电路,实验时先使开关S 与1 端相连,电源向电容器充电,待电路稳定后把开关S 掷向2 端,电容器通过电阻放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i ﹣t 曲线,这个曲线的横坐标是放电时间,纵坐标是放电电流。

仅由这个i ﹣t 曲线所提供的信息可以估算出A .电容器的电容B .一段时间内电容器放电的电荷量C .某时刻电容器两极板间的电压D.一段时间内电阻产生的热量4.图中小灯泡的规格都相同,两个电路中的电池也相同。

实验发现多个并联的小灯泡的亮度明显比单独一个小灯泡暗。

对这一现象的分析正确的是()A.灯泡两端电压不变,由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗B.电源电动势不变,外电路电压变大,但由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗C.电源电动势不变,外电路电压变小,因此灯泡亮度变暗D.并联导致电源电动势变小,因此灯泡亮度变暗5.如图所示,双量程电压表由表头G和两个电阻串联而成。

已知该表头的内阻,满偏电流,下列说法正确的是A.表头G的满偏电压为500VB.使用a、b两个端点时,其量程比使用a、c两个端点时大C.使用a、b两个端点时,其量程为0~10V,则R1为9.5kΩD.使用a、c两个端点时,其量程为0~100V,则为95kΩ6.如图所示的电路,R1、R2、R4均为定值电阻,R3为热敏电阻(温度升高,电阻减小),电源的电动势为E,内阻为r.起初电容器中悬停一质量为m的带电尘埃,当环境温度降低时,下列说法正确的是()A.电压表和电流表的示数都减小B.电压表和电流表的示数都增大C.电压表和电流表的示数变化量之比保持不变D.带电尘埃将向下极板运动7.如图是某品牌手机电池的铭牌,根据你所学的物理知识进行判断,下列说法正确的是A.“3000mAh”表示该电池储存的电能最多10800JB.“11.55Wh”表示该电池储存的电能最多为41580JC.一个标注为“3V,4000F”的超级电容器容纳的电荷量肯定比该电池能释放的电荷量多D.用匹配的充电器给电池充电,若把电池从电量为10%充电到40%花了30分钟,则充电器消耗的平均电功率为6.93W8.如图所示,电路中A灯与B灯的电阻相同,电源的内阻不可忽略,则当滑动变阻器R 的滑动片P向上滑动时,两灯亮度的变化情况是()A.A灯变亮,B灯变亮B.A灯变暗,B灯变亮C.A灯变暗,B灯变暗D.A灯变亮,B灯变暗9.如图所示,电源电动势E=30V,内阻r=1Ω,直流电动机线圈电阻R M=1Ω,定值电阻R=9Ω。

第十一章稳恒电流的磁场[一]作业答案解析

第十一章稳恒电流的磁场[一]作业答案解析

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B 电荷转动形成的电流:πωωπ22q q T q I ===【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为(A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为 (A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) bb a b I +πln 20μ. (D) )2(0b a I +πμ.解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为在O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

B11稳恒电流的磁场解答2015

B11稳恒电流的磁场解答2015

做作业前请复习笔记、公式和例题 序号 姓名 __________ 学号 ____________基训:选择题:P194:1, 3, P195:4 , 填空题:P196:11,13, P197:20, 计算题: 21, 23, 自测:选择题:P199:4,P200:6,7,填空题: 12,计算题:P201:18,附加题:自测 P203: 28第十一章 稳恒电流的磁场基础训练一. 选择题:[ D ]1. 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C)π2∶4 (D)π2∶8【提示】:000121223(coscos)4,244842III a B B a a a a μμππππ==-⨯=∴=⋅正圆,[ B ]3.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度B的大小为(A) )(20b a I+πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ.【提示】:建立如图坐标,取任意x 处宽度为dx 的电流元dI ’=Idx/a, 0000'ln 2()2()2adI IdxI a bB a b x a a b x a bμμμπππ+===+-+-⎰⎰[ D ]4. 如图11-26,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分d LB l ⋅⎰vv Ñ 等于(A)I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.【提示】001112212L 01211211I R I R R R 222()33LLB dl I I I l l l I I I I I IB dl s s sμμμρρρ⋅===∴==-=∴⋅=∑⎰⎰r r r r ÑÑ内,而,其中,为两条支路的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B 电荷转动形成的电流:πωωπ22q q T q I ===【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为(A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为 (A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) bb a b I +πln 20μ. (D) )2(0b a I +πμ.解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感应强度的大小为在O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。

解法:根据毕奥-萨伐尔定律自测提高19、将通有电流I 的导线在同一平面内弯成如图所示的形状,求D点的磁感强度B的大小。

解法:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度BC 段在D 处的磁感强度1B、2B 、3B 方向相同,可知D 处总的B 为基础训练23如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度转动,求轴线上任一点的B的大小及其方向.解法:代入环形电流在轴线上产生磁场的公式得方向沿y 轴正向。

二、利用安培环路定律求对称性分布的电流周围的磁场安培环路定理:∑⎰=∙i I l d B 0μ1.无限长载流圆柱导体R r >,r I B πμ20=。

R r <202RIrB πμ= 2.长直载流螺线管⎩⎨⎧=外内00nI B μ3.环形载流螺线管⎪⎩⎪⎨⎧=外内020rNI B πμ4.无限大载流导体薄板20nI B μ=,两块无限大载流导体薄板⎩⎨⎧=两板之间两板外侧nI B 0μ【 】基础训练5、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是解法:根据安培环路定理:当 a r < 时0=B 当a rb >>时当b r >时且a r =时0=B 和a r b >>时,曲线斜率随着r 增大。

自测提高16、如图所示.电荷q (>0)均匀地分布在一个半径为R 的薄球壳外表面上,若球壳以恒角速度0绕z 轴转动,则沿着z 轴从-∞到+∞磁感强度的线积分等于____________________. 解法:由安培环路定理而,故基础训练18、将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R )的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i ,则管轴线磁感强度的大小是 (提示:填补法) 解法:根据无限长直载流导线产生磁场的对称性,其产生磁场的磁感应线穿入侧面的根数(磁通量为负)与穿出的根数(磁通量为正)相同,代数和为零。

基础训练25、一无限长的电缆,由一半径为a 的圆柱形导线和一共轴的半径分别为b 、c 的圆筒状导线组成,如图11-42所示。

在两导线中有等值反向的电流I 通过,求: (1) 内导体中任一点(r<a)的磁感应强度; (2) 两导体间任一点(a<r<b)的磁感应强度;(3) 外导体中任一点(b<r<c)的磁感应强度; (4) 外导体外任一点(r>c)的磁感应强度。

解法:导线的电流成右手螺旋关系。

其大小满足:∑=内L r B I 20μπ (r 为场点到轴线的距离)(2)I r B b r a 02 :μπ=<<,(4)0B 02 :=∴=⋅>,r Bc rπ三、磁通量的计算S d,S d B d m ∙=Φ,⎰Φ=Φm m d高斯定理:⎰=Φ0m d基础训练11、均匀磁场的磁感强度B 与半径为r 的圆形平面的法线n的夹角为,今以圆周为边界,作一个半球面S ,S 与圆形平面组成封闭面如图11-31.则通过S 面的磁通量 = 。

(提示:填补法) 解法:根据磁场的高斯定理,通过S 面的磁通量数值上等于通过圆平面的通量。

当题中涉及的是封闭曲面时,面的法向方向指向凸的一面,因此通过S 面的磁通量为负值。

自测提高13、一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I .若作一个半径为R = 5a 、高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a .则B在圆柱侧面S 上的积分=⎰⎰⋅SS B d _______.解法:根据无限长直载流导线产生磁场的对称性,其产生磁场的磁感应线穿入侧面的根数(磁通量为负)与穿出的根数(磁通量为正)相同,代数和为零。

基础训练22.、一无限长圆柱形铜导体(磁导率0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如图中画斜线部分所示,求通过该矩形平面的磁通量. 解法:根据安培环路定理,在圆柱体内部与导体中心轴线相距为r 处的磁感应强度的大小为:因此,穿过导体内矩形截面的磁通量为12-3)在导体外穿过导体外矩形截面的磁通量为故总的磁通量为附加题自测提高26、 均匀带电刚性细杆AB ,线电荷密度为,绕垂直于直线的轴O 以角速度匀速转动(O 点在细杆AB 延长线上).如图11-43所示,求:(1) O 点的磁感强度0B ;(2) 系统的磁矩m p;(3) 若a >> b ,求B 0及p m . 解法:(1)将带电细杆分割为许多电荷元。

在距离o 点r 处选取长为dr 的电荷元,其带电 dr dq λ=该电荷元随细杆转动时等效为圆电流为:它在O 点产生的磁感应强度为根据⎰=00B d B,0B 的方向也是垂直于纸面向内,0B 的大小为(2) dq 所等效的圆电流dI 方向垂直于纸面向内; 根据⎰=m m p d p,m p 的方向也是垂直于纸面朝内,m p的大小为(3)a>>b 时,AB 杆可近似看作点电荷:电量为b λ在o 点产生的磁感应强度为系统的磁矩★★★★布置的作业中遗漏(自测提高24)在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出和L方向间的关系.(电子电荷为e ,电子质量为m )解:设电子绕核运动的轨道半径为R ,匀速圆周运动的速率为v 。

核外电子绕核运动等效的圆电流为图11-43完美WORD 格式电流的磁矩电子轨道运动的动量矩mvR L =可见两者的方向相反。

(自测提高28)用安培环路定理证明,图中所表示的那种不带边缘效应的均匀磁场不可能存在. 证明:用反证法. 假设存在图中那样不带边缘效应的均匀磁场,并设磁感强度的大小为B .作矩形有向闭合环路如图所示,其ab 边在磁场内,其上各点的磁感强度为B ,cd 边在磁场外,由于环路所围的面积没有任何电流穿过,因而根据安培环路定理因 .所以 = 0,这不符合原来的假设.故这样的磁场不可能存在.。

相关文档
最新文档