Gluon Radiation in Top Mass Reconstruction Effect of Hadronic W Decays

合集下载

葡萄糖转运蛋白SGLT1和GLUT2在槲皮素肠道吸收中的作用研究

葡萄糖转运蛋白SGLT1和GLUT2在槲皮素肠道吸收中的作用研究

·论著·葡萄糖转运蛋白 SGLT1 和 GLUT2 在槲皮素肠道吸收中的作用研究1,2李素云,3李峥,2高蔚娜,1陈春霞,3张振清,2郭长江(1首都医科大学附属北京世纪坛医院临床营养科,北京 100038;2军事医学研究院环境医学与作业医学研究所营养科,天津 300050;3军事医学研究院毒物药物研究所药物代谢科,北京 100850)基金项目:国家自然科学基金(81372988)通讯作者:郭长江,电子邮箱:guocjtj@ 张振清,电子邮箱:55zzqing@摘要:目的 探讨槲皮素在人小肠吸收模型Caco-2单层细胞上的吸收特征以及基于葡萄糖肠道吸收中的主动转运蛋白--Na +依赖性葡萄糖转运蛋白1和易化扩散转运蛋白--葡萄糖易化扩散转运蛋白2的跨膜吸收机制。

方法 采用Caco-2单层细胞模型,利用Na +依赖性葡萄糖转运蛋白1和葡萄糖易化扩散转运蛋白2特效抑制剂根皮苷和根皮素,以丁螺环酮为内标、LC-MS 法测定孵育30~150分钟内各时间节点Caco-2细胞透过面槲皮素浓度,研究Na +依赖性葡萄糖转运蛋白1和葡萄糖易化扩散转运蛋白2在槲皮素肠道吸收中的作用,探讨槲皮素的肠道吸收机制。

结果 在孵育30~150分钟各时间点,均在透过面检测到相应的槲皮素原形;透过面的槲皮素含量在150分钟孵育时间内呈现先升后降的趋势特征,120分钟达峰,随后下降,没有观察到平台期;葡萄糖和根皮苷对槲素的跨膜转运均表现出了明显的抑制作用,跟皮苷的抑制作用随孵育时间逐渐减弱,而根皮素却明显上调了槲皮素的透过水平(P <0.05),原因不明。

结论 槲皮素可以以完整分子的形式透过Caco-2细胞单层, Na +依赖性葡萄糖转运蛋白1和葡萄糖易化扩散转运蛋白2可能同时参与槲皮素的跨膜转运,Na +依赖性葡萄糖转运蛋白1在槲皮素的跨膜转运占据重要的位置,而葡萄糖易化扩散转运蛋白2的作用有待进一步研究。

关键词:槲皮素;根皮苷;根皮素;Na +依赖性葡萄糖转运蛋白1;葡萄糖易化扩散转运蛋白2;跨膜转运The role of glucose transporter SGLT1 and GLUT2 in the intestinal absorption of quercetin 1, 2LI Su-yun, 3LI Zheng, 2GAO Wei-na, 1CHEN Chun-xia, 3ZHANG Zhen-qing, 2GUO Chang-jiang 1Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; 2Department of Nutrition, Insitute of Health and Environmental Medicine, Academy of Military Medical Sciences, Tianjing 300050, China; 3Department of Drug Metabolism, Insitute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China Abstract: Objective To explore the transmembrane absorption mechanism of quercetin based on sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) in human intestinal epithelial cells (Caco-2) model. Methods Quercetin and buspirone (internal standard) were assessed by using the liquid chromatography-mass spectrometry (LC/MS) method. Transmembrane transport of quercetin was studied in a Caco-2 cell monolayer model, and the roles of SGLT1 and GLUT2 in this process were studied by using phloridzin (a potent inhibitor of SGLT1) and phloretin (a potent inhibitor of GLUT2). Quercetin was detected in receiver solution of the Caco-2 cell monolayer within 30~150 min. Results During 30~150min’s incubation, quercetin aglycon was detected among every group on the receiver side of transmembrane transport. The amount of quercetin in receiver solution increased at first and peaked at 120 min, and then decreased. Phloridzin exerted an obvious inhibitory effect on the transmembrane transport of quercetin, and meanwhile the phloretin significantly raised the amount of quercetin in the receiver side. Conclusions Quercetin was transported in a complete molecular form across the Caco-2 cell monolayer, and SGLT1 and GLUT2 might both be involved in its transmembrane transport simultaneously, but further research is needed to confirm the role of GLUT2 in the transmembrane transport of quercetin.Key words: Quercetin; Phloridzin; Phloretin; Sodium-dependent glucose transporter 1; Glucose transporter 2; Transmembrane transportDOI:10.16689/11-9349/r.2018.01.007人类膳食中的植物性成分含有大量黄酮类化合物,近年来受到广泛关注。

糖代谢重编程与巨噬细胞表型的研究进展

糖代谢重编程与巨噬细胞表型的研究进展

糖代谢重编程与巨噬细胞表型的研究进展①陈娟周永学闫曙光②李京涛③魏海梁④王文霸(陕西中医药大学,咸阳 712046)中图分类号R392.12 文献标志码 A 文章编号1000-484X(2023)10-2098-06[摘要]巨噬细胞是组织防御前线的哨兵,是机体对抗入侵病原体的重要武器,其代谢方式和功能与疾病的发展转归密切相关。

通常,巨噬细胞优先选择葡萄糖氧化磷酸化(OXPHOS)途径代谢产能,在缺氧环境下则以糖酵解为主。

而肿瘤巨噬细胞在氧气充足的情况下也通过糖酵解产能,这便是经典的“沃博格效应”。

研究表明,M1型巨噬细胞的糖代谢重编程与肿瘤细胞类似,表现为以有氧糖酵解为主和OXPHOS为辅,而M2型则恰好相反,因此阻断糖代谢重编程可有效抑制炎症反应。

本文重点阐述了巨噬细胞在炎症疾病调控中的关键作用及其糖代谢重编程的可能机制。

以期为免疫和代谢性相关疾病的防治提供新策略。

[关键词]巨噬细胞;重编程;糖酵解;氧化磷酸化Advances in glycometabolic reprogramming and macrophage phenotypesCHEN Juan, ZHOU Yongxue, YAN Shuguang, LI Jingtao, WEI Hailiang, WANG Wenba. Shaanxi University of Chinese Medicine, Xianyang 712046, China[Abstract]Macrophages are sentinels on the front line of tissue defense and an important weapon for the body to fight against invading pathogens. Their metabolic patterns and functions are closely related to the development and outcome of diseases. In general,macrophages preferentially select the oxidative phosphorylation of glucose (OXPHOS) pathway to metabolize energy production, and in hypoxic environments, glycolysis is the predominant. However, tumor macrophages can also produce energy through glycolysis in the presence of sufficient oxygen, which is the classic "Warburg effect". Studies have shown that the reprogramming of glucose metabo‑lism in M1 type macrophages is similar to that of tumor cells, showing that aerobic glycolysis is dominant and OXPHOS is supplemented,while M2 type macrophages are just the opposite, so blocking glucose metabolism reprogramming can effectively inhibit inflammation reaction. This review focuses on the key role of macrophages in the regulation of inflammatory diseases and the possible mechanism of there programming of glucose metabolism, in order to provide new strategies for the prevention and treatment of immune and metabolic related diseases.[Key words]Macrophages;Reprogramming;Glycolysis;Oxidative phosphorylation巨噬细胞是先天的免疫细胞,在炎症和肿瘤环境中扮演重要角色,具有较高的可塑性并在功能上产生极化,根据微环境的不同,巨噬细胞会呈现不同的表型,经典激活的M1型和交替激活的M2型,糖代谢重编程是其主要的影响因素。

应用地球化学元素丰度数据手册-原版

应用地球化学元素丰度数据手册-原版

应用地球化学元素丰度数据手册迟清华鄢明才编著地质出版社·北京·1内容提要本书汇编了国内外不同研究者提出的火成岩、沉积岩、变质岩、土壤、水系沉积物、泛滥平原沉积物、浅海沉积物和大陆地壳的化学组成与元素丰度,同时列出了勘查地球化学和环境地球化学研究中常用的中国主要地球化学标准物质的标准值,所提供内容均为地球化学工作者所必须了解的各种重要地质介质的地球化学基础数据。

本书供从事地球化学、岩石学、勘查地球化学、生态环境与农业地球化学、地质样品分析测试、矿产勘查、基础地质等领域的研究者阅读,也可供地球科学其它领域的研究者使用。

图书在版编目(CIP)数据应用地球化学元素丰度数据手册/迟清华,鄢明才编著. -北京:地质出版社,2007.12ISBN 978-7-116-05536-0Ⅰ. 应… Ⅱ. ①迟…②鄢…Ⅲ. 地球化学丰度-化学元素-数据-手册Ⅳ. P595-62中国版本图书馆CIP数据核字(2007)第185917号责任编辑:王永奉陈军中责任校对:李玫出版发行:地质出版社社址邮编:北京市海淀区学院路31号,100083电话:(010)82324508(邮购部)网址:电子邮箱:zbs@传真:(010)82310759印刷:北京地大彩印厂开本:889mm×1194mm 1/16印张:10.25字数:260千字印数:1-3000册版次:2007年12月北京第1版•第1次印刷定价:28.00元书号:ISBN 978-7-116-05536-0(如对本书有建议或意见,敬请致电本社;如本社有印装问题,本社负责调换)2关于应用地球化学元素丰度数据手册(代序)地球化学元素丰度数据,即地壳五个圈内多种元素在各种介质、各种尺度内含量的统计数据。

它是应用地球化学研究解决资源与环境问题上重要的资料。

将这些数据资料汇编在一起将使研究人员节省不少查找文献的劳动与时间。

这本小册子就是按照这样的想法编汇的。

鲁米诺CAS521-31-3在蛋白质WB实验中的应用

鲁米诺CAS521-31-3在蛋白质WB实验中的应用

鲁米诺CAS521-31-3在蛋白质WB实验中的应用
化学发光试剂鲁米诺,全称3-氨基苯二甲酰肼,俗名发光氨luminol,通常用于酶促化学发光实验以及刑侦上的微量血迹检测。

由于其结构简单、易合成、发光量子效率高的特点,现也被用于蛋白质印迹试验western blot中。

蛋白免疫印迹是将经过PAGE(聚丙烯酰胺凝胶电泳)分离的蛋白质样品,转移到固相载体NC膜(硝酸纤维素薄膜)或PVDF膜(聚偏二氟乙烯膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。

以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。

该技术也广泛应用于检测蛋白水平的表达。

鲁米诺发光反应
鲁米诺的发光反应是属于整个蛋白质Western Blot印迹实验中的最后一步,加入1:1的溶液A和溶液B,覆盖pvdf膜,可以显色或发光来观察实验结果。

一般使用的发光液A和B分别是鲁米诺和过氧化氢。

由于鲁米诺被过氧化氢催化氧化发光的反应需要过氧化物酶的参与,属于酶促化学发光,需要维持反应的pH值,实验中的匀浆缓冲液通常用我们Tris-HCL配成的TBS缓冲液,蛋白质转膜缓冲液也是用Tris加SDS、甘氨酸、甲醇缓冲体系,如果是高于20kd的蛋白则可以使用CAPS缓冲剂,也快吃用Tricine代替甘氨酸。

市场上通常鲁米诺是做成即用型的ECL发光液,德晟生产的鲁米诺是粉末试剂,因为发光试剂对光和温度敏感,粉末试剂更利于保存,需要使用时,现配现用即可,可以根据不同的实验配置不同的浓度,不用采购多种浓度试剂,减少浪费。

肌动蛋白结合脂筏促进巨噬细胞摄入土拉弗朗西斯菌

肌动蛋白结合脂筏促进巨噬细胞摄入土拉弗朗西斯菌
P n EN i in ,C i—n,WU Ja -i AN Xi ,Z G S— a g AIJal l i inj n,YANG Gu n a g,HUANG T n - i o gl a
( et fMi o i . S c D p .o c b 1 , e.Mi r o l .Me .U i , h n h i 0 4 3 d n. S a g a 0 3 ) 2
素 B亚 基 ( hl at i B C B (n ioe ) 释 c o r x , T ) Iv rgn 稀 e on t 至 1I / L 于 4℃ 与 固 定 片 孵 育 1 n P S x m , g 0 mi, B
土拉弗 朗西斯 菌感 染 巨噬 细胞 1 3 i , 查 5~ 0 r n 可 a 见脂筏 相关成 分 如胆 固醇 和神 经 节苷 脂 G M1涉 及土拉弗 朗西斯 菌 侵 入胞 内, 肌动 蛋 白与胆 固 醇
Abs r c Th r c s ft e u t k a cslat l rn i VS bym o s c o a e t h i flp d r fsp w・ ta t e p o e so h p a e Fr n iel u a e ss L u e ma rph g swih t e ad o ii a o t ec y a tnwa b e v d Ce lc oese o s sa n d wih flpn 1 n o rd b ci so s r e . l h l tr lwa ti e t ii i 1 a d c mbi d wih c oe a txn s b—a c 1 ne t h lr o i u r dia B l
o a gis e 1weed tce n i aie t eaFu r 9 o jg tdrb i-ni h lr xnsb. dc l fg n l i sGM r ee tda dvs lzdwi Alx lo 4c nu ae a bt t, oeat i u ・a ia od u h 5 - ・ a c o r B a t o is ni de.Aeisw r iu l e t h l ii ojg tdt lx 9 .T ersl n iae h t n e u rs b t eevsai dwi p al dnc nu ae oA ea5 4 h eut idc td ta d rf oc— n z h o s u l

葡萄球菌液体培养操作流程

葡萄球菌液体培养操作流程

葡萄球菌液体培养操作流程英文回答:To culture Staphylococcus aureus in liquid media, the following steps need to be followed:1. Preparation of the culture media: I start by preparing the liquid media, such as nutrient broth or tryptic soy broth, following the manufacturer's instructions. I ensure that the media is properlysterilized before use.2. Inoculation of the culture: I obtain a pure culture of Staphylococcus aureus from a stock culture or a clinical sample. Using a sterile loop or pipette, I transfer a small amount of the culture into the liquid media. I make sure to maintain aseptic technique throughout this process to prevent contamination.3. Incubation: After inoculating the culture, I tightlyseal the culture tube or flask to prevent any contamination from the environment. I then place the culture in an incubator set at the optimal temperature for Staphylococcus aureus growth, usually around 37°C. I typically incubate the culture for 18-24 hours, but the incubation time can vary depending on the specific requirements of the experiment or analysis.4. Monitoring growth: During the incubation period, I regularly check the culture for growth. I observe the media for any turbidity, which indicates bacterial growth. I may also perform additional tests, such as Gram staining or biochemical tests, to confirm the presence of Staphylococcus aureus.5. Harvesting the culture: Once the desired growth is achieved, I carefully remove the culture from the incubator.I can either use the culture directly for further experiments or analysis, or I can store it for future use.If storing, I transfer the culture into sterile tubes or vials and store them at appropriate temperatures, usually -80°C for long-term storage.中文回答:葡萄球菌液体培养操作流程如下:1. 培养基的准备,我首先根据厂家的说明书准备液体培养基,例如营养琼脂或胰蛋白酶大豆蛋白胨培养基。

干扰素刺激基因15抗病毒感染的分子机制

干扰素刺激基因15抗病毒感染的分子机制

·综述·Chinese Journal of Animal Infectious Diseases中国动物传染病学报摘 要:干扰素刺激基因15(ISG15)是由病原微生物或干扰素诱导产生的一种大小为15 kDa 的泛素样蛋白。

在干扰素诱导的数百个干扰素刺激基因中,ISG15是诱导最强烈、最快的ISG 蛋白之一。

研究表明,ISG15对多种病毒具有抗病毒作用。

此外,ISG15在调节宿主损伤、DNA 修复,调节信号通路及抗原递呈中也发挥着重要的作用。

文章介绍了ISG15的概况,并阐述了近年来ISG15在抗病毒、免疫调节和调节宿主信号通路过程中的作用。

关键词:干扰素刺激基因15;抗病毒作用;免疫调节中图分类号:S852.4 文献标志码:A 文章编号:1674-6422(2023)06-0170-07Molecular Mechanism of Interferon-Stimulated Gene 15 Antiviral InfectionTANG Jingyu 1, DU Hanyu 1,2, JIA Nannan 1, TANG Aoxing 1, LIU Chuncao 1, ZHU Jie 1, MENGChunchun 1, LI Chuanfeng 1, LIU Guangqing 1(1. Shanghai V eterinary Research Institute, CAAS, Shanghai 200241, China; 2. Xinjiang Agricultural University, Xinjiang 830052, China)收稿日期:2021-11-02作者简介:国家重点研发计划项目(2016YFD0500108);中国农业科学院创新工程项目作者简介:唐井玉,女,博士研究生,预防兽医学专业通信作者:刘光清,E-mail:**************.cn干扰素刺激基因15抗病毒感染的分子机制唐井玉1,杜汉宇1,2,贾楠楠1,汤傲星1,刘春草1,朱 杰1,孟春春1,李传峰1,刘光清1(1.中国农业科学院上海兽医研究所 小动物传染病预防与控制创新团队,上海200241;2.新疆农业大学,乌鲁木齐830052)2023,31(6):170-176Abstract: Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein of approximately 15 kDa induced by pathogenic microorganisms or interferons. Among the hundreds of interferon-stimulated genes induced by interferons, ISG15 is one of the most strongly and fastest induced ISG proteins. Studies have shown that ISG15 has antiviral effects against a variety of viruses. In addition, ISG15 plays an important role in regulating host damage, DNA repair, and regulating signaling pathways and antigen delivery. The article presented an overview of ISG15 and described the role of ISG15 in the process of antiviral, immunomodulation and regulation of host signaling pathways in recent years.Key words: Interferon-stimulated gene 15; antiviral infection; immunomodulation先天性免疫应答是抵抗入侵病原体的第一道防线,病原体可以通过宿主模式识别受体来感知。

斯仑贝谢所有测井曲线英文名称解释

斯仑贝谢所有测井曲线英文名称解释

斯仑贝谢所有测井曲线英文名称解释OCEAN DRILLING PROGRAMACRONYMS USED FOR WIRELINE SCHLUMBERGER TOOLS ACT Aluminum Clay ToolAMS Auxiliary Measurement SondeAPS Accelerator Porosity SondeARI Azimuthal Resistivity ImagerASI Array Sonic ImagerBGKT Vertical Seismic Profile ToolBHC Borehole Compensated Sonic ToolBHTV Borehole TeleviewerCBL Casing Bond LogCNT Compensated Neutron ToolDIT Dual Induction ToolDLL Dual LaterologDSI Dipole Sonic ImagerFMS Formation MicroScannerGHMT Geologic High Resolution Magnetic ToolGPIT General Purpose Inclinometer ToolGR Natural Gamma RayGST Induced Gamma Ray Spectrometry ToolHLDS Hostile Environment Lithodensity SondeHLDT Hostile Environment Lithodensity ToolHNGS Hostile Environment Gamma Ray SondeLDT Lithodensity ToolLSS Long Spacing Sonic ToolMCD Mechanical Caliper DeviceNGT Natural Gamma Ray Spectrometry ToolNMRT Nuclear Resonance Magnetic ToolQSST Inline Checkshot ToolSDT Digital Sonic ToolSGT Scintillation Gamma Ray ToolSUMT Susceptibility Magnetic ToolUBI Ultrasonic Borehole ImagerVSI Vertical Seismic ImagerWST Well Seismic ToolWST-3 3-Components Well Seismic ToolOCEAN DRILLING PROGRAMACRONYMS USED FOR LWD SCHLUMBERGER TOOLSADN Azimuthal Density-NeutronCDN Compensated Density-NeutronCDR Compensated Dual ResistivityISONIC Ideal Sonic-While-DrillingNMR Nuclear Magnetic ResonanceRAB Resistivity-at-the-BitOCEAN DRILLING PROGRAMACRONYMS USED FOR NON-SCHLUMBERGER SPECIALTY TOOLSMCS Multichannel Sonic ToolMGT Multisensor Gamma ToolSST Shear Sonic ToolTAP Temperature-Acceleration-Pressure ToolTLT Temperature Logging ToolOCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR WIRELINE SCHLUMBERGER LOGSAFEC APS Far Detector Counts (cps)ANEC APS Near Detector Counts (cps)AX Acceleration X Axis (ft/s2)AY Acceleration Y Axis (ft/s2)AZ Acceleration Z Axis (ft/s2)AZIM Constant Azimuth for Deviation Correction (deg)APLC APS Near/Array Limestone Porosity Corrected (%)C1 FMS Caliper 1 (in)C2 FMS Caliper 2 (in)CALI Caliper (in)CFEC Corrected Far Epithermal Counts (cps)CFTC Corrected Far Thermal Counts (cps)CGR Computed (Th+K) Gamma Ray (API units)CHR2 Peak Coherence, Receiver Array, Upper DipoleCHRP Compressional Peak Coherence, Receiver Array, P&SCHRS Shear Peak Coherence, Receiver Array, P&SCHTP Compressional Peak Coherence, Transmitter Array, P&SCHTS Shear Peak Coherence, Transmitter Array, P&SCNEC Corrected Near Epithermal Counts (cps)CNTC Corrected Near Thermal Counts (cps)CS Cable Speed (m/hr)CVEL Compressional Velocity (km/s)DATN Discriminated Attenuation (db/m)DBI Discriminated Bond IndexDEVI Hole Deviation (degrees)DF Drilling Force (lbf)DIFF Difference Between MEAN and MEDIAN in Delta-Time Proc. (microsec/ft) DRH HLDS Bulk Density Correction (g/cm3)DRHO Bulk Density Correction (g/cm3)DT Short Spacing Delta-Time (10'-8' spacing; microsec/ft)DT1 Delta-Time Shear, Lower Dipole (microsec/ft)DT2 Delta-Time Shear, Upper Dipole (microsec/ft)DT4P Delta- Time Compressional, P&S (microsec/ft)DT4S Delta- Time Shear, P&S (microsec/ft))DT1R Delta- Time Shear, Receiver Array, Lower Dipole (microsec/ft)DT2R Delta- Time Shear, Receiver Array, Upper Dipole (microsec/ft)DT1T Delta-Time Shear, Transmitter Array, Lower Dipole (microsec/ft)DT2T Delta-Time Shear, Transmitter Array, Upper Dipole (microsec/ft)DTCO Delta- Time Compressional (microsec/ft)DTL Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLF Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLN Short Spacing Delta-Time (10'-8' spacing; microsec/ftDTRP Delta-Time Compressional, Receiver Array, P&S (microsec/ft)DTRS Delta-Time Shear, Receiver Array, P&S (microsec/ft)DTSM Delta-Time Shear (microsec/ft)DTST Delta-Time Stoneley (microsec/ft)DTTP Delta-Time Compressional, Transmitter Array, P&S (microsec/ft)DTTS Delta-Time Shear, Transmitter Array, P&S (microsec/ft)ECGR Environmentally Corrected Gamma Ray (API units)EHGR Environmentally Corrected High Resolution Gamma Ray (API units) ENPH Epithermal Neutron Porosity (%)ENRA Epithermal Neutron RatioETIM Elapsed Time (sec)FINC Magnetic Field Inclination (degrees)FNOR Magnetic Field Total Moment (oersted)FX Magnetic Field on X Axis (oersted)FY Magnetic Field on Y Axis (oersted)FZ Magnetic Field on Z Axis (oersted)GR Natural Gamma Ray (API units)HALC High Res. Near/Array Limestone Porosity Corrected (%)HAZI Hole Azimuth (degrees)HBDC High Res. Bulk Density Correction (g/cm3)HBHK HNGS Borehole Potassium (%)HCFT High Resolution Corrected Far Thermal Counts (cps)HCGR HNGS Computed Gamma Ray (API units)HCNT High Resolution Corrected Near Thermal Counts (cps)HDEB High Res. Enhanced Bulk Density (g/cm3)HDRH High Resolution Density Correction (g/cm3)HFEC High Res. Far Detector Counts (cps)HFK HNGS Formation Potassium (%)HFLC High Res. Near/Far Limestone Porosity Corrected (%)HEGR Environmentally Corrected High Resolution Natural Gamma Ray (API units) HGR High Resolution Natural Gamma Ray (API units)HLCA High Res. Caliper (inHLEF High Res. Long-spaced Photoelectric Effect (barns/e-)HNEC High Res. Near Detector Counts (cps)HNPO High Resolution Enhanced Thermal Nutron Porosity (%)HNRH High Resolution Bulk Density (g/cm3)HPEF High Resolution Photoelectric Effect (barns/e-)HRHO High Resolution Bulk Density (g/cm3)HROM High Res. Corrected Bulk Density (g/cm3)HSGR HNGS Standard (total) Gamma Ray (API units)HSIG High Res. Formation Capture Cross Section (capture units) HSTO High Res. Computed Standoff (in)HTHO HNGS Thorium (ppm)HTNP High Resolution Thermal Neutron Porosity (%)HURA HNGS Uranium (ppm)IDPH Phasor Deep Induction (ohmm)IIR Iron Indicator Ratio [CFE/(CCA+CSI)]ILD Deep Resistivity (ohmm)ILM Medium Resistivity (ohmm)IMPH Phasor Medium Induction (ohmm)ITT Integrated Transit Time (s)LCAL HLDS Caliper (in)LIR Lithology Indicator Ratio [CSI/(CCA+CSI)]LLD Laterolog Deep (ohmm)LLS Laterolog Shallow (ohmm)LTT1 Transit Time (10'; microsec)LTT2 Transit Time (8'; microsec)LTT3 Transit Time (12'; microsec)LTT4 Transit Time (10'; microsec)MAGB Earth's Magnetic Field (nTes)MAGC Earth Conductivity (ppm)MAGS Magnetic Susceptibility (ppm)MEDIAN Median Delta-T Recomputed (microsec/ft)MEAN Mean Delta-T Recomputed (microsec/ft)NATN Near Pseudo-Attenuation (db/m)NMST Magnetometer Temperature (degC)NMSV Magnetometer Signal Level (V)NPHI Neutron Porosity (%)NRHB LDS Bulk Density (g/cm3)P1AZ Pad 1 Azimuth (degrees)PEF Photoelectric Effect (barns/e-)PEFL LDS Long-spaced Photoelectric Effect (barns/e-)PIR Porosity Indicator Ratio [CHY/(CCA+CSI)]POTA Potassium (%)RB Pad 1 Relative Bearing (degrees)RHL LDS Long-spaced Bulk Density (g/cm3)RHOB Bulk Density (g/cm3)RHOM HLDS Corrected Bulk Density (g/cm3)RMGS Low Resolution Susceptibility (ppm)SFLU Spherically Focused Log (ohmm)SGR Total Gamma Ray (API units)SIGF APS Formation Capture Cross Section (capture units)SP Spontaneous Potential (mV)STOF APS Computed Standoff (in)SURT Receiver Coil Temperature (degC)SVEL Shear Velocity (km/s)SXRT NMRS differential Temperature (degC)TENS Tension (lb)THOR Thorium (ppm)TNRA Thermal Neutron RatioTT1 Transit Time (10' spacing; microsec)TT2 Transit Time (8' spacing; microsec)TT3 Transit Time (12' spacing; microsec)TT4 Transit Time (10' spacing; microsec)URAN Uranium (ppm)V4P Compressional Velocity, from DT4P (P&S; km/s)V4S Shear Velocity, from DT4S (P&S; km/s)VELP Compressional Velocity (processed from waveforms; km/s)VELS Shear Velocity (processed from waveforms; km/s)VP1 Compressional Velocity, from DT, DTLN, or MEAN (km/s)VP2 Compressional Velocity, from DTL, DTLF, or MEDIAN (km/s)VCO Compressional Velocity, from DTCO (km/s)VS Shear Velocity, from DTSM (km/s)VST Stonely Velocity, from DTST km/s)VS1 Shear Velocity, from DT1 (Lower Dipole; km/s)VS2 Shear Velocity, from DT2 (Upper Dipole; km/s)VRP Compressional Velocity, from DTRP (Receiver Array, P&S; km/s) VRS Shear Velocity, from DTRS (Receiver Array, P&S; km/s)VS1R Shear Velocity, from DT1R (Receiver Array, Lower Dipole; km/s) VS2R Shear Velocity, from DT2R (Receiver Array, Upper Dipole; km/s) VS1T Shear Velocity, from DT1T (Transmitter Array, Lower Dipole; km/s) VS2T Shear Velocity, from DT2T (Transmitter Array, Upper Dipole; km/s) VTP Compressional Velocity, from DTTP (Transmitter Array, P&S; km/s) VTS Shear Velocity, from DTTS (Transmitter Array, P&S; km/s)#POINTS Number of Transmitter-Receiver Pairs Used in Sonic Processing W1NG NGT Window 1 counts (cps)W2NG NGT Window 2 counts (cps)W3NG NGT Window 3 counts (cps)W4NG NGT Window 4 counts (cps)W5NG NGT Window 5 counts (cps)OCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR LWD SCHLUMBERGER LOGSAT1F Attenuation Resistivity (1 ft resolution; ohmm)AT3F Attenuation Resistivity (3 ft resolution; ohmm)AT4F Attenuation Resistivity (4 ft resolution; ohmm)AT5F Attenuation Resistivity (5 ft resolution; ohmm)ATR Attenuation Resistivity (deep; ohmm)BFV Bound Fluid Volume (%)B1TM RAB Shallow Resistivity Time after Bit (s)B2TM RAB Medium Resistivity Time after Bit (s)B3TM RAB Deep Resistivity Time after Bit (s)BDAV Deep Resistivity Average (ohmm)BMAV Medium Resistivity Average (ohmm)BSAV Shallow Resistivity Average (ohmm)CGR Computed (Th+K) Gamma Ray (API units)DCAL Differential Caliper (in)DROR Correction for CDN rotational density (g/cm3).DRRT Correction for ADN rotational density (g/cm3).DTAB AND or CDN Density Time after Bit (hr)FFV Free Fluid Volume (%)GR Gamma Ray (API Units)GR7 Sum Gamma Ray Windows GRW7+GRW8+GRW9-Equivalent to Wireline NGT window 5 (cps) GRW3 Gamma Ray Window 3 counts (cps)-Equivalent to Wireline NGT window 1GRW4 Gamma Ray Window 4 counts (cps)-Equivalent to Wireline NGT window 2GRW5 Gamma Ray Window 5 counts (cps)-Equivalent to Wireline NGT window 3GRW6 Gamma Ray Window 6 counts (cps)-Equivalent to Wireline NGT window 4GRW7 Gamma Ray Window 7 counts (cps)GRW8 Gamma Ray Window 8 counts (cps)GRW9 Gamma Ray Window 9 counts (cps)GTIM CDR Gamma Ray Time after Bit (s)GRTK RAB Gamma Ray Time after Bit (s)HEF1 Far He Bank 1 counts (cps)HEF2 Far He Bank 2 counts (cps)HEF3 Far He Bank 3 counts (cps)HEF4 Far He Bank 4 counts (cps)HEN1 Near He Bank 1 counts (cps)HEN2 Near He Bank 2 counts (cps)HEN3 Near He Bank 3 counts (cps)HEN4 Near He Bank 4 counts (cps)MRP Magnetic Resonance PorosityNTAB ADN or CDN Neutron Time after Bit (hr)PEF Photoelectric Effect (barns/e-)POTA Potassium (%) ROPE Rate of Penetration (ft/hr)PS1F Phase Shift Resistivity (1 ft resolution; ohmm)PS2F Phase Shift Resistivity (2 ft resolution; ohmm)PS3F Phase Shift Resistivity (3 ft resolution; ohmm)PS5F Phase Shift Resistivity (5 ft resolution; ohmm)PSR Phase Shift Resistivity (shallow; ohmm)RBIT Bit Resistivity (ohmm)RBTM RAB Resistivity Time After Bit (s)RING Ring Resistivity (ohmm)ROMT Max. Density Total (g/cm3) from rotational processing ROP Rate of Penetration (m/hr)ROP1 Rate of Penetration, average over last 1 ft (m/hr).ROP5 Rate of Penetration, average over last 5 ft (m/hr)ROPE Rate of Penetration, averaged over last 5 ft (ft/hr)RPM RAB Tool Rotation Speed (rpm)RTIM CDR or RAB Resistivity Time after Bit (hr)SGR Total Gamma Ray (API units)T2 T2 Distribution (%)T2LM T2 Logarithmic Mean (ms)THOR Thorium (ppm)TNPH Thermal Neutron Porosity (%)TNRA Thermal RatioURAN Uranium (ppm)OCEAN DRILLING PROGRAMADDITIONAL ACRONYMS AND UNITS(PROCESSED LOGS FROM GEOCHEMICAL TOOL STRING)AL2O3 Computed Al2O3 (dry weight %)AL2O3MIN Computed Al2O3 Standard Deviation (dry weight %) AL2O3MAX Computed Al2O3 Standard Deviation (dry weight %) CAO Computed CaO (dry weight %)CAOMIN Computed CaO Standard Deviation (dry weight %) CAOMAX Computed CaO Standard Deviation (dry weight %) CACO3 Computed CaCO3 (dry weight %)CACO3MIN Computed CaCO3 Standard Deviation (dry weight %) CACO3MAX Computed CaCO3 Standard Deviation (dry weight %) CCA Calcium Yield (decimal fraction)CCHL Chlorine Yield (decimal fraction)CFE Iron Yield (decimal fraction)CGD Gadolinium Yield (decimal fraction)CHY Hydrogen Yield (decimal fraction)CK Potassium Yield (decimal fraction)CSI Silicon Yield (decimal fraction)CSIG Capture Cross Section (capture units)CSUL Sulfur Yield (decimal fraction)CTB Background Yield (decimal fraction)CTI Titanium Yield (decimal fraction)FACT Quality Control CurveFEO Computed FeO (dry weight %)FEOMIN Computed FeO Standard Deviation (dry weight %) FEOMAX Computed FeO Standard Deviation (dry weight %) FEO* Computed FeO* (dry weight %)FEO*MIN Computed FeO* Standard Deviation (dry weight %) FEO*MAX Computed FeO* Standard Deviation (dry weight %) FE2O3 Computed Fe2O3 (dry weight %)FE2O3MIN Computed Fe2O3 Standard Deviation (dry weight %) FE2O3MAX Computed Fe2O3 Standard Deviation (dry weight %) GD Computed Gadolinium (dry weight %)GDMIN Computed Gadolinium Standard Deviation (dry weight %) GDMAX Computed Gadolinium Standard Deviation (dry weight %) K2O Computed K2O (dry weight %)K2OMIN Computed K2O Standard Deviation (dry weight %)K2OMAX Computed K2O Standard Deviation (dry weight %) MGO Computed MgO (dry weight %)MGOMIN Computed MgO Standard Deviation (dry weight %) MGOMAX Computed MgO Standard Deviation (dry weight %)S Computed Sulfur (dry weight %)SMIN Computed Sulfur Standard Deviation (dry weight %) SMAX Computed Sulfur Standard Deviation (dry weight %)SIO2 Computed SiO2 (dry weight %)SIO2MIN Computed SiO2 Standard Deviation (dry weight %) SIO2MAX Computed SiO2 Standard Deviation (dry weight %) THORMIN Computed Thorium Standard Deviation (ppm) THORMAX Computed Thorium Standard Deviation (ppm)TIO2 Computed TiO2 (dry weight %)TIO2MIN Computed TiO2 Standard Deviation (dry weight %) TIO2MAX Computed TiO2 Standard Deviation (dry weight %) URANMIN Computed Uranium Standard Deviation (ppm) URANMAX Computed Uranium Standard Deviation (ppm) VARCA Variable CaCO3/CaO calcium carbonate/oxide factor。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -p h /9811424v 1 20 N o v 1998UR-1557ER/40685/926November 1998GLUON RADIATION IN TOP MASS RECONSTRUCTION:EFFECT OF HADRONIC W DECAYSL.H.ORRDepartment of Physics and Astronomy,University of Rochester,Rochester NY 14627-0171,USAE-mail:orr@T.ANDREDepartment of Physics and Astronomy,University of Rochester,Rochester NY 14627-0171,USA andDepartment of Physics,University of Chicago,Chicago IL 60637,USAE-mail:troy@T.STELZERDepartment of Physics,University of Illinois,Urbana,IL 61801,USAE-mail:stelzer@Top quark events in hadron collisions often contain additional hadronic jets from gluon bremsstrahlung offthe quarks and gluons in the hard subprocesses.Such extra jets must be taken into account in attempts to reconstruct the momentum of the top quark from those of its decay products.We have performed a complete calculation of gluon radiation in top production and decay at the Fermilab Tevatron including hadronically decaying W bosons.In this talk we discuss the effect of gluon radiation on the reconstructed mass of the top quark,using various top mass reconstruction scenarios.Implications for the LHC are briefly discussed.alicity amplitudes arecomputed with the assistance of the MADGRAPH package 4.The results shown below are for the q ¯q initial state that dominates in top production at the Tevatron;we have done the calculation for the gg and qg initial states 5but do not show those results here.We apply the following kinematic cuts to all final-state jets (which in this parton-level calculation are quarks and gluons)and to the charged lepton:E T j ,E T l ≥15GeV ,|ηj |,|ηl |≤2.5,∆R jj ,∆R jl ≥0.4.(1)These are meant to mimic experimental cuts,so that the partons are likely to appear in the detectors with enough angular separation to be distinguishable as separate par-ticles.They also protect the theoretical cross section from the soft and collinear singularities that appear at tree level.In the distributions we present below we will decom-pose the cross section into contributions from radiation associated with various parts of the process.These con-tributions are:i.Production-stage radiation,which comes from the ini-tial quarks or internal gluon line,or from the top (or antitop)quark before it goes on shell.ii.Decay-stage radiation that is part of the t or ¯tdecay;this is further subdivided intoa.Decay-tb radiation from either of the b ’s or from either of the t ’s after they go on shell.b.Decay-W radiation from the decay products of hadronically decaying W bosons.We make these distinctions in the parton-level calcu-lation based on kinematics to see how the various contri-butions behave;this cannot of course be done for a given event in the experiments.In principle the production-stage and decay-stage contributions can interfere with each other (with the exception of the decay-W radia-tion,which cannot interfere with the other processes because the W is a color singlet).And although we do include all interferences in our calculation,in prac-tice the production-decay interference is very small for gluon energy thresholds large compared to the top width Γt =1.5GeV,as in the present case.Figure 1shows the distribution in pseudorapid-ity of the extra jet at the Tevatron for the lepton +jets case,i.e.for a single hadronically decaying W .The production-stage radiation,shown as a dashed his-togram,has the broadest distribution,populating most of the accessible rapidity range.The two decay-stage contributions are more centrally peaked.The decay-tb contribution (dotted histogram)is slightly larger,as itaccounts for radiation from both the t and ¯t,but the decay-W contribution (dot-dashed histogram)from a sin-Figure 1:The extra jet pseudorapidity (ηj )distribution (solid his-togram)and its decomposition in terms of production (dashed his-togram),decay-tb (dotted histogram)and decay-W (dot-dashed histogram)emission contributions,for the lepton +jets mode.gle W is similar in size and shape to the decay-tb ,as was found in the soft approximation 3.The central region of the detector is populated by all three contributions,which means that distinguishing them will be challeng-ing at best.Results for the all-hadronic mode,where both W bosons decay to quarks,are similar,the main difference being that the decay-W contribution approximately dou-bles in size.The transverse energy distributions of the radiated jet are shown in Figure 2for the lepton +jets (top)and all-hadronic modes.The spectra look quite similar for the various contributions,and extend to large values of transverse energy.3Top Mass ReconstructionGiven the difficulty of distinguishing extra jets radiated in the production stage from those from decay,we can ask what effect the extra jet has on mass reconstruction.First,however,we have to ask which jet is the extra one.It seems reasonable to assume that the gluon jet is theFigure2:The extra jet transverse energy distribution(solid his-togram)and its decomposition in terms of production(dashed his-togram),decay-tb(dotted histogram)and decay-W(dot-dashed histogram)emission contributions,for the lepton+jets mode(top plot)and all-hadronic(bottom plot)mode.one with the lowest E T,given the infrared singularity that characterizes emitted radiation.While it is true that of thefinal state jets,the gluon has the softest E T spectrum,the gluon has the lowest E T only just over half the time(just under half for the all-jets mode).Still, there is no method that is obviously better for identifying the extra jet.We reconstruct the top mass from thefinal state par-tons without assuming we know which jet is which,but we omit the jet with the lowest E T.For the lepton+ jets mode we do the following.(1.)Drop the lowest E T jet.This leaves four jets.(2.)Find the jet pair with invariant mass closest to m W.(3.)Solve for the neutrino four-momentum using the charged lepton momentum and W mass constraint. (4.)Combine each of the W’s with each of the remain-ing jets to give m t and m¯t.Choose the combination that minimizes the t-¯t mass difference.The m t distributions obtained from this procedure are shown in Figure3.The top plot shows the distribu-tion for the top with the hadronically decaying W,and the bottom corresponds to leptonic W decay.In both cases we see a peak at the correct central value,where the procedure resulted in the correct mass.We also see smooth,reasonablyflat high and low tails from wrong combinations,in addition to bumps in the low tails cor-responding to the omission of jets that were part of the decays.Note that these bumps appear in the contri-butions from decay-stage radiation,when all of the jets should be included in the mass reconstruction.Finally, the leptonically decaying W gives a sharper top mass dis-tribution because with no radiation from the W decay, there are fewer wrong combinations.The results shown in Figure3are meant to be illus-trative and should not be taken as a direct representation of distributions measured in experiment.In particular, this calculation is at the parton level;we have not in-cluded backgrounds;and these distributions only include events with a radiated gluon.The effects of hadroniza-tion,energy resolution and detector effects,and back-ground will certainly make things worse.However there are certainly ways to improve on this simplistic analysis as well.For example,although we minimized mass differ-ences we did not cut on them explicitly.Figure4shows the magnitude of the t-¯t mass difference on an event-by-event basis for the case shown above.It suggests that an absolute cut on the mass difference could reduce the tails in the mass distributions.Interestingly,b-tagging, i.e.assuming we can identify b jets,does not improve the mass distributions much.This is because we do not include backgrounds.The results for the all-jets mode are similar,except that with both W’s decaying to quarks there are two more jets in each event,leading to more possible wrongFigure3:The reconstructed top mass distributions(solid histograms)in the lepton+jets mode for the hadronically decaying W(top plot) and the leptonically decaying W,and their decomposition in terms of production,decay-tb and decay-W emission contributions.Figure4:The distribution in magnitude of the t-¯t mass difference for the events in the previousfibinations and a corresponding increase in the tails. 4ConclusionsIn top quark physics,as statistics improve,systematic ef-fects associated with gluon radiation will dominate mea-surements of the top mass.We have added hadronic W decays to analyses of gluon radiation in top production and decay and presented some initial results here.We find that the contribution from radiation from a single hadronically decaying W is nearly as large as and com-parable in shape to the remaining decay-stage radiation from both the t and¯t.The presence of radiation from both the top production and decay stages complicates the reconstruction of the top momentum from its decay products and hence complicates the measurement of the top mass.Further analysis is in progress for the Tevatron and LHC5.AcknowledgementsWork supported in part by the U.S.Department of En-ergy,under grant DE-FG02-91ER40685and by the U.S. National Science Foundation,under grant PHY-9600155. References1.L.H.Orr,T.Stelzer,and W.J.Stirling,Phys.Rev.D52,124(1995);Phys.Lett.B354(1995)442.2.L.H.Orr,T.Stelzer,and W.J.Stirling,Phys.Rev.D56,446(1997).3.B.Masuda,L.H.Orr,and W.J.Stirling,Phys.Rev.D54(1996)4453.4.T.Stelzer and W.F.Long,mun.81(1994)357.5.T.Andre,L.H.Orr,and T.Stelzer,in preparation.。

相关文档
最新文档