Java多线程(线程池-数据队列)
java_多线程_笔记

1.API1.Thread API1)Join:A线程调用B线程的Join方法,A线程阻塞,直至B线程执行完毕。
2)Thread(Runable target):注意,参数target是对象实例。
ng.class :class类实例表示正在运行的java应用程序中的类和接口。
3.JDK提供的线程池ThreadPoolExecutor 线程池类,提供三种排队策略:1)直接提交。
线程池采用无界线程池,即线程池中的线程数量没有限制(无界线程池情况适用于,线程执行时间短,例如小于1秒,并发量高的场景),工作队列的默认选项是SynchronousQueue,它将任务直接提交给线程而不保持它们。
在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。
此策略可以避免在处理可能具有内部依赖性的请求集合时出现锁定。
直接提交通常要求无界maximumPoolSizes 以避免拒绝新提交的任务。
当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
2)无界队列,线程池数量固定,队列无限制。
使用无界队列(例如,不具有预定义容量的LinkedBlockingQueue)将导致在所有corePoolSize 线程都忙的情况下将新任务加入队列。
这样,创建的线程就不会超过corePoolSize。
(因此,maximumPoolSize 的值也就无效了。
)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在Web 页服务器中。
这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
3)有界队列,当使用有限的maximumPoolSizes 时,有界队列(如ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。
队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。
Java多线程详解——一篇文章搞懂Java多线程

Java多线程详解——⼀篇⽂章搞懂Java多线程⽬录1. 基本概念程序(program)程序是为完成特定任务、⽤某种语⾔编写的⼀组指令的集合。
即指⼀段静态的代码(还没有运⾏起来),静态对象。
进程(process)进程是程序的⼀次执⾏过程,也就是说程序运⾏起来了,加载到了内存中,并占⽤了cpu的资源。
这是⼀个动态的过程:有⾃⾝的产⽣、存在和消亡的过程,这也是进程的⽣命周期。
进程是系统资源分配的单位,系统在运⾏时会为每个进程分配不同的内存区域。
线程(thread)进程可进⼀步细化为线程,是⼀个程序内部的执⾏路径。
若⼀个进程同⼀时间并⾏执⾏多个线程,那么这个进程就是⽀持多线程的。
线程是cpu调度和执⾏的单位,每个线程拥有独⽴的运⾏栈和程序计数器(pc),线程切换的开销⼩。
⼀个进程中的多个线程共享相同的内存单元/内存地址空间——》他们从同⼀堆中分配对象,可以访问相同的变量和对象。
这就使得相乘间通信更简便、搞笑。
但索格线程操作共享的系统资源可能就会带来安全隐患(隐患为到底哪个线程操作这个数据,可能⼀个线程正在操作这个数据,有⼀个线程也来操作了这个数据v)。
配合JVM内存结构了解(只做了解即可)class⽂件会通过类加载器加载到内存空间。
其中内存区域中每个线程都会有虚拟机栈和程序计数器。
每个进程都会有⼀个⽅法区和堆,多个线程共享同⼀进程下的⽅法区和堆。
CPU单核和多核的理解单核的CPU是⼀种假的多线程,因为在⼀个时间单元内,也只能执⾏⼀个线程的任务。
同时间段内有多个线程需要CPU去运⾏时,CPU也只能交替去执⾏多个线程中的⼀个线程,但是由于其执⾏速度特别快,因此感觉不出来。
多核的CPU才能更好的发挥多线程的效率。
对于Java应⽤程序java.exe来讲,⾄少会存在三个线程:main()主线程,gc()垃圾回收线程,异常处理线程。
如过发⽣异常时会影响主线程。
Java线程的分类:⽤户线程和守护线程Java的gc()垃圾回收线程就是⼀个守护线程守护线程是⽤来服务⽤户线程的,通过在start()⽅法前调⽤thread.setDaemon(true)可以吧⼀个⽤户线程变成⼀个守护线程。
java 通用多线程工具类代码

1. 概述在面向对象编程中,多线程技术是一项重要的技能。
而 Java 作为一种流行的编程语言,也提供了丰富的多线程工具类来帮助开发者处理并发编程。
本文将介绍一些 Java 中通用的多线程工具类及其代码示例,以帮助读者更好地理解和应用多线程技术。
2. 线程池(ThreadPool)线程池是一种重要的多线程工具类,它可以有效地管理和复用线程,提高程序的性能和响应速度。
以下是一个简单的线程池代码示例:```javaimport java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class ThreadPoolExample {public static void m本人n(String[] args) {// 创建固定大小的线程池ExecutorService pool = Executors.newFixedThreadPool(5);// 提交任务for (int i = 0; i < 10; i++) {pool.execute(new Task());}// 关闭线程池pool.shutdown();}}class Task implements Runnable {public void run() {System.out.println("Thread name: " +Thread.currentThread().getName());}}```在上面的代码示例中,我们使用 Executors 类的newFixedThreadPool 方法创建一个固定大小的线程池,然后提交了10 个任务给线程池处理。
最后调用 shutdown 方法关闭线程池。
3. 信号量(Semaphore)信号量是用来控制同时访问特定资源的线程数量的类,它可以防止由于线程的过多导致的资源不足。
JAVA多线程的使用场景与注意事项总结

JAVA多线程的使用场景与注意事项总结Java多线程是指在一个程序中同时运行多个线程,每个线程都有自己的执行代码,但是又共享同一片内存空间和其他系统资源。
多线程的使用场景和注意事项是我们在开发中需要关注的重点,下面将详细进行总结。
一、Java多线程的使用场景:1.提高程序的执行效率:多线程可以充分利用系统资源,将一些耗时的操作放到一个线程中执行,避免阻塞主线程,提高程序的执行效率。
2.实现并行计算:多线程可以将任务拆分成多个子任务,每个子任务分配给一个线程来执行,从而实现并行计算,提高计算速度。
3.响应性能提升:多线程可以提高程序的响应性能,比如在用户界面的开发中,可以使用多线程来处理用户的输入和操作,保证界面的流畅性和及时响应。
4.实时性要求高:多线程可以实现实时性要求高的任务,比如监控系统、实时数据处理等。
5.任务调度与资源管理:多线程可以实现任务的调度和资源的管理,通过线程池可以更好地掌控任务的执行情况和使用系统资源。
二、Java多线程的注意事项:1.线程安全性:多线程操作共享资源时,要注意线程安全问题。
可以通过使用锁、同步方法、同步块等方式来解决线程安全问题。
2.死锁:多线程中存在死锁问题,即多个线程相互等待对方释放资源,导致程序无法继续执行。
要避免死锁问题,应尽量减少同步块的嵌套和锁的使用。
3.内存泄漏:多线程中存在内存泄漏问题,即线程结束后,线程的资源没有得到释放,导致内存占用过高。
要避免内存泄漏问题,应及时释放线程资源。
4.上下文切换:多线程的切换会带来上下文切换的开销,影响程序的执行效率。
要注意合理分配线程的数量,避免过多线程的切换。
5. 线程同步与通信:多线程之间需要进行同步和通信,以保证线程之间的正确协调和数据的一致性。
可以使用synchronized关键字、wait(和notify(方法等方式进行线程同步和通信。
6.线程池的使用:在多线程编程中,可以使用线程池来管理线程的创建和销毁,可以减少线程的创建和销毁的开销,提高程序的性能。
java 多线程feature 用法

Java 多线程特性及用法大纲一. 简介1. 什么是多线程多线程是指在一个程序中同时运行多个线程的并发执行方式。
每个线程都是程序的独立执行单元,它们可以在同一时间内执行不同的任务,使得程序可以更高效地利用多核处理器和资源。
Java是一种支持多线程编程的编程语言,通过其多线程特性,可以实现并发执行不同任务,提高程序的性能和响应能力。
在 Java 中,每个线程都是由 Thread 类或实现了 Runnable 接口的类创建的。
线程可以独立地执行代码,具有自己的程序计数器、栈、寄存器等。
Java提供了多线程编程的支持,使得开发者可以轻松地创建、管理和控制多个线程,以实现并行处理任务,例如同时处理用户输入、后台计算、网络通信等。
2. 为什么使用多线程使用多线程是为了充分利用现代计算机的多核处理器和资源,以提高程序的性能、响应性和效率。
以下是一些使用多线程的主要原因:1. 并行处理:多线程允许程序同时执行多个任务,从而实现并行处理。
这对于需要同时处理多个任务的应用程序非常重要,如图像和视频处理、数据分析等。
2. 提高性能:多线程可以在多核处理器上同时执行不同的任务,从而显著提高应用程序的运行速度和性能。
3. 改善响应性:在单线程应用中,如果一个任务阻塞了,整个程序都会被阻塞。
而多线程允许程序继续响应其他请求,即使某些任务正在等待资源。
4. 任务分解:多线程使得大型任务可以分解成更小的子任务,每个子任务都可以在独立的线程中执行。
这样可以更有效地管理和调度任务。
5. 多任务处理:多线程允许程序同时处理多个任务,比如在一个Web服务器中同时处理多个客户端请求,提供更好的用户体验。
6. 资源共享:多线程允许不同的线程共享同一组资源,如内存、文件、数据库连接等。
这可以减少资源的浪费,并提高资源利用率。
7. 实时性:对于需要实时处理的应用,多线程可以使任务在严格的时间限制内完成,如嵌入式系统、实时图像处理等。
8. 异步编程:多线程可以用于实现异步编程模型,允许程序执行非阻塞的操作,如在网络通信中发送请求同时不阻塞其他操作。
java多线程的实验报告

java多线程的实验报告Java多线程的实验报告一、引言多线程是计算机科学中一个重要的概念,它可以提高程序的并发性和效率。
Java作为一种广泛应用的编程语言,也提供了丰富的多线程支持。
本实验旨在通过编写多线程程序,探索Java多线程的特性和使用方法。
二、实验目的1. 理解多线程的概念和原理;2. 掌握Java多线程的基本使用方法;3. 分析多线程程序的执行过程和效果。
三、实验过程1. 创建多线程在Java中,可以通过继承Thread类或实现Runnable接口来创建多线程。
本实验选择实现Runnable接口的方式。
首先,定义一个实现了Runnable接口的类MyThread,重写run()方法,在该方法中编写线程的具体逻辑。
2. 启动多线程在主线程中,创建MyThread对象,并通过Thread类的构造函数将其作为参数传入。
然后,调用Thread类的start()方法启动线程。
3. 线程同步在多线程程序中,为了避免线程之间的数据竞争和冲突,需要进行线程同步。
Java提供了synchronized关键字和Lock接口来实现线程同步。
本实验使用synchronized关键字来保证线程的安全性。
4. 线程通信多线程之间的通信可以通过共享变量、wait()和notify()方法来实现。
本实验通过共享变量来实现线程通信,其中一个线程负责生产数据,另一个线程负责消费数据。
5. 线程池Java提供了Executor框架来管理线程池。
通过使用线程池,可以减少线程的创建和销毁开销,提高程序的性能。
本实验使用Executor框架来管理线程池,并设置合适的线程数量。
四、实验结果通过以上实验过程,成功实现了多线程程序,并观察到了以下结果:1. 多线程的执行顺序是不确定的,不同线程的执行顺序可能不同;2. 多线程程序可以提高程序的并发性和效率;3. 线程同步能够保证多线程程序的安全性;4. 线程通信可以实现多线程之间的数据交换和协作;5. 使用线程池可以提高程序的性能。
java 多个线程从队列中取数据的方法

Java多个线程从队列中取数据的方法在并发编程中,多线程从队列中取数据是一个常见的需求。
Java提供了多种方式来实现多个线程从队列中取数据的方法,本文将介绍其中的几种常用方法,并对每种方法进行详细的解析。
方法一:使用synchronized关键字public class Queue {private List<Integer> queue = new ArrayList<>();public synchronized void enqueue(Integer item) {queue.add(item);}public synchronized Integer dequeue() {if (queue.isEmpty()) {return null;}return queue.remove(0);}}在这个方法中,我们使用了synchronized关键字来实现线程安全。
通过在enqueue()和dequeue()方法上加上synchronized关键字,我们确保了在同一时刻只能有一个线程访问队列。
这种方式简单易懂,但是在高并发场景下性能较低。
方法二:使用ReentrantLockpublic class Queue {private List<Integer> queue = new ArrayList<>();private ReentrantLock lock = new ReentrantLock();public void enqueue(Integer item) {lock.lock();try {queue.add(item);} finally {lock.unlock();}}public Integer dequeue() {lock.lock();try {if (queue.isEmpty()) {return null;}return queue.remove(0);} finally {lock.unlock();}}}这种方法使用了ReentrantLock来实现线程安全。
JAVA使用多线程(线程池)进行数据处理

JAVA使⽤多线程(线程池)进⾏数据处理*⼯作顺序:* 1)、线程池创建,准备好core数量的核⼼线程,准备接受任务* 1.1、core满了,就将再进来的任务放⼊阻塞队列中。
空闲的core就会⾃⼰去阻塞队列获取任务执⾏* 1.2、阻塞队列满了,就直接开新线程执⾏,最⼤只能开到max指定的数量* 1.3、max满了就⽤RejectedExecut ionHandler拒绝任务* 1.4、max都执⾏完成,有很多空闲.在指定的时间keepAliveTime以后,释放max-core这些线程new LinkedBlockingDeque<>(): 默认是Integer的最⼤值。
内存不够⼀个线程池core 7; max 20,queue:50,100并发进来怎么分配的;7个会⽴即得到执⾏,50个会进⼊队列,再开13个进⾏执⾏。
剩下的30个就使⽤拒绝策略。
Executors . newCachedThreadPool() core是0,所有都可回收Executors . newF ixedThreadPool()固定⼤⼩,core=max; 都不可回收Executors. newScheduledThreadPool()定时任务的线程池Executors. newSingleThreadExecutor()单线程的线程池,后台从队列⾥⾯获取任务,挨个执⾏import mons.collections.CollectionUtils;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.stereotype.Service;import java.util.ArrayList;import java.util.List;import java.util.concurrent.*;/*** 以下是伪代码,要根据⾃⼰的实际逻辑进⾏整合*/@Servicepublic class PushProcessServiceImpl implements PushProcessService {private final static Logger logger = LoggerFactory.getLogger(PushProcessServiceImpl.class);/***每个线程更新的条数* 这表⽰每次执⾏五千条数据的推送操作*/private static final Integer LIMIT = 5000;/*** 起的线程数*/private static final Integer THREAD_NUM = 5;/*** 创建线程池** - corePoolSize:线程核⼼参数选择了5** - maximumPoolSize:最⼤线程数选择了核⼼线程数2倍数** - keepAliveTime:⾮核⼼闲置线程存活时间直接置为0** - unit:⾮核⼼线程保持存活的时间选择了 TimeUnit.SECONDS 秒** - workQueue:线程池等待队列,使⽤容量初始为100的 LinkedBlockingQueue阻塞队列** 线程池拒绝策略,采⽤了默认AbortPolicy:直接丢弃任务,抛出异常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Java多线程(线程池-数据队列)
package thpool;
public class Main {
/**
*@author HJ
*/
/**
*这个关于线程池的示例中能看到把工作/服务线程放到了线程池中,
*请求/生产者线程也可以模仿工作/服务线程
*做一个线程池。
***/
public static void main(String[] args) {
/**
*初始化一定个数的工作/服务线程,
***/
Channel channel=new Channel(25);
/**
*启动三个请求线程
***/
new RequestThread("RequestThread-0",channel).start();
new RequestThread("RequestThread-1",channel).start();
new RequestThread("RequestThread-2",channel).start();
/**
*启动工作/服务线程
***/
channel.startServers();
}
}
package thpool;
import java.util.LinkedList;
/**
*@author HJ
***/
public class Channel<T> {
/**
*请求信息存放的队列
***/
private final LinkedList<T> queue=new LinkedList<T>();
/**
*线程池
***/
private final ServerThread[] threadPool;
public Channel(int serverNum) {
/**
*初始化Channel时初始化所有工作/服务线程
***/
threadPool=new ServerThread[serverNum];
for(int i=0;i<threadPool.length;i++){
threadPool[i]=new ServerThread("ServerThread-"+i,this);
}
}
/**
*启动工作/服务线程
***/
public void startServers(){
for(int i=0;i<threadPool.length;i++){
threadPool[i].start();
}
}
/**
*获取请求信息
***/
public synchronized T getRequest(){
System.out.println("**************** request list size is
"+queue.size());
while(queue.size() <= 0){
try {
wait();
} catch (InterruptedException e) {
//此处可添加适当异常记录动作
}
}
T request=queue.removeFirst();
notifyAll();
return request;
}
/**
*增加请求信息
***/
public synchronized void addRequest(T request){
/**
*CriticalValues.maxSize
*设置请求信息存放队列的一个极限值以防止请求与处理的极度不平衡而造成的内存骤涨或者内存溢出
***/
if(queue.size() >= CriticalValues.maxSize){
try {
wait();
} catch (InterruptedException e) {
//此处可添加适当异常记录动作
}
}
queue.addLast(request);
notifyAll();
}
}
package thpool;
public class CriticalValues {
/**
*设置请求信息存放队列的极限值
***/
public static final int maxSize=1000;
}
package thpool;
/**
*@author HJ
***/
public class Request {
/**
*以下两个属性仅仅为了演示清晰而设置
*分别代表请求线程的名字与该请求线程发送的第几个请求
*实际开发中可以不需要
*该类在实际开发中应该是代表了需要处理的信息所组成的类
*以及需要处理这些信息的方法
***/
private final String threadName;
private final int number;
public Request(String threadName,int number) {
this.threadName = threadName;
this.number=number;
}
/**
*处理请求信息的方法即工作线程的实际工作方法
***/
public void execute(){
System.out.println(Thread.currentThread().getName()+" execute "+toString());
try {
/**
*模拟执行了一定的业务处理
***/
Thread.sleep(20);
} catch (InterruptedException e) {
}
}
public String toString(){
return" Request from Thread "+threadName +" NO."+number;
}
}
package thpool;
*@author HJ
***/
public class RequestThread extends Thread{
private final Channel channel;
public RequestThread(String name,Channel channel) { super(name); //设置线程名称
this.channel = channel;
}
public void run() {
for(int number=0;number<=10000;number++){
try {
//模拟业务处理并得到请求信息的各个属性
Thread.sleep(10);
} catch (InterruptedException e) {
}
/**
*生成请求信息所包装的java bean,并将该请求信息放入存放队列
***/
Request request=new Request(this.getName(),number);
channel.addRequest(request);
}
}
}
package thpool;
/**
*@author HJ
***/
public class ServerThread extends Thread {
private final Channel channel;
public ServerThread(String name,Channel channel) { super(name);
this.channel = channel;
}
public void run() {
for(;;){
/**
*从请求队列中获取请求信息并执行业务处理方法
***/
Request request=(Request) channel.getRequest();
request.execute();
}
}。