2009资阳中考数学答案
2009年四川省凉山州中考数学试题及答案

2009年凉山州初中毕业、高中阶段招生统一考试数 学 试 卷本试卷共10页,分为A 卷(100分)、B 卷(20分),全卷满分120分,考试时间120分钟,A 卷又分为第Ⅰ卷和第Ⅱ卷.A 卷(共100分) 第Ⅰ卷(选择题 共30分)注意事项:1.第Ⅰ卷答在答题卡上,不能答在试卷上.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.一、选择题:(共10个小题,每小题3分,共30分)在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.比1小2的数是( ) A .1- B .2- C .3-D .12.下列运算正确的是( ) A .3412a a a = B .632a a a ÷=C .23a a a -=-D .22(2)4a a -=-3.长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ) A .625.110-⨯米 B .40.25110-⨯米C .52.5110⨯米D .52.5110-⨯米4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( ) A .12B .18C .38D .111222++5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( ) A .和 B .谐 C .凉 D .山6.一组数据3、2、1、2、2的众数,中位数,方差分别是( ) A .2,1,0.4 B .2,2,0.4 C .3,1,2D .2,1,0.27.若0ab <,则正比例函数y ax =与反比例函数b y x=在同一坐标系中的大致图象可能是( )8.下列图形中既是轴对称图形,又是中心对称图形的是( )9.如图,将矩形A B C D 沿对角线B D 折叠,使C 落在C '处,B C '交A D 于E ,则下列结论不一定成立的是( ) A .AD BC '=B .EBD ED B ∠=∠C .A B E C BD △∽△D .sin A EA B E E D∠=10.如图,O ⊙是A B C △的外接圆,已知50A B O ∠=°,则A C B ∠的大小为( )A .40°B .30°C .45°D .50°第Ⅱ卷(非选择题 共70分)注意事项:1.答卷前将密封线内的项目填写清楚,准考证号前七位填在密封线方框内,末两位填在卷首方框内.2.答题时用钢笔或圆珠笔直接答在试卷上. 二、填空题(共4小题,每小题3分,共12分)11.分解因式39a a -= ,221218x x -+= .12.已知A B C A B C '''△∽△且1:2ABC A B C S S '''=△△:,则:A B A B ''= .13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .14.已知一个正数的平方根是32x -和56x +,则这个数是 . 三、解答题(共4小题,每小题7分,共28分)15.计算:012009|3.14π| 3.1412cos 451)(1)2-⎛⎫-+÷+-++- ⎪ ⎪⎝⎭°.16.先化简,再选择一个你喜欢的数(要合适哦!)代入求值: 2111x x x -⎛⎫+÷⎪⎝⎭.建 设和 谐 凉山 (第5题)xxxxB . A .B .C .D .CD C 'A BE(第9题)(第10题)18 6 4 2 01 23 4 5 6 7 8 1小小(第13题)观察上表中的结果,你能发现a b c 、、之间有什么关系吗?请写出关系式.18.如图,A B C △在方格纸中(1)请在方格纸上建立平面直角坐标系,使(23)(62)A C ,,,,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将A B C △放大,画出放大后的图形A B C '''△; (3)计算A B C '''△的面积S .四、解答题(共2小题,每小题7分,共14分)19.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)20.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.五、解答题(共2小题,每小题8分,共16分)21.如图,要在木里县某林场东西方向的两地之间修一条公路M N ,已知C 点周围200米范围内为原始森林保护区,在M N 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)M N 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.如图,在平面直角坐标系中,点1O 的坐标为(40)-,,以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以点2(135)O ,为圆心的圆与x 轴相切于点D . (1)求直线l 的解析式;(2)将2O ⊙以每秒1个单位的速度沿x 轴向左平移,当2O ⊙第一次与1O ⊙外切时,求2O ⊙平移的时间.CBNMA(第21题)A BC(第18题)B 卷(共20分)六、填空题(共2小题,每小题3分,共6分)23.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .24.将A B C △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90B C A ∠=°,304cm BAC AB ∠==°,2.七、解答题(共2小题,25题4分,26题10分,共14分)25.我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?26.如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,两点,顶点为D . (1)求抛物线的解析式;(2)将O A B △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1N D D △面积的2倍,求点N 的坐标.(第26题)A C (第24题)2009年凉山州初中毕业、高中阶段招生统一考试数学参考答案及评分意见说明:一、如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.二、评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步以后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半,明显笔误,可酌情少扣;如有严重概念性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分. 三、涉及计算过程,允许合理省略非关键步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷(共100分)一、选择题:(共10个小题,每小题3分,共30分) 1.A 2.C 3.D 4.B 5.D 6.B 7.B 8.D 9.C 10.A 二、填空题(共4个小题,每小题3分,共12分) 11.(3)(3)a a a +- 22(3)x - 12.1:13.小林 14.494三、解答题(共4个小题,每小题7分,共28分) 15.计算:原式1(3.14π) 3.1412(1)2=--+÷-⨯+- ································ 3分1π 3.14 3.14121=-+--- ······················································ 5分π11=--············································································ 6分π= ······································································································ 7分16.解:2111(1)(1)1x x x x x x x x -+-+⎛⎫+÷=÷ ⎪⎝⎭··························································· 3分1(1)(1)x x xx x +=⨯-+ ···························································· 4分11x =- ··················································································· 5分取2x =时,原式1121==-.(学生取除1以外的值计算正确均给分)······································································ 7分 17.2a c b +-=(与此式等价的关系式均给分) ······························································· 7分18.(1)画出原点O ,x 轴、y 轴. ············································································ 1分 (21)B ,·························································································································· 2分 (2)画出图形A B C '''△.··························································································· 5分(3)148162S =⨯⨯=. ···························································································· 7分四、解答题(共2小题,每小题7分,共14分)19.解:设至少涨到每股x 元时才能卖出. ·································································· 1分 根据题意得1000(50001000)0.5%50001000x x -+⨯+≥ ········································· 4分 解这个不等式得1205199x ≥,即 6.06x ≥. ·································································· 6分答:至少涨到每股6.06元时才能卖出. ········································································ 7分 20.解:(1)取出一个黑球的概率44347P ==+ ·························································· 2分(2) 取出一个白球的概率37x P x y+=++··································································· 4分3174x x y+∴=++ ··········································································································· 5分1247x x y ∴+=++ ··································································································· 6分 y ∴与x 的函数关系式为:35y x =+. ······································································· 7分五、解答题(共2小题,每小题8分,共16分)21.(1)理由如下: 如图,过C 作C H AB ⊥于H ,设C H x =,由已知有4560EAC FBC ∠=∠=°,° 则4530C A H C B A ∠=∠=°,°,························· 1分 在R t A C H △中,A H C H x ==,CHF BNMAE 60° 45° (第21题答图)(第18题答图)在R t H BC△中,tanC H H B CH B ∠=tan303CH xHB∴===°,··················································································· 3分AH H B AB+=600x∴+=解得220x=(米)>200(米).M N∴不会穿过森林保护区.······················································································· 5分(2)解:设原计划完成这项工程需要y天,则实际完成工程需要(5)y-天.根据题意得:11(125%)5y y=+⨯-············································································· 7分解得:25y=经检验知:25y=是原方程的根.答:原计划完成这项工程需要25天.··········································································· 8分22.(1)解:由题意得|4||8|12OA=-+=,A∴点坐标为(120)-,.在R t A O C△中,60O A C∠=°,tan12tan60OC OA OAC=∠=⨯=°C∴点的坐标为(0-,.······························· 1分设直线l的解析式为y kx b=+,由l过A C、两点,得012bk b⎧-=⎪⎨=-+⎪⎩解得bk⎧=-⎪⎨=⎪⎩∴直线l的解析式为:y=-··································································· 3分(2)如图,设2O⊙平移t秒后到3O⊙处与1O⊙第一次外切于点P,3O⊙与x轴相切于1D点,连接1331O O O D,.则13138513O O O P PO=+=+=31O D x⊥轴,315O D∴=,在131R t O O D△中,1112O D===.···································· 6分1141317O D O O OD=+=+=,111117125D D O D O D∴=-=-=,551t∴==(秒)2O∴⊙平移的时间为5秒. ························································································· 8分B卷(共20分)六、填空题(共2小题,每小题3分,共6分)23.1-24.4π七、解答题(共2小题,25题4分,26题10分,共14分)25.解:543210101011120212021212=⨯+⨯+⨯+⨯+⨯+⨯···································· 3分3208021=+++++43= ·································································································· 4分26.解:(1)已知抛物线2y x bx c=++经过(10)(02)A B,,,,01200b cc=++⎧∴⎨=++⎩解得32bc=-⎧⎨=⎩∴所求抛物线的解析式为232y x x=-+. ·································································· 2分(2)(10)A,,(02)B,,12O A O B∴==,可得旋转后C点的坐标为(31),······················································································ 3分当3x=时,由232y x x=-+得2y=,可知抛物线232y x x=-+过点(32),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:231y x x=-+.···························································· 5分(3) 点N在231y x x=-+上,可设N点坐标为2000(31)x x x-+,将231y x x=-+配方得23524y x⎛⎫=--⎪⎝⎭,∴其对称轴为32x=. ····························· 6分①当32x<<时,如图①,112N BB N D DS S=△△00113121222x x ⎛⎫∴⨯⨯=⨯⨯⨯- ⎪⎝⎭01x =此时200311x x -+=-N ∴点的坐标为(11)-,. ····························································································· 8分 ②当032x >时,如图②同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭03x ∴=此时200311x x -+=∴点N 的坐标为(31),.综上,点N 的坐标为(11)-,或(31),. ·········································································10分图②。
2009年江苏省中考数学试卷(附答案)

江苏省2009年中考数学试卷说明: 1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号. 3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( )A .2B .2-C .12D .12- 2.计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3.如图,数轴上A B 、两点分别对应实数a b 、则下列结论正确的是( )10 a b (第3题)A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示: 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差 7.如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;圆柱 圆锥 球 正方(第5题)图图AC BDFE(第7题)④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2.12.反比例函数1y x=-的图象在第 象限.13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= . 15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦C D A B ∥.若65ABD ∠=°,则A D C ∠= .17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18是梯形ABCD 的中位线,DEF△的面积为24cm ,则梯形ABCD 的面积为 cm 2. 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.(第15AD E BCF (第16(第17(第1820.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:21.(本题满分8的机会相同,那么这多少?22.(本题满分8分)一辆汽车从A地驶往B地,前路段为普通公3路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD中,∥,∥,∥,、两点在边BC上,且四边形AEFD是A D B C A B D E A F D平行四边形.(1)AD与BC有何等量关系?请说明理由;A DCBFE(2)当AB DC =时,求证:ABCD 是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+25.(本题满分10分)如图,在航线l点A 到航线l 的距离为2km ,点B 位于点A 北偏东距10km 处.现有一艘轮船从位于点B 南偏西76该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用AACDB图A CDB图F E将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度ED C F B A图③ E D C AB F G ADEC B F G 图④ 图⑤1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.五月份销售记录(万升)/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16 三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程)19.解:(1)原式2123=-+=. ··········· (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. (8分) 20.解:(1)280,48,180. ············ (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=,估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ··· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ······· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一??????问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ········ (7分) 答:普通公路长为60km ,高速公路长为120km . ···· (8分) 解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ························· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,········ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .(8分)(男男男) (男男女) 女 男(男女男) (男女女)女 女(女男男) (女男女)女 男(女女男)(女女女) 女 女男女 开始第一个第二个 第三个 所有结果23.(1)解:13AD BC =. ·············· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形.AD BE AD FC ==,.又四边形AEFD 是平行四边形,AD EF ∴=.AD BE EF FC ∴===.13AD BC ∴=. ··················· (5分)(2)证明:四边形ABED 和四边形AFCD 都是平行四边形,DE AB AF DC ∴==,. AB DC DE AF =∴=,.又四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. (10分) 24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ······ (3分)因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······ (6分)(2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),.因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ···· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60AD OAD AD OA ∠====°,,°. 又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ). ∴观测点B 到航线l 的距离为3km . ·········· (4分) (2)在Rt AOD △中,tan 60OD AD ==°.在Rt BOE △中,tan 60OE BE ==°DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=°,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CD CD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ······· (10分)26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠.又由折叠知,90AGE DGE ∠=∠=°,所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ······ (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以A CD B FE G135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ············· (10分)27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升).答:销售量x 为4万升时销售利润为4万元. ····· (3分)(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩, ∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ·· (6分) 从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元). ∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得1.10.m n =⎧⎨=⎩, 所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. · (9分)(3)线段AB . ·················· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ····· (3分)(2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ··············· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升). 当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.5 4.45⨯+⨯==(元). 所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤.······ (9分) (3)线段AB . ·················· (12分)28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ········· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时, 有3532t -≤,即43t ≥.当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO∠=∠, 得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. (5分) ②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+ 221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ······ (7分)当PA PB =时,有PC AB ⊥, 3535t t ∴-=-.解得35t =. ··· (9分) 当PB AB =时,有222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭.221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ········ (11分) ∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =.(12分)。
资阳市2009中考理综试题及答案

资阳市2009年高中阶段学校招生统一考试理科综合全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至12页。
全卷满分150分。
考试时间共120分钟。
答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回。
可能用到的资料——元素周期表(部分):第Ⅰ卷(选择题共51分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
一、选择题(本大题包括17小题,共51分)每小题只有一个选项符合题意。
1.关于下列各图的说法错误..的是A.图1中4是植物根尖吸收水分、无机盐的主要部位资阳市理科综合试卷第1页(共15页)B.图2中鸟的肺和气囊都要进行气体交换,为它在飞行时提供足够的氧气C.在一个标准大气压下,肺内气压变化处于图3曲线中AB段时,人的膈肌处于收缩状态D.环保塑料袋能在较短时间内被图4中④分解,从而减少白色污染2.根据你所学的生物学知识判断下列说法正确的是A.“有收无收在于水,收多收少在于肥”,这句话表明了植物的生长需要水和有机物B.既能生活在水中又能生活在陆地上的动物都属于两栖动物C.“落红不是无情物,化作春泥更护花”蕴涵了生态系统的物质循环D.陈章良教授成功地将固氮基因整合到小麦的DNA分子中,该项研究利用的是杂交育种技术3.下列关于水的说法不正确...的是A.水是由氢、氧两种元素组成的B.地球表面的水不少,但可供人类生存所需的淡水确不多C.欲从食盐水中把水分离出来,最好采用蒸馏方法D.软水一定是纯水4.下列关于人体健康的叙述不正确...的是A.蛋白质、维生素等是维持生命的重要营养物质,因此不要偏食,以保持营养平衡B.钙、铁、锌、碘都是人体必需的元素,食用含这些元素的药品越多越好C.吸烟有害健康,因烟气中的尼古丁和CO等是有毒物质D.食用无污染的绿色食品,有利身体健康5.下列关于生活中常见物质的认识不正确...的是A.化学中的盐不只是食盐B.生石灰和熟石灰是同一种物质C.纯碱不属于化学中的碱D.食醋不是纯净物6.现有X、Y、Z三种金属单质,根据下列叙述作出判断,这三种金属依次可能是①将X放入盐酸中,无任何现象②Z在潮湿的空气中易锈蚀③将Y和Z分别放入XSO4溶液中,均有X析出,且Y的反应更快A.Cu、Zn、Fe B.Al、Fe、CuC.Ag、Cu、Fe D.Zn、Fe、Cu资阳市理科综合试卷第2页(共15页)资阳市理科综合试卷第3页(共15页)7.2008年震惊中华大地的三鹿毒奶粉事件,是造假者在牛奶中掺入了廉价的三聚氰胺(分子结构如右图)。
资阳市2009中考文综试题及答案

资阳市2009年高中阶段学校招生统一考试文科综合全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(综合题)两部分。
第Ⅰ卷1至6页,第Ⅱ卷7至12页。
全卷满分150分,考试时间120分钟。
答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)注意事项:每小题选出的答案不能答在试卷上,必须用铅笔把对应题目的答案填涂在答题卡上,如需改动,用橡皮擦擦净后,再选涂其它答案。
一、选择题:本大题共30小题,每小题2分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求。
1.2008年8月8日至24日,第29届奥运会在北京成功举行。
中国体育代表团共获得______枚金牌,位居金牌榜第_______位。
A.32 三 B. 46 二 C .61 一 D. 51 一2.2008年9月25日,神舟七号载人飞船在酒泉卫星发射中心成功发射,航天员______完成了中国人首次太空漫步,标志着我国成为世界上第三个独立掌握空间出舱关键技术的国家。
A.杨利伟B. 刘伯明C.翟志刚 D.景海鹏3.2008年9月5日,中共中央政治局会议决定从9月开始,用一年半左右时间,在全党分批开展深入学习实践______活动。
A.邓小平理论B.“三个代表”重要思想C.科学发展观D.中国特色社会主义理论4.2009年1月9日上午,中共中央、国务院在北京隆重举行国家科学技术奖励大会。
国家主席胡锦涛为获得2008年度国家最高科学技术奖的两位科学家______颁发了奖励证书。
A.李振声袁隆平B.闵恩泽吴征镒C.叶笃正吴孟超D.王忠诚徐光宪5.感动中国2008年度人物四川汉源彝族支教夫妻李桂林、陆建芬,在最崎岖的山路上点燃知识的火把,在最寂寞的悬崖边拉起孩子们求学的小手。
两位老师19年的清贫、坚守和操劳的事迹启示我们①只有在艰苦的环境中才能创造出不平凡的业绩②只要兢兢业业,在平凡的岗位上也能实现人原西藏地方政府对农奴实行的酷刑:左图为足械刑 右图为被挖去双眼的农奴格达在民主改革中控诉农奴主的罪行 新华社发生价值 ③不计较代价与回报地履行责任的奉献精神是社会责任感的集中体现 ④只讲奉献、不求回报,是面对责任的唯一正确选择A .②③B .①③④C .①②③D .①②④6.今年3月以来,十四世达赖喇嘛又开始在海外频频活动,宣称现在的西藏人民“陷入了人间地狱般的苦难中”,唯有过去的西藏才是“自由的西藏”。
2009年四川省资阳市中考数学试题(word版含答案)

资阳市2009年高中阶段学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. –3的绝对值是()A. 3B. –3C. ±3D. 92. 下列计算正确的是()A. a+2a2=3a3B. a2·a3=a6C. 32a=a9 D. a3÷a4=1()a (a≠0)3. 吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是()A. 正三角形B. 正方形C. 正六边形D. 正八边形4. 若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A. k<0B. k>0C. b<0D. b>05. 的结果是()A. 2xB. ±2x D. ±6. 在数轴上表示不等式组11,21xx⎧≥-⎪⎨⎪->-⎩的解集,正确的是()7. 如图1,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A. 30°B. 45°C. 60°D.90°8. 按图2中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9. 用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是()A. 分析1、分析2、分析3B. 分析1、分析2C. 分析1D. 分析210. 如图3,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A. 563B. 25C. 1123D. 56图 3图2图 1资阳市2009年高中阶段学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).12. 方程组25,4x y x y -=⎧⎨+=⎩的解是_____________.13. 若两个互补的角的度数之比为1∶2,则这两个角中较小..角的度数是_____________. 14.如图4,已知直线AD 、BC 交于点E ,且AE =BE ,欲证明△AEC ≌△BED ,需增加的条件可以是__________________(只填一个即可).15. 若点A (–2,a )、B (–1,b )、C (1,c )都在反比例函数y =kx(k <0)的图象上,则用“<”连接a 、b 、c 的大小关系为___________________.16. 若n 为整数,且n ≤x <n +1,则称n 为x 的整数部分.通过计算301111198019801980+++个和301111200920092009+++个的值,可以确定x =11111119801981198220082009+++++的整数部分是______.图4三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)解方程:2103x x --=.18.(本小题满分7分)如图5,已知□ABCD 的对角线AC 、BD 相交于点O ,AC =12,BD =18,且△AOB 的周长l =23,求AB 的长.19.(本小题满分8分)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1= –4x +190,y 2=5x –170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求.(1) (4分) 求该商品的稳定价格和稳定需求量;(2) (4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么?图520.(小题满分8分)根据W 市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:(1) (3分) 从2006年到2008年,W 市的GDP哪一年比上一年的增长量最大?(2) (3分) 2008年W 市GDP 分布在第三产业的约是多少亿元?(精确到0.1亿元)(3) (2分) 2008年W 市的人口总数约为多少万人?(精确到0.1万人)21.(本小题满分8分)某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图6所示)的舞台,且台面铺设每平方米售价为a 元的木板.已知AB =12米,AD =16米,∠B =60°,∠C =45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)图6已知关于x的一元二次方程x2+kx–3=0,(1) (4分) 求证:不论k为何实数,方程总有两个不相等的实数根;(2) (4分) 当k=2时,用配方法解此一元二次方程.如图7,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1) (6分) 求证:BE=DG,且BE⊥DG;(2) (2分) 设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)图724.(本小题满分9分)如图8-1,已知O 是锐角∠XAY 的边AX 上的动点,以点O 为圆心、R 为半径的圆与射线AY 切于点B ,交射线OX 于点C .连结BC ,作CD ⊥BC ,交AY 于点D .(1) (3分) 求证:△ABC ∽△ACD ;(2) (6分) 若P 是AY 上一点,AP =4,且sin A =35,① 如图8-2,当点D 与点P 重合时,求R 的值;② 当点D 与点P 不重合时,试求PD 的长(用R 表示).图8-2图8-125.(本小题满分9分)如图9,已知抛物线y =12x 2–2x +1的顶点为P ,A 为抛物线与y 轴的交点,过A 与y 轴垂直的直线与抛物线的另一交点为B ,与抛物线对称轴交于点O ′,过点B 和P 的直线l 交y 轴于点C ,连结O ′C ,将△ACO ′沿O ′C 翻折后,点A 落在点D 的位置.(1) (3分) 求直线l 的函数解析式; (2) (3分) 求点D 的坐标;(3) (3分) 抛物线上是否存在点Q ,使得S △DQC = S △DPB ? 若存在,求出所有符合条件的点Q 的坐标;若不存在,请说明理由.资阳市2009年高中阶段学校招生统一考试数学试题参考答案及评分意见图9说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ADDBC ;6-10. DCBAC.二、填空题(每小题3分,共6个小题,满分18分):11.甲;12.3,1;xy=⎧⎨=⎩13.60°;14.∠A=∠B或∠C=∠D或CE=DE;15.c<a<b;16.66.三、解答题(共9个小题,满分72分):17.原方程可变形为:3(x–2)–x=0, (3)分整理,得2x=6, (5)分解得x=3. (6)分经检验,x=3是原方程的解. (7)分18.∵□ABCD的对角线AC、BD相交于点O,AC =12,BD=18, (1)分∴AO=12AC=6, (3)分BO=12BD=9. (5)分又∵△AOB的周长l=23,∴AB=l–(AO+BO)=23–(6+9)=8. (7)分19.(1) 由y1=y2,得:–4x+190=5x–170, (2)分解得x=40. (3)分此时的需求量为y1= –4×40+190=30. (4)分因此,该商品的稳定价格为40元/件,稳定需求量为30万件.(2) 当x=45时,y1= – 4×45+190=10, (5)分y 2= 5×45–170=55, ······················································································ 6分∴ y 1<y 2. ································································································· 7分∴ 当价格为45(元/件)时,该商品供过于求. ··················································· 8分20.(1) 观察条形统计图可知,W 市的GDP2007年比上一年的增长量最大. ················ 3分(2) 2008年W 市GDP 分布在第三产业的约是: 467.6×26%≈121.6(亿元). ·············································································· 6分(3) 2008年W 市人口总数约为:467.6×104÷12000≈389.7 (万人). ·························· 8分21.作AE ⊥BC 于点E ,DF ⊥BC 于点F ,易知ADFE 为矩形. ································· 1分在Rt △ABE 中,AB =12米,∠B =60°,∴ BE =12×cos60°=6(米),·························· 2分AE =12×sin60°米) . ··········································································· 3分在矩形ADFE 中,AD =16米,∴ EF =AD =16米,DF =AE ······························································· 4分在Rt △CDF 中,∠C =45°,∴ CF =DF (米) . ········································· 5分∴ BC =BE +EF +CF 米), ······························································· 6分∴ S 梯形ABCD =12(AD +BC )·AE =12米2), ·············· 7分∴购买木板所用的资金为 a 元. ····················································· 8分22. (1) 方程的判别式为 Δ=k 2 –4×1×(–3)= k 2 +12, ··················································· 2分不论k 为何实数,k 2≥0,k 2 +12>0,即Δ>0, ···················································· 3分因此,不论k 为何实数,方程总有两个不相等的实数根. ··································· 4分(2) 当k =2时,原一元二次方程即 x 2+2x –3=0, ∴ x 2+2x +1=4,··························································································· 5分∴ (x +1)2=4, ····························································································· 6分∴ x +1=2或x +1= –2,·················································································· 7分∴ 此时方程的根为 x 1=1,x 2= –3. (8)分23. (1) 证法一:∵四边形ABCD 、AEFG 均为正方形,∴ ∠DAB =∠GAE =90°,AD =AB ,AG =AE . ····················································· 2分∴ 将AD 、AG 分别绕点A 按顺时针方向旋转90°,它们恰好分别与AB 、AE 重合,即点D 与点B 重合,点G 与点E 重合, ·································································· 3分∴ DG 绕点A 顺时针旋转90°与BE 重合, ······················································· 5分∴ BE =DG ,且BE ⊥DG . ··········································································· 6分证法二:∵四边形ABCD 、AEFG 均为正方形,∴ ∠DAB =∠GAE =90°,AD =AB ,AG =AE . ····················································· 2分∴ ∠DAB +α=∠GAE +α,∴ ∠DAG =∠BAE .① 当α≠90°时,由前知 △DAG ≌△BAE (S.A.S.),··········································· 2分∴ BE =DG , ····························································································· 3分且∠ADG =∠ABE . ····················································································· 4分设直线DG 分别与直线BA 、BE 交于点M 、N ,又∵∠AMD =∠BMN ,∠ADG +∠AMD =90°, ∴∠ABE +∠BMN =90°, ··············································································· 5分∴∠BND =90°,∴BE ⊥DG . ········································································ 6分② 当α=90°时,点E 、点G 分别在BA 、DA 的延长线上,显然BE =DG ,且BE ⊥DG . (说明:未考虑α=90°的情形不扣分)(2) S 的最大值为252, ················································································· 7分当S 取得最大值时,α=90°. ········································································· 8分24.(1) 由已知,CD ⊥BC ,∴ ∠ADC =90°–∠CBD , ··············································· 1分又∵ ⊙O 切AY 于点B ,∴ OB ⊥AB ,∴∠OBC =90°–∠CBD , ···························· 2分∴ ∠ADC =∠OBC .又在⊙O 中,OB =OC =R ,∴∠OBC =∠ACB ,∴∠ACB =∠ADC . 又∠A =∠A ,∴△ABC ∽△ACD . ································································· 3分(2) 由已知,sin A =35,又OB =OC =R ,OB ⊥AB , ∴ 在Rt △AOB 中,AO =sin OB A =35R =53R ,AB43R ,∴ AC =53R +R =83R . ·················································································· 4分由(1)已证,△ABC ∽△ACD ,∴AC AD AB AC=, ·················································· 5分 ∴834833R AD R R =,因此 AD =163R . ···································································· 6分① 当点D 与点P 重合时,AD =AP =4,∴163R =4,∴R =34. ······························· 7分② 当点D 与点P 不重合时,有以下两种可能:i) 若点D 在线段AP 上(即0<R <34),PD =AP –AD =4–163R ; ································· 8分ii) 若点D 在射线PY 上(即R >34),PD =AD –AP =163R –4. ··································· 9分 综上,当点D 在线段AP 上(即0<R <34)时,PD =4–163R ;当点D 在射线PY 上(即R >34)时,PD =163R –4.又当点D 与点P 重合(即R =34)时,PD =0,故在题设条件下,总有PD =|163R –4|(R >0). 25.(1) 配方,得y =12(x –2)2 –1,∴抛物线的对称轴为直线x =2,顶点为P (2,–1) . ······· 1分取x =0代入y =12x 2 –2x +1,得y =1,∴点A 的坐标是(0,1).由抛物线的对称性知,点A (0,1)与点B 关于直线x =2对称,∴点B 的坐标是(4,1). ······································ 2分设直线l 的解析式为y =kx +b (k ≠0),将B 、P 的坐标代入,有14,12,k b k b =+⎧⎨-=+⎩解得1,3.k b =⎧⎨=-⎩∴直线l 的解析式为y =x –3. ······································· 3分(2) 连结AD 交O ′C 于点E ,∵ 点D 由点A 沿O ′C 翻折后得到,∴ O ′C 垂直平分AD . 由(1)知,点C 的坐标为(0,–3),∴ 在Rt △AO ′C 中,O ′A =2,AC =4,∴ O ′C.据面积关系,有 12×O ′C ×AE =12×O ′A ×CA ,∴ AE,AD =2AE作DF ⊥AB 于F ,易证Rt △ADF ∽Rt △CO ′A ,∴AF DF AD AC O A O C=='', ∴ AF =AD O C '·AC =165,DF =AD O C '·O ′A =85, ·····················································································································5分又∵OA=1,∴点D的纵坐标为1–85= –35,∴点D的坐标为(165,–35). (6)分(3) 显然,O′P∥AC,且O′为AB的中点,∴点P是线段BC的中点,∴S△DPC= S△DPB .故要使S△DQC= S△DPB,只需S△DQC=S△DPC .···································································· 7分过P作直线m与CD平行,则直线m上的任意一点与CD构成的三角形的面积都等于S△DPC,故m与抛物线的交点即符合条件的Q点.容易求得过点C(0,–3)、D(165,–35)的直线的解析式为y=34x–3,据直线m的作法,可以求得直线m的解析式为y=34x–52.令12x2–2x+1=34x–52,解得x1=2,x2=72,代入y=34x–52,得y1= –1,y2=18,因此,抛物线上存在两点Q1(2,–1)(即点P)和Q2(72,18),使得S△DQC= S△DPB. (9)分(仅求出一个符合条件的点Q的坐标,扣1分)。
2009年资阳中考数学试卷

说 明: 1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数. 2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本 答案及评分意见给分. 3. 考生的解答可以根据具体问题合理省略非关键步骤. 4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该 步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分 应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点, 其中一处错误不影响其他得分点的得分. 5. 给分和扣分都以 1 分为基本单位. 6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给 分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.
解得 x=40. ······························································································3 分 此时的需求量为 y1= –4×40+190=30. ······························································4 分 因此,该商品的稳定价格为 40 元/件,稳定需求量为 30 万件. (2) 当 x=45 时,y1= – 4×45+190=10, ·····························································5 分 y2= 5×45–170=55, ······················································································6 分 ∴ y1<y2. ··································································································7 分
2009中考数学试卷及答案

衡阳市2009中考考试试卷数 学第一题、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、 函数2-=x y 中自变量的取值范围是( C )A .0≥xB .2≤xC .2≥xD .2<x2、 已知空气的单位体积质量为31024.1-⨯克/厘米3,31024.1-⨯用小数表示为( D )A .0.000124B .0.0124C .-0.00124D .0.001243、 下面计算正确的是( B )A . 3333=+B .3327=÷ C . 532=⋅ D .24±=4、 一个直角三角形的两直角边长分别为y x ,,其面积为2,则y 与x 之间的关系用图象表示大致为( C )5、 如图1所示几何体的左视图是( D )6、 如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米, AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( A ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点7、 已知33-=-y x ,则y x 35+-的值是( D )A .0B .2C .5D .88、 两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( A ) A .相交B .外离C .内含D .外切A B C DA BC DCB图29、 如图3,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( A )①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个10、如图4,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( C ) A .1B .34C .23D .2第二题、填空题(本大题共6个小题,每小题3分,满分18分.) 11、分解因式:x x 44x -23+= x(x-2)2 .12、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为 1:2 . 13、某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是 20% .14、点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 (1,-1) .15、如图5,四边形OABC 是边长为1的正方形,反比例函数xky =的图象过点B ,则k 的值为 -1 .16、如图6,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为 3 .第三题、解答题(本大题共10个小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分6分)解下列不等式组,并把解集在数轴上表示出来.图5OCABDEFH图6B C图3 G B CA图4⎩⎨⎧≥+-<- x x x )2(33)1(2)1(02 解:由(1)得:2<x由(2)得:11 3322≤-≥-≥+- x x x x∴原不等式组的解集是21<≤x .18、(本小题满分6分)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a . 解:原式12214-⋅-+-=a a a a a a --=14 13-=a 把31=a 代入得:原式0111313=-=-⨯=19、(本小题满分6分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图7所示.1 2 3 4 5 (次)(次)甲 乙1 2 3 4 5 -1 0123(2)从平均数和方差相结合看,分析谁的成绩好些.解:甲、乙两人射靶成绩的平均数都是6,但甲比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.20、(本小题满分6分) 已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式. 解:设这个二次函数的关系式为2)1(2--=x a y 得: 2)10(02--=a解得:2=a∴这个二次函数的关系式是2)1(22--=x y ,即x x y 422-=21、(本小题满分7分) 一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球.(1)计算摸到的是绿球的概率. (2)如果要使摸到绿球的概率为41,需要在这个口袋中再放入多少个绿球? 解:(1)P (摸到绿球)61183==.(2) 设需要在这个口袋中再放入x 个绿球,得:41183=++x x解得:2=x ∴需要在这个口袋中再放入2个绿球. 22、(本小题满分7分)如图8,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ;(2)若图中阴影部分的面积是2 43cm π,OA=2cm ,求OC 的长.解:(1)证明:BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900== (2)根据题意得:360)(9036090360902222OC OA OC OA S -=-=πππ阴影;∴360)2(904322OC -=ππ解得:OC =1cm .23、(本小题满分8分) 如图9,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 和外角的平分线,BE图8⊥AE . (1)求证:DA ⊥AE ; (2)试判断AB 与DE 是否相等?并证明你的结论. 解:(1)证明:AEDA DAE BAF BAC ⊥⇒︒=∠⇒︒=︒⨯=∠+∠∠+∠⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠+∠∠∠⇒∠∠∠⇒∠909018021)(21BAE BAD 180BAF BAC BAF 21BAE BAF AE BAC 21BAD BAC AD ==平分=平分(2)AB =DE ,理由是:DE AB D AE DAE AEB AE BE ADB BC AD BAC AD ACAB =⇒⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠︒=∠⇒⊥︒=∠⇒⊥⇒⎭⎬⎫∠=是矩形四边形平分B 90 90 90 24、(本小题满分8分)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围. 解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A 、B 的坐标分别为(0.8,0)和(1,2),设线段AB 的函数关系式为:b kt S +=2,根据题意得: ⎩⎨⎧+=+=28.00b k bk 解得:⎩⎨⎧==-810b k∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .25、(本小题满分9分)图9A B CD EF如图11,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.解:(1)∵AB 是⊙O 的直径(已知) ∴∠ACB =90º(直径所对的圆周角是直角) ∵∠ABC =60º(已知) ∴∠BAC =180º-∠ACB -∠ABC = 30º(三角形的内角和等于180º) ∴AB =2BC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半) 即⊙O 的直径为4cm .(2)如图10(1)CD 切⊙O 于点C ,连结OC ,则OC =OB =1/2·AB =2cm .∴CD ⊥CO (圆的切线垂直于经过切点的半径) ∴∠OCD =90º(垂直的定义)∵∠BAC = 30º(已求) ∴∠COD =2∠BAC = 60º(在同圆或等圆中一条弧所对的圆周角等于它所对的圆心角的一半)∴∠D =180º-∠COD -∠OCD = 30º(三角形的内角和等于180º) ∴OD =2OC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半) ∴BD =OD -OB =4-2=2(cm ) ∴当BD 长为2cm ,CD 与⊙O 相切. (3)根据题意得:BE =(4-2t )cm ,BF =tcm ;如图10(2)当EF ⊥BC 时,△BEF 为直角三角形,此时△BEF ∽△BAC ∴BE :BA =BF :BC 即:(4-2t ):4=t :2 解得:t =1如图10(3)当EF ⊥BA 时,△BEF 为直角三角形,此时△BEF ∽△BCA ∴BE :BC =BF :BA 即:(4-2t ):2=t :4 解得:t =1.6∴当t =1s 或t =1.6s 时,△BEF 为直角三角形.26、(本小题满分9分)图10(3)B图10(1)B图10(2)如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.解:(1)设点M 的横坐标为x ,则点M 的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC =∣-x+4∣=-x+4,MD =∣x ∣=x ;∴C 四边形OCMD =2(MC+MD )=2(-x+4+x )=8∴当点M 在AB 上运动时,四边形OCMD 的周长不发生变化,总是等于8; (2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)· x =-x 2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4; (3)如图10(2),当20≤<a 时,42121422+-=-=a a S ; 如图10(3),当42<≤a 时,22)4(21)4(21-=-=a a S ;∴S 与a 的函数的图象如下图所示:))4<≤a图12(1)图12(2)图12(3)。
2009年数学中考试题分析

联系学生实际考查学以致用体现探索创新─历年资阳中考数学试卷分析及09年中考预测安岳县东胜九义校唐世勇一、中考试题分析(一)、07、08年试题的基本结构1、题型与题量2、考查的内容及分布从试卷考查的内容来看,几乎覆盖了数学《课程标准》所列的主要知识点,并且对初中数学的主要内容方程与不等式、函数、三角形、四边形、圆、概率、统计都作了重点考查。
(二)08年试卷整体分析试卷突出体现了新课程教学改革的基本理念。
设计考查了相反数、倒数、不等式、三角形内外角和问题、三角形的面积问题、多边形内角和、立体图形的表面展开图、相似性、一元一次方程、一元二次方程、一元一次不等式、一次函数、二次函数、概率、统计、解直角三角形、旋转、圆、方案设计、实践探究、开放探究等知识。
通过对这些问题的求解,加深对相关数学知识、数学思想方法的理解。
试卷共出现了10张图表,蕴涵着丰富的信息,要求学生能正确获取、理解和处理数据、图表所传递的信息并以此解决问题。
同时注意对学生“应用”、“建模”、“猜想与探究”等创新精神和实践能力的考查。
(三)、08年试卷主要考查的知识选择题:1、求平方根;2、数轴上的点;3、整式的运算;4、角的互余互补的关系;5、频数、频率概念的理解;6、利用变量关系解计算题(此题是初二下一次函数小节的一个作业题第十题的变形);7、利用三角形三边的关系来判定一元二次方程的根的情况;8、利用数学建模思想来求圆的半径范围;9、图形的平移,此题考的是平移坐标轴;10、旋转知识的运用,通过学生自己正确画图,利用解直角三角形来求解。
填空题:11、找全等三角形;12、特殊三角函数值、负指数、0指数、二次根式的运算;13、反比例函数的增减性(注意在每个象限内);14、梯形中位线的运用;15、众数、平均数、中位数的计算;16、生活常识题,时钟的时针与分针的旋转对应关系,此题有一定的新颖性。
解答题:17、分式的混合运算、求代数式的值;18、三角形的角平分线性质及其运用、菱形的判定;19、情景题(实际应用性题),利用数学建模列不等式(组),设计方案调运物资,此题属稍难题;20、生活情景题,利用概率来确定游戏是否公平;21、一次函数与反比例函数的结合求函数解析式、象限中的交点坐标、利用平移写出平行四边形的第4个顶点的坐标;22、生活情景、实际应用性题,用数学知识解决生活中的测量问题(1)解直角三角形、仰角,(2)添加辅助线造特殊的直角三角形求解;23、阅读理解、探究性题,三角形三边关系的猜想、探究、验证(结论开放),是一个压轴题;24、圆与函数的综合性题(1)求二次函数的解析式(中),(2)求直线解析式(中难),(3)探索求解抛物线上是否有点满足角相等,解法有多种,(压轴题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资阳市2009年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ADDBC ;6-10. DCBAC.二、填空题(每小题3分,共6个小题,满分18分):11.甲;12.3,1;xy=⎧⎨=⎩13.60°;14.∠A=∠B或∠C=∠D或CE=DE;15.c<a<b;16.66.三、解答题(共9个小题,满分72分):17.原方程可变形为:3(x–2)–x=0, ·················································································3分整理,得2x=6,·······································································································5分解得x=3. ···············································································································6分经检验,x=3是原方程的解. ····················································································7分18.∵□ABCD的对角线AC、BD相交于点O,AC =12,BD=18, ···································1分∴AO=12AC=6, ·······································································································3分BO=12BD=9.···········································································································5分又∵△AOB的周长l=23,∴AB=l–(AO+BO)=23–(6+9)=8.·········································7分19.(1) 由y1=y2,得:–4x+190=5x–170, ·······································································2分解得x=40.··············································································································3分此时的需求量为y1= –4×40+190=30.········································································4分因此,该商品的稳定价格为40元/件,稳定需求量为30万件.(2) 当x=45时,y1= – 4×45+190=10,·······································································5分y2= 5×45–170=55, ····································································································6分∴y1<y2. ··················································································································7分第1页(共4页)第2页(共4页)∴ 当价格为45(元/件)时,该商品供过于求.····························································· 8分 20.(1) 观察条形统计图可知,W 市的GDP2007年比上一年的增长量最大. ··················· 3分(2) 2008年W 市GDP 分布在第三产业的约是: 467.6×26%≈121.6(亿元). ··························································································· 6分(3) 2008年W 市人口总数约为:467.6×104÷12000≈389.7 (万人). ······························· 8分 21.作AE ⊥BC 于点E ,DF ⊥BC 于点F ,易知ADFE 为矩形.········································· 1分在Rt △ABE 中,AB =12米,∠B =60°,∴ BE =12×cos60°=6(米), ································ 2分AE =12×sin60°米) . ······················································································· 3分 在矩形ADFE 中,AD =16米,∴ EF =AD =16米,DF =AE·········································································· 4分 在Rt △CDF 中,∠C =45°,∴ CF =DF(米) .··················································· 5分 ∴ BC =BE +EF +CF米), ··········································································· 6分 ∴ S 梯形ABCD =12(AD +BC )·AE =12米2), ·················· 7分∴购买木板所用的资金为a 元. ······························································ 8分22. (1) 方程的判别式为 Δ=k 2 –4×1×(–3)= k 2+12, ···························································· 2分不论k 为何实数,k 2≥0,k 2+12>0,即Δ>0, ····························································· 3分 因此,不论k 为何实数,方程总有两个不相等的实数根.·········································· 4分(2) 当k =2时,原一元二次方程即 x 2+2x –3=0, ∴ x 2+2x +1=4, ·········································································································· 5分 ∴ (x +1)2=4, ············································································································· 6分 ∴ x +1=2或x +1= –2, ································································································ 7分 ∴ 此时方程的根为 x 1=1,x 2= –3.············································································ 8分 23. (1) 证法一:∵四边形ABCD 、AEFG 均为正方形,∴ ∠DAB =∠GAE =90°,AD =AB ,AG =AE . ······························································ 2分 ∴ 将AD 、AG 分别绕点A 按顺时针方向旋转90°,它们恰好分别与AB 、AE 重合,即点D 与点B 重合,点G 与点E 重合, ····························································································· 3分∴ DG 绕点A 顺时针旋转90°与BE 重合, ································································· 5分 ∴ BE =DG ,且BE ⊥DG . ························································································· 6分 证法二:∵四边形ABCD 、AEFG 均为正方形, ∴ ∠DAB =∠GAE =90°,AD =AB ,AG =AE . ······························································ 2分 ∴ ∠DAB +α=∠GAE +α,∴ ∠DAG =∠BAE . ① 当α≠90°时,由前知 △DAG ≌△BAE (S.A.S.), ·················································· 2分 ∴ BE =DG , ············································································································· 3分 且∠ADG =∠ABE . ··································································································· 4分 设直线DG 分别与直线BA 、BE 交于点M 、N ,又∵∠AMD =∠BMN ,∠ADG +∠AMD =90°, ∴∠ABE +∠BMN =90°, ···························································································· 5分 ∴∠BND =90°,∴BE ⊥DG . ····················································································· 6分 ② 当α=90°时,点E 、点G 分别在BA 、DA 的延长线上,显然BE =DG ,且BE ⊥DG . (说明:未考虑α=90°的情形不扣分)第3页(共4页)(2) S 的最大值为252, ······························································································· 7分当S 取得最大值时,α=90°. ····················································································· 8分24.(1) 由已知,CD ⊥BC ,∴ ∠ADC =90°–∠CBD , ·························································· 1分又∵ ⊙O 切AY 于点B ,∴ OB ⊥AB ,∴∠OBC =90°–∠CBD , ····································· 2分 ∴ ∠ADC =∠OBC .又在⊙O 中,OB =OC =R ,∴∠OBC =∠ACB ,∴∠ACB =∠ADC . 又∠A =∠A ,∴△ABC ∽△ACD . ·············································································· 3分(2) 由已知,sin A =35,又OB =OC =R ,OB ⊥AB ,∴ 在Rt △AOB 中,AO =sin O B A=35R =53R ,AB=43R ,∴ AC =53R +R =83R .································································································· 4分由(1)已证,△ABC ∽△ACD ,∴AC AD ABAC=, ··························································· 5分∴834833R A D RR=,因此 AD =163R .················································································· 6分① 当点D 与点P 重合时,AD =AP =4,∴163R =4,∴R =34. ······································ 7分② 当点D 与点P 不重合时,有以下两种可能: i) 若点D 在线段AP 上(即0<R <34),PD =AP –AD =4–163R ; ······································ 8分ii) 若点D 在射线PY 上(即R >34),PD =AD –AP =163R –4. ········································· 9分综上,当点D 在线段AP 上(即0<R <34)时,PD =4–163R ;当点D 在射线PY 上(即R >34)时,PD =163R –4.又当点D 与点P 重合(即R =34)时,PD =0,故在题设条件下,总有PD =|163R –4|(R >0).25.(1) 配方,得y =12(x –2)2 –1,∴抛物线的对称轴为直线x =2,顶点为P (2,–1) . ·········· 1分 取x =0代入y =12x 2 –2x +1,得y =1,∴点A 的坐标是(0,1).由抛物线的对称性知,点A (0,1)与点B 关于直线x =2对称,∴点B 的坐标是(4,1). ························································ 2分设直线l 的解析式为y =kx +b (k ≠0),将B 、P 的坐标代入,有14,12,k b k b =+⎧⎨-=+⎩解得1,3.k b =⎧⎨=-⎩∴直线l 的解析式为y =x –3. ·············································· 3分 (2) 连结AD 交O ′C 于点E ,∵ 点D 由点A 沿O ′C 翻折后得到,∴ O ′C 垂直平分AD . 由(1)知,点C 的坐标为(0,–3),∴ 在Rt △AO ′C 中,O ′A =2,AC =4,∴ O ′C.第4页(共4页)据面积关系,有12×O ′C ×AE =12×O ′A ×CA ,∴ AE,AD =2AE作DF ⊥AB 于F ,易证Rt △ADF ∽Rt △CO ′A ,∴AF DFAD ACO AO C=='',∴ AF =AD O C'·AC =165,DF =AD O C'·O ′A =85, ·································································· 5分又 ∵OA =1,∴点D 的纵坐标为1–85= –35,∴ 点D 的坐标为(165,–35). ················ 6分(3) 显然,O ′P ∥AC ,且O ′为AB 的中点,∴ 点P 是线段BC 的中点,∴ S △DPC = S △DPB . 故要使S △DQC = S △DPB ,只需S △DQC =S △DPC . ··············································································· 7分过P 作直线m 与CD 平行,则直线m 上的任意一点与CD 构成的三角形的面积都等于S △DPC ,故m 与抛物线的交点即符合条件的Q 点.容易求得过点C (0,–3)、D (165,–35)的直线的解析式为y =34x –3,据直线m 的作法,可以求得直线m 的解析式为y =34x –52.令12x 2–2x +1=34x –52,解得 x 1=2,x 2=72,代入y =34x –52,得y 1=–1,y 2=18,因此,抛物线上存在两点Q 1(2,–1)(即点P )和Q 2(72,18),使得S △DQC =S △DPB . ···························································································································· 9分 (仅求出一个符合条件的点Q 的坐标,扣1分)。