北京市丰台区2012届高三第二学期统一练习(一)(数学理)
2012年北京市高考数学试卷(理科)(含解析版)

第 5页(共 27页)
20.(13 分)设 A 是由 m×n 个实数组成的 m 行 n 列的数表,满足:每个数的绝 对值不大于 1,且所有数的和为零,记 s(m,n)为所有这样的数表构成的集 合.对于 A∈S(m,n),记 ri(A)为 A 的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A) 为 A 的第 j 列各数之和(1≤j≤n);记 K(A)为|r1(A)|,|R2(A)|,…, |Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表 A,求 K(A)的值;
1
1
﹣0.8
0.1
﹣0.3
﹣1
(2)设数表 A∈S(2,3)形如
(1)求证:A1C⊥平面 BCDE; (2)若 M 是 A1D 的中点,求 CM 与平面 A1BE 所成角的大小; (3)线段 BC 上是否存在点 P,使平面 A1DP 与平面 A1BE 垂直?说明理由.
17.(13 分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃 圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生
A.28+6
B.30+6
C.56+12
D.60+12
8.(5 分)某棵果树前 n 年的总产量 Sn 与 n 之间的关系如图所示.从目前记录的
结果看,前 m 年的年平均产量最高,则 m 的值为( )
A.5
B.7
C.9
第 2页(共 27页)
D.11
二.填空题共 6 小题.每小题 5 分.共 30 分.
点 E.则( )
A.CE•CB=AD•DB
2012丰台区数学高三二模理答案

丰台区2012年高三年级第二学期数学统一练习(二)数 学(理科)参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.(1,)2π10.4 11712.31.25 13. 96 14.1,1a >注:第11题第一个空答对得2分,第二个空答对得3分;第14题第一个空答对得3分,第二个空答对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.解:因为()cos sin )f x x x x =-2sin cos x x x -1cos 21)sin 222x x +-12sin 22x x -=cos(2)62x π+-.(Ⅰ)()cos(2)3362f πππ=⨯+-== ……………………7分 (Ⅱ)因为 [0,]2x π∈,所以2666x ππ7π≤+≤.当 26x π+=π,即512x π=时,函数()y f x =有最小值是12--.当512x π=时,函数()y f x =有最小值是1--. ……………………13分16.解:(Ⅰ)依题意,1000.05806000.722E a b ξ=⨯+++⨯=,OBA CD EFP x所以 806017a b +=.因为 0.050.71a b +++=,所以0.25a b +=. 由 806017,0.25,a b a b +=⎧⎨+=⎩ 可得0.1,0.15.a b =⎧⎨=⎩ ……………………7分(Ⅱ)依题意,该顾客在商场消费2500元,可以可以抽奖2次.奖金数不少于160元的抽法只能是100元和100元; 100元和80元; 100元和60元;80元和80元四种情况. 设“该顾客获得奖金数不少于160元”为事件A ,则()0.050.0520.050.120.050.150.10.10.0375P A =⨯+⨯⨯+⨯⨯+⨯=.答:该顾客获得奖金数不少于160元的概率为0.0375. ……………………13分17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………4分 (ⅱ)因为∠BAF =90º, 所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,C 所以 1(,0,1)2BE =- ,1(1,1,)2CP =-- ,所以cos ,||||BE CP BE CP BE CP ⋅<>==⋅, 即异面直线BE 与CP 所成角的余弦值为……………………9分 (Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =- ,(1,2,0)AC =,所以 平面APC 的法向量为222(2,1,)t n t-=- , 所以121212||cos ,3||||n n n n n n ⋅<>===⋅, 解得23t =,或2t =(舍).此时||3PF =. ……………………14分18.解:(Ⅰ)因为14a =,131n n n a a p +=+⋅+,所以1213135a a p p =+⋅+=+;23231126a a p p =+⋅+=+. 因为1a ,26a +,3a 成等差数列,所以2(26a +)=1a +3a , 即610124126p p ++=++, 所以 2p =. 依题意,1231n n n a a +=+⋅+, 所以当n ≥2时,121231a a -=⋅+,232231a a -=⋅+,……212231n n n a a ----=⋅+, 11231n n n a a ---=⋅+.相加得12212(3333)1n n n a a n ---=+++++- ,所以 113(13)2(1)13n n a a n ---=+--, 所以 3nn a n =+.当n =1时,11314a =+=成立,所以 3n n a n =+. ……………………8分 (Ⅱ)证明:因为 3nn a n =+,所以 22(3)3n n nn n b n n ==+-.因为 2221+11(1)22+1=333n n n n n n n n n b b +++-+-=-,*()n ∈N .若 22+210n n -+<,则n >,即 2n ≥时 1n n b b +<. 又因为 113b =,249b =, 所以49n b ≤. ……………………13分19.解:(Ⅰ)依题意设抛物线C :22(0)x py p =>,因为点P 到焦点F 的距离为5,所以点P 到准线2py =-的距离为5. 因为P (x 0,4),所以由抛物线准线方程可得 12p=,2p =. 所以抛物线的标准方程为24x y =. ……………………4分即 214y x =,所以 1'2y x =,点P (±4,4), 所以 41'|(4)22x y =-=⨯-=-,41'|422x y ==⨯=.所以 点P (-4,4)处抛物线切线方程为42(4)y x -=-+,即240x y ++=; 点P (4,4)处抛物线切线方程为42(4)y x -=-,即240x y --=.P 点处抛物线切线方程为240x y ++=,或240x y --=. ……………………7分(Ⅱ)设直线l 的方程为2y x m =+,11(,)A x y ,22(,)B x y ,联立 242x y y x m⎧=⎨=+⎩,消y 得 2840x x m --=,64160m ∆=+>.所以 128x x +=,124x x m =-, 所以1242x x +=,1282y y m +=+, 即AB 的中点为(4,8)Q m +.所以 AB 的垂直平分线方程为1(8)(4)2y m x -+=--.因为 四边形AMBN 为菱形,所以 (0,10)M m +,M ,N 关于(4,8)Q m +对称, 所以 N 点坐标为(8,6)N m +,且N 在抛物线上, 所以 644(6)m =⨯+,即10m =,所以直线l 的方程为 210y x =+. ……………………14分20.解:(Ⅰ)1a =时,()ln (1)ln(1)f x x x x x =+--,(01x <<),则()ln ln(1)ln 1xf x x x x'=--=-. 令()0f x '=,得12x =. 当102x <<时,()0f x '<,()f x 在1(0,)2是减函数, 当112x <<时,()0f x '>,()f x 在1(,1)2是增函数, 所以 ()f x 在12x =时取得最小值,即11()ln 22f =. ……………………4分(Ⅱ)因为 ()ln ()ln()f x x x a x a x =+--,所以 ()ln ln()ln xf x x a x a x'=--=-. 所以当2ax =时,函数()f x 有最小值. ∀x 1,x 2∈R +,不妨设12x x a +=,则121211221111ln ln ln ()ln()2ln()22x x x xx x x x x x a x a x +++=+--≥⋅[]1212()ln()ln 2x x x x =++-. ……………………8分(Ⅲ)(证法一)数学归纳法ⅰ)当1n =时,由(Ⅱ)知命题成立. ⅱ)假设当n k =( k ∈N *)时命题成立,即若1221k x x x +++= ,则112222ln ln ln ln2k k kx x x x x x +++≥- . 当1n k =+时,1x ,2x ,…,121k x +-,12k x +满足 11122121k k x x x x ++-++++= .设11111122212122()ln ln ln ln k k k k F x x x x x x x x x ++++--=++++ ,由(Ⅱ)得11111212212212()()ln[()ln 2]()ln[()ln 2]k k k k F x x x x x x x x x ++++--≥++-++++-=111111212122122122()ln()()ln()(...)ln 2k k k k k x x x x x x x x x x x +++++--++++++-+++ =11111212212212()ln()()ln()ln 2k k k k x x x x x x x x ++++--++++++- .由假设可得 1()ln 2ln 2ln 2k k F x +≥--=-,命题成立. 所以当 1n k =+时命题成立.由ⅰ),ⅱ)可知,对一切正整数n ∈N *,命题都成立, 所以 若211nii x==∑,则21ln ln 2nniii x x =≥-∑ *(,)i n ∈N . ……………………13分(证法二)若1221n x x x +++= , 那么由(Ⅱ)可得112222ln ln ln n n x x x x x x +++1212212212()ln[()ln 2]()ln[()ln 2]n n n n x x x x x x x x --≥++-++++- 1212122122122()ln()()ln()(...)ln 2n n n n n x x x x x x x x x x x --=++++++-+++ 1212212212()ln()()ln()ln 2n n n n x x x x x x x x --=++++++-12341234212212()ln()()ln()2ln 2n n n n x x x x x x x x x x x x --≥+++++++++- 121222(...)ln[()ln 2](1)ln 2n n x x x x x x n ≥≥++++++--- ln 2n =-.……………………13分(若用其他方法解题,请酌情给分)。
2012年高考理科数学北京卷(含详细答案)

A B=1,0}1,0,1}xy e=关于y轴对称,则()f x=()B.1x e-D.1xe--( )B.y=D.y=l与C所围成的图形的面积等于( )C.83D.表示的平面区域内存在点00(,)P x y,满足( )B.1(,)3-∞D.5(,)3-∞-第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在极坐标系中,点π(2,)6到直线sin2ρθ=的距离等于___________.10.若等比数列{}na满足2420a a+=,3540a a+=,则公比q=____;前n项和nS=____.11.如图,AB为圆O的直径,P A为圆O的切线,PB与圆O相交于D.若3PA=,:PD9:16DB=,则PD=___________;AB=___________.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是___________.13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ=________.14.如图,在棱长为2的正方体1111ABCD A B C D-中,E为BC的中点,点P在线段1D E上.点P到直线1CC的距离的最小值为___________.4的正方形,平面ABC ⊥平面,并求1BDBC 的值.. 19.(本小题满分14分)已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.20.(本小题满分13分)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项1n a +,2n a +,…的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意*n N ∈,4n n a a +=),写出1d ,2d ,3d ,4d 的值; (Ⅱ)设d 是非负整数,证明:()1,2,3,n d d n =-=的充分必要条件是{}n a 是公差为d 的等差数列;(Ⅲ)证明:若12a =,1(1,2,3,)n d n ==,则{}n a 的项只能是1或者2,且有无穷多项为1.2012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{|3B x x =>或}1x <-,易得{}|3AB x x =>.【提示】求出集合B ,然后直接求解A B .【考点】集合间的基本运算. 2.【答案】D【解析】题目中0202x y ≤≤⎧⎨≤≤⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122π24π4224P ⨯-⨯-==⨯,故选D .【提示】本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可. 【考点】不等式组,平面区域与几何概率. 3.【答案】B【解析】当0a =时,如果0b =,此时i 0a b +=是实数,不是纯虚数,因此不是充分条件;而如果i a b +已经是纯虚数,由定义实部为零,虚部不为零可以得到0a =,因此是必要条件,故选B . 【提示】利用前后两者的因果关系,即可判断充要条件. 【考点】复数的概念,充分、必要条件. 4.【答案】C【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的s 为8,故选C . 【提示】列出循环过程中s 与k 的数值,不满足判断框的条件即可结束循环. 【考点】循环结构的程序框图. 5.【答案】A【解析】由切割线定理可知2CE CB CD =,在直角ABC △中90,ACB CD AB ∠=⊥,则由射影定理可知2CD AD DB =,所以CE CB AD DB =.数学试卷 第10页(共36页)【提示】由题中三角形和圆的位置关系,通过条件求解即可. 【考点】几何证明选讲. 6.【答案】B【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共12618+=种,选B .【提示】选择数字进行排列,判断奇偶性即可. 【考点】排列组合. 7.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,65S S S S ====后右底左,因此该几何体表面积3065S =+,故选B .【提示】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可. 【考点】由三视图求几何体的表面积. 8.【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C . 【提示】由已知中图像表示某棵果树前n 年的总产量S 与n 之间的关系,结合图像可得答案. 【考点】函数图像的应用.第Ⅱ卷二、填空题 9.【答案】2【解析】直线转化为1x y +=,曲线转化为圆229x y +=,圆心(0,0)到直线1x y +=的距离132d =<,所以有两个交点.【提示】将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论. 【考点】直线和圆的位置关系. 10.【答案】1 【解析】23S a =,所以111211212a a d a d d a a d ++=+⇒=⇒=+=.【提示】由{}n a 是等差数列23S a =,解得12d =,由此能求出2a . 【考点】等差数列的通项. 11.【答案】4【解析】在△ABC 中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得4,3b c ==,答案为4.【提示】根据27a b c =+=,,1cos 4B =-,利用余弦定理可得,即可求得b 的值 【考点】余弦定理的运用. 12.【答案】3【解析】由24y x =,可求得焦点坐标为(1,0)F ,因为倾斜角为60,所以直线的斜率为tan603k ==,利用点斜式,直线的方程为33y x =-,将直线和曲线方程联立233123(3,23),,334y x A B y x⎧⎛⎫=-⎪⇒- ⎪⎨ ⎪=⎪⎝⎭⎩,因此11123322OAF A S OF y =⨯⨯=⨯⨯=△. 【提示】确定直线l 的方程,代入抛物线方程,确定A 的坐标,从而可求OAF △的面积.. 【考点】抛物线的简单性质,直线与抛物线的位置关系. 13.【答案】1【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1. 【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用. 14.【答案】(4,2)--【解析】对于①∵()22xg x =-,当1x <时,()0g x <,又∵①()0x R f x ∀∈<,或()0g x <∴()(2)(3)0f x m x m x m =-++<在1x ≥时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左边,则03121m m m <⎧⎪--<⎨⎪<⎩,∴40m -<<,即①成立的范围为40m -<<,数学试卷 第16页(共36页)又∵②(,4)x ∈∞--,()()0f x g x <, ∴此时()220x g x =-<恒成立∴()(2)(3)0f x m x m x m =-++>在(,4)x ∈-∞-有成立的可能,则只要4-比12x x ,中的较小的根大即可,(i )当10m -<<时,较小的根为3m --,34m --<-不成立, (ii )当1m =-时,两个根同为24->-,不成立,(iii )当41m -<<-时,较小的根为224m m <,-即2m <-成立. 综上可得①②成立时42m -<<-.【提示】①由于()220x g x =->时,1x ≥,根据题意有()(2)(3)0f x m x m x m =-++<在1x >时成立,根据二次函数的性质可求.②由于(,4)x ∈∞--,()()0f x g x <,而()220xg x =-<,则()(2)(3)0f x m x m x m =-++>在(,4)x ∈∞--时成立,结合二次函数的性质可求 【考点】指数函数的性质,二次函数的性质. 三、解答题15.【答案】(Ⅰ){|π,}x x k k ≠∈Z π(Ⅱ)ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z 和3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z 【解析】(Ⅰ)(sin cos )sin2()sin x x xf x x-=(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x =-sin 21cos 2x x =--π2sin 214x ⎛⎫=-- ⎪⎝⎭,{|π}x x k k ≠∈Z ,原函数的定义域为{|π,}x x k k ≠∈Z ,最小正周期为π;(Ⅱ)由πππ2π22π+,242k x k k -≤-≤∈Z . 解得π3πππ,,88k x k k -≤≤+∈Z 又{|π,}x x k k ≠∈Z ,原函数的单调递增区间为ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z ,3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z . 【提示】(Ⅰ)直接求出函数的定义域和最小正周期.(Ⅱ)利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可. 【考点】三角函数的定义域,周期,单调性. 16.【答案】(Ⅰ)证明CD DE ⊥,1A D DE ⊥,又1CDA D D =,∴DE ⊥平面1A CD ,又1AC ⊂平面1A CD , ∴1AC ⊥DE ,又1AC CD ⊥,CD DE D =∴1AC ⊥平面BCDE . (Ⅱ)如图建立空间直角坐标系C xyz -,则(2,0,0)D -,1(00,23)A ,,(0,3,0)B ,(2,2,0)E -,(0,0,0)C , ∴1(0,3,23)A B =-,1(2,2,23)A E =--,设平面1A BE 法向量为(,,)n x y z =,则1100A B n A E n ⎧=⎪⎨=⎪⎩∴323022230y z x y z ⎧-=⎪⎨---=⎪⎩∴322z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(1,2,3)n =-又∵(1,0,3)M -∴(1,0,3)CM =-∴1342cos 2||||14313222CM n CM n θ+====+++∴CM 与平面1A BE 所成角的大小45数学试卷 第22页(共36页)(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈则1(0,,23)A P a =-,(2,,0)DP a =设平面1A DP 法向量为1111(,,)n x y z =,则111123020ay z x ay ⎧-=⎪⎨+=⎪⎩∴11113612z ay x ay⎧=⎪⎪⎨⎪=-⎪⎩∴1111(,,)(3,6,3)n x y z a a ==-,假设平面1A DP 与平面1A BE 垂直,则10n n =, ∴31230a a ++=,612a =-,2a =- ∵03a ≤≤,∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直.【提示】(Ⅰ)证明1A C ⊥平面BCDE ,因为1A C CD ⊥,只需证明1AC DE ⊥,即证明DE ⊥平面1A CD . (Ⅱ)建立空间直角坐标系,用坐标表示点与向量,求出平面1A BE 法向量(1,2,3)n =-,(1,0,3)CM =-,利用向量的夹角公式,即可求得CM 与平面1A BE 所成角的大小;(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈,求出平面1A DP 法向量为1(3,6,3)n a a =-, 假设平面1A DP 与平面1A BE 垂直,则10n n =,可求得03a ≤≤,从而可得结论.. 【考点】平面图形的折叠问题,立体几何.17.【答案】(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨, 故生活垃圾投放错误的概率为:40026003= (Ⅱ)由题意可知,生活垃圾投放错误有200602020300+++=, 故生活垃圾投放错误的概率:20060403100010++=(Ⅲ)由题意可知:600a b c ++=,,,a b c 的平均数为200,222222211[(200)(200)(200)](120000)33S a b c a b c =-+-+-=++-,因此有当600a =,0b =,0c =时有280000S =.【提示】(Ⅰ)厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故可求厨余垃圾投放正确的概率. (Ⅱ)生活垃圾投放错误有2006040300++=,故可求生活垃圾投放错误的概率.(Ⅲ)计算方差可得22221(120000)3S a b c =++-,因此有当600a =,0b =,0c =时,有280000S =. 【考点】概率,方差18.【答案】(Ⅰ)33a b =⎧⎨=⎩(Ⅱ)12a h ⎛⎫-= ⎪⎝⎭【解析】(Ⅰ)由(1,)c 为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()=3g x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩.(Ⅱ)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a -≤-,即2a ≤时,最大值为2(1)4a h a =-;②若126aa -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a -≥-时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(02]a ∈,时,最大值为2(1)4a h a =-; 当(2,)a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.【提示】(Ⅰ)根据曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a b ,的值.(Ⅱ)根据24a b =,构建函数3221()()()14h x f x g x x ax a x =+=+++,求导函数,利用导数的正负,可确数学试卷 第28页(共36页)定函数的单调区间,进而分类讨论,确定函数在区间(,1)-∞-上的最大值. 【考点】利用导数求函数单调区间及最值.19.【答案】(Ⅰ)原曲线方程可化简得:2218852x y m m +=--, 由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:75.2m <<(Ⅱ)证明:由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得:232k >.由韦达定理得:21621M N k x x k +=-+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x 则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫ ⎪+⎝⎭, ∴316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线 即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证. 【提示】(Ⅰ)原曲线方程,化为标准方程,利用C 是焦点在x 轴点上的椭圆可得不等式组,即可求得m 的取值范围.(Ⅱ)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得232k >设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x ,则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫⎪+⎝⎭, 从而可得316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.11 / 1220.【答案】(Ⅰ)0.7(Ⅱ)1(Ⅲ)212t t ++ 【解析】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-∴()0.7k A =(Ⅱ)先用反证法证明()1k A ≤:若()1k A >,则1|()||1|11c A a a =+=+>,∴0a >同理可知0b >,∴0a b +>,由题目所有数和为0,即1a b c ++=-,∴11c a b =---<-与题目条件矛盾∴()1k A ≤.易知当0a b ==时,()1k A =存在∴()k A 的最大值为1.(Ⅲ)()k A 的最大值为212t t ++. 首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+: 1,11,21,1,11,21,211...1,...2t t t t t a a a a a a t +++-========-+,22,12,22,2,12,22,211...,...1(2)t t t t t t a a a a a a t t +++++========-+. 经计算知,A 中每个元素的绝对值都小于1,所有元素之和为0,且1221|()||()|2t r A r A t +==+,2121121|()||()|...|()|11(2)22t t t t t c A c A c A t t t t ++++====+>+>+++,1221121|()||()|...|()|122t t t t t c A c A c A t t +++-+====+=++. 下面证明212t t ++是最大值. 若不然,则存在一个数表(2,21)A S t ∈+,使得21()2t k A x t +=>+. 由()k A 的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[,2]x 中. 由于1x >,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x -.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g h <,则1g t h t ≤≥+,. 另外,由对称数学试卷 第34页(共36页)数学试卷 第35页(共36页) 数学试卷 第36页(共36页) 性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于1t +个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x -(即每个负数均不超过1x -). 因此11|()|()1(1)(1)21(1)[21(2)]r A r A t t x t t x x t t x x =≤++-=+-+=++-+<,故A 的第一行行和的绝对值小于x ,与假设矛盾.因此()k A 的最大值为212t t ++ 【提示】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-,其中的最小值,即可求出所求.(Ⅱ)先用反证法证明()1k A ≤,然后证明()1k A =存在即可.(Ⅲ)首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+,然后证明212t t ++是最大值即可. 【考点】合情推理.。
2012年北京高考数学试题与答案(理科)

2012年普通高等学校招生全国统一考试数 学 (理) (北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则AB =(2)设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(3)设a ,b ∈R .“0a =”是“复数i a b +是纯虚数”的(4)执行如图所示的程序框图,输出的S 值为(5)如图,90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆与交BC 于点E .则(A )(,1)-∞-(B )2(1,)3--(C )2(,3)3-(D )(3,)+∞(A )4π (B )22π- (C )6π(D )44π- (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(A )2 (B )4 (C )8 (D )16S=S ∙2k1k=0, S=1是输出S结束开始C(6)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(7)某三棱锥的三视图如图所示,该三棱锥的表面积是 (8)某棵果树前n 年的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的 年平均产量最高,m 的值为二、填空题共6小题,每小题5分,共30分.(A )CE CB AD DB ⋅=⋅ (B )CE CB AD AB ⋅=⋅ (C )2AD AB CD ⋅= (D )2CE EB CD ⋅=(A )24 (B )18(C )12(D )6(A )28+(B )30+(C )56+(D )60+(A )5(B )7 (C )9(D )11俯视图侧(左)视图正(主)视图434(9)直线2(1x t t y t =+⎧⎨=--⎩为参数)与曲线3cos (3sin x y ααα=⎧⎨=⎩为参数)的交点个数为 .(10)已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . (11)在ABC ∆中,若2a =,7bc +=,1cos 4B =-,则b = . (12)在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A 、B两点,其中,A 点在x 轴上方.若直线l 的倾斜角为60︒,则OAF ∆的面积为 . (13)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 . (14)已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)已知函数(sin cos )sin 2()sin x x xf x x-=.(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递增区间.(16)(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,3BC =,6AC =,D 、E 分别为AC 、AB 上的点,且DE //BC ,2DE =,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A C CD ⊥,如图2.(Ⅰ)求证:1AC ⊥平面BCDE ; (Ⅱ)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小; (Ⅲ)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.(17)(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其 他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取 了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,a b c ++=600.当数据,,a b c 的方差2s 最大时,写出,,a b c的值(结论不要求证明),并求此时2s 的值. (注:222121[()()s x x x x n=-+-+…2()]n x x +-,其中x 为数据12,,,n x x x ⋅⋅⋅的平均数)(18)(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (Ⅱ)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(]1-- ∞上的最大值.(19)(本小题共14分)已知曲线C :22(5)(2)8m x m y -+-=()m ∈R . (Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A 、B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M 、N ,直线1y =与直线BM 交于点G . 求证:,,A G N 三点共线.(20)(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和(1≤i ≤)m ,()j c A 为A 的第j 列各数之和(1≤j ≤)n .记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值.(Ⅰ)对如下数表A ,求()k A 的值;(Ⅱ)设数表(2,3)A S ∈形如求()k A 的最大值;(Ⅲ)给定正整数t ,对于所有的(2,21)A S t ∈+,求()k A 的最大值.2012高考北京数学真题答案及简析三、解答题 15.解:(sin cos )sin 2(sin cos )2sin cos ()2(sin cos )cos sin sin x x x x x x x f x x x x x x--===-{}πsin 21cos 221|π4x x x x x k k ⎛⎫=-+=--≠∈ ⎪⎝⎭Z ,,(1)原函数的定义域为{}|πx x k k ≠∈Z ,,最小正周期为π.(2)原函数的单调递增区间为πππ8k k ⎡⎫-+⎪⎢⎣⎭,k ∈Z ,3πππ8k k ⎛⎤+ ⎥⎝⎦,k ∈Z16.解:(1)CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD ,又1A C ⊂平面1A CD ,∴1A C ⊥DE又1A C CD ⊥,∴1A C ⊥平面BCDE(2)如图建系C xyz -,则()200D -,,,()0023A ,,,()030B ,,,()220E -,,∴(103A B =-,,,()1210A E =--,,设平面1A BE 法向量为()n x y z =,, 则1100A Bn A E n ⎧⋅=⎪⎨⋅=⎪⎩∴3020y x y ⎧-=⎪⎨--=⎪⎩∴2z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(12n =-,又∵(10M -,∴()103CM =-,,∴cos ||||1CM n CM n θ⋅====⋅∴CM 与平面1A BE 所成角的大小45︒(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则(10AP a =-,,,()20DP a =,, 设平面1A DP 法向量为()1111nx y z =,, 则1111020ay x ay ⎧-=⎪⎨+=⎪⎩∴111112z x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =-,y C假设平面1A DP 与平面1A BE 垂直则10n n ⋅=,∴31230a a ++=,612a =-,2a =- ∵03a <<∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直17.(1)由题意可知:4002=6003 (2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =. 18.解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+⎺又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭.综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.19.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x , MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭,,()2N N AN x x k =+,,欲证A G N ,,三点共线,只需证AG ,AN 共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。
2012北京数学理科(纯word版,含答案)

2012年普通高等学校招生全国统一考试 数学 (理)(北京卷)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = ( ) A .(,1)-∞- B .2(1,)3-- C .2(,3)3- D .(3,)+∞2.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6π D .44π- 3.设,a b R ∈, “0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件4. 执行如图所示的程序框图,输出的S 值为( ) A . 2 B . 4 C . 8 D . 165.如图,∠ACB=90°,CD ⊥AB 于点D,以BD 为直径的圆与BC 交于点E ,则() A .CE ·CB=AD ·DB B .CE ·CB=AD ·AB C .AD ·AB= 2CD D .CE ·EB= 2CD6.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数, 其中奇数的个数为( )A . 24B . 18C . 12D . 67. 某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A.28+ B.30+ C.56+.60+8. 某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B . 7C . 9D .11(第4题图)B第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. 9. 直线2,1x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y =α⎧⎨=α⎩(α为参数)的交点个数为 .10.已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = ;n S = . 11.在△ABC 中,若2a =,7bc +=,1cos 4B =-,则b = . 12.在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为 .13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 ; DE DC ⋅的最大值为 .14.已知()(2)(3)f x m x m x m =-++,()22x g x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分) 已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.16. (本小题14分)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC ,AB 上的点, 且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2. (1)求证:A 1C ⊥平面BCDE;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由. 17.(本小题13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=.当数据,,a b c 的方差2S 最大时,写出,,a b c 的值(结论不要求证明),并求此时2S 的值. (注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为12,,n x x x 的平均数) 18.(本小题13分)已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值; (2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.19.(本小题14分)已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线. 20.(本小题13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和1i m ≤≤,()j c A 为A 的第j 列各数之和1j n ≤≤; 记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值. (1)对如下数表A,求()k A 的值;(2)设数表A=(2,3)S 形如求()k A 的最大值;(3)给定正整数t ,对于所有的A ∈S(2,21t +),求()k A 的最大值.(李国波录入2012-6-8)参考答案 一、选择题1、D2、D3、B4、C5、A6、B7、B8、C 二、填空题9、2;10、1,1(1)4n n +;11、4;1213、1,1;14、(4,2)--; 三、解答题15、解:(1)由sin 0x ≠得,()x k k Z π≠∈,故()f x 的定义域为{|,}x R x k k Z π∈≠∈.因为(sin cos )sin 2()sin x x x f x x -==2cos (sin cos )x x x -=sin 2cos 21x x --)14x π--,所以()f x 的最小正周期22T ππ==. (2)函数sin y x =的单调递减区间为3[2,2]()22k k k Z ππππ++∈. 由222,()242k x k x k k Z ππππππ-≤-≤+≠∈得3,()88k x k x k k Z πππππ-≤≤+≠∈ 所以函数()f x 的单调递增区间为[,)8k k k Z πππ-∈,和3(,]()8k k k Z πππ+∈. 16.解:(1) ,AC BC DE BC ⊥∥∴DE AC ⊥∴1DE A D ⊥,DE CD ⊥(1A D CD D = )又 DE ⊥平面1A DC ,∴DE 1AC ⊥ 又∵1A C CD ⊥,(DE CD D = ) ∴1AC ⊥平面BCDE (2)如图,以C 为坐标原点,建立空间直角坐标系C xyz -,则(100A ,,,()020D ,,,M ,()300B ,,,()220E ,,,设平面1A BE 法向量为()n x y z = ,,,则10,0A B n BE n ⋅=⋅=∴(130A B =- ,,,()120BE =- ,,,∴3020x x y ⎧-=⎪⎨-+=⎪⎩令1y =,则2,x z ==∴(21n = 设CM 与平面1A BE 所成的角为θ∵(0CM =∴sin |cos ,|||||||CM n n CM CM n θ⋅=====⋅CM 与平面1A BE 所成角的大小45︒(3)线段BC 上不存在点P,使平面1A DP 与平面1ABE 垂直。
北京丰台区2012高三年级第二学期第二次统一练习理科数学试题试题及答案

北京市丰台区2012年高三二模 2012.5数学(理科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数1i2i-+的虚部是 (A) i -(B) 3i 5-(C) –1(D) 35-2.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正 视图的面积为(A)2 (B)3 (C) 2 (D) 43.由曲线1y x =与y =x ,x =4以及x 轴所围成的封闭图形的面积是 (A) 3132 (B) 2316(C) 1ln 42+ (D) ln 41+4.执行如图所示的程序框图,若输出的结果为63,则判断框中应填(A) 7n ≤ (B) 7n > (C) 6n ≤ (D) 6n >5.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机 取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次 数恰为3次的概率是(A) 18125 (B)36125 (C) 44125(D) 811256.在△ABC 中,∠BAC =90º,D 是BC 中点,AB =4,AC =3,则AD BC ⋅=(A) 7- (B) 72-(C)72(D) 77.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是开始结束0S =,1n =,3a =S S a =+2a a =+1n n =+输出S 是 否俯视图(A)(B)(C)(D)8.已知平面上四个点1(0,0)A ,2(23,2)A ,3(234,2)A +,4(4,0)A .设D 是四边形1234A A A A 及其内部的点构成的点的集合,点0P 是四边形对角线的交点,若集合0{|||||,1,2,3,4}i S P D PP PA i =∈≤=,则集合S 所表示的平面区域的面积为 (A) 2(B) 4(C) 8(D) 16第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在极坐标系中,圆2sin ρθ=的圆心的极坐标是____.10.已知椭圆22221(7)7x y m m m +=>-上一点M 到两个焦点的距离分别是5和3,则该椭圆的离心率为______.11.如图所示,AB 是圆的直径,点C 在圆上,过点B ,C 的切线交于点P ,AP 交圆于D ,若AB =2,AC =1,则PC =______,PD =______.12.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:年份x 2004 2005 2006 2007 恩格尔系数y (%)4745.543.541PDC BA从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,据此模型可预测2012年该地区的恩格尔系数(%)为______.13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有 种. 14. 在平面直角坐标系中,若点A ,B 同时满足:①点A ,B 都在函数()y f x =图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数()y f x =的一个“姐妹点对”(规定点对(A ,B )与点对(B ,A )是同一个“姐妹点对”).那么函数24,0,()2,0,x x f x x x x -≥⎧=⎨-<⎩的“姐妹点对”的个数为_______;当函数()x g x a x a =--有“姐妹点对”时,a 的取值范围是______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数()cos (3cos sin )3f x x x x =--. (Ⅰ)求()3f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值.16.(本小题共13分)某商场举办促销抽奖活动,奖券上印有数字100,80,60,0.凡顾客当天在该商场消费每.超过1000元,即可随机从抽奖箱里摸取奖券一张,商场即赠送与奖券上所标数字等额的现金(单位:元).设奖券上的数字为ξ,ξ的分布列如下表所示,且ξ的数学期望E ξ=22.ξ 100 80 60 0P0.05ab0.7(Ⅰ)求a ,b 的值;(Ⅱ)若某顾客当天在商场消费2500元,求该顾客获得奖金数不少于160元的概率.17.(本小题共14分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º,AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值;(Ⅱ)若二面角D -AP -C 的余弦值为63,求PF 的长度. PFEDCAB18.(本小题共13分)已知数列{a n }满足14a =,131n n n a a p +=+⋅+(n *∈N ,p 为常数),1a ,26a +,3a 成等差数列.(Ⅰ)求p 的值及数列{a n }的通项公式;(Ⅱ)设数列{b n }满足2n n n b a n=-,证明:49n b ≤.19.(本小题共14分)在平面直角坐标系xOy 中,抛物线C 的焦点在y 轴上,且抛物线上的点P (x 0,4)到焦点F 的距离为5.斜率为2的直线l 与抛物线C 交于A ,B 两点.(Ⅰ)求抛物线C 的标准方程,及抛物线在P 点处的切线方程;(Ⅱ)若AB 的垂直平分线分别交y 轴和抛物线于M ,N 两点(M ,N 位于直线l 两侧),当四边形AMBN 为菱形时,求直线l 的方程.20.(本小题共13分)设函数()ln ()ln()f x x x a x a x =+--(0)a >. (Ⅰ)当1a =时,求函数()f x 的最小值;(Ⅱ)证明:对∀x 1,x 2∈R +,都有[]11221212ln ln ()ln()ln2x x x x x x x x +≥++-; (Ⅲ)若211nii x==∑,证明:21ln ln 2nn i i i x x =≥-∑ *(,)i n ∈N . (考生务必将答案答在答题卡上,在试卷上作答无效)北京市丰台区2012年高三二模数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案DACDBBCB二、填空题:本大题共6小题,每小题5分,共30分.9.(1,)2π10.7411.3,37712.31.25 13. 96 14.1,1a >注:第11题第一个空答对得2分,第二个空答对得3分;第14题第一个空答对得3分,第二个空答对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.解:因为()cos (3cos sin )3f x x x x =--=23cos sin cos 3x x x --=1cos 213()sin 2322x x +-- =313cos 2sin 2222x x --=3cos(2)62x π+-. (Ⅰ)3()cos(2)3362f πππ=⨯+-=33322--=-. ……………………7分(Ⅱ)因为 [0,]2x π∈,所以2666x ππ7π≤+≤. 当 26x π+=π,即512x π=时,函数()y f x =有最小值是312--. 当512x π=时,函数()y f x =有最小值是312--. ……………………13分16.解:(Ⅰ)依题意,1000.05806000.722E a b ξ=⨯+++⨯=,所以 806017a b +=.因为 0.050.71a b +++=,所以0.25a b +=. 由806017,0.25,a b a b +=⎧⎨+=⎩ 可得00.15.a b =⎧⎨=⎩ ……………………7分(Ⅱ)依题意,该顾客在商场消费2500元,可以可以抽奖2次.奖金数不少于160元的抽法只能是100元和100元; 100元和80元; 100元和60元;80元和80元四种情况. 设“该顾客获得奖金数不少于160元”为事件A ,则()0.050.0520.050.120.050.150.10.10.0375P A =⨯+⨯⨯+⨯⨯+⨯=.答:该顾客获得奖金数不少于160元的概率为0.0375. ……………………13分17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .OBA CDEFP z yx PFEDCAB 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………4分 (ⅱ)因为∠BAF =90º, 所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,2,0)C .所以 1(,0,1)2BE =- ,1(1,1,)2CP =-- ,所以45cos ,15||||BE CP BE CP BE CP ⋅<>==⋅,即异面直线BE 与CP 所成角的余弦值为4515. ……………………9分(Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =- ,(1,2,0)AC =,所以 平面APC 的法向量为222(2,1,)t n t-=- , 所以 12122212||26cos ,3||||22(2)1()n n n n n n t t⋅<>===⋅--++, 解得23t =,或2t =(舍). 此时5||3PF =. ……………………14分18.解:(Ⅰ)因为14a =,131n n n a a p +=+⋅+,所以1213135a a p p =+⋅+=+;23231126a a p p =+⋅+=+. 因为1a ,26a +,3a 成等差数列,所以2(26a +)=1a +3a , 即610124126p p ++=++, 所以 2p =. 依题意,1231n n n a a +=+⋅+, 所以当n ≥2时,121231a a -=⋅+,232231a a -=⋅+,……212231n n n a a ----=⋅+, 11231n n n a a ---=⋅+.相加得12212(3333)1n n n a a n ---=+++++- ,所以 113(13)2(1)13n n a a n ---=+--, 所以 3n n a n =+.当n =1时,11314a =+=成立, 所以3n n a n =+. ……………………8分(Ⅱ)证明:因为 3n n a n =+,所以 22(3)3n n n n n b n n ==+-.因为 2221+11(1)22+1=333n n n n n n n n n b b +++-+-=-,*()n ∈N . 若 22+210n n -+<,则132n +>,即 2n ≥时 1n n b b +<.又因为 113b =,249b =, 所以49n b ≤. ……………………13分19.解:(Ⅰ)依题意设抛物线C :22(0)x py p =>,因为点P 到焦点F 的距离为5,所以点P 到准线2py =-的距离为5. 因为P (x 0,4),所以由抛物线准线方程可得 12p=,2p =. 所以抛物线的标准方程为24x y =. ……………………4分即 214y x =,所以 1'2y x =,点P (±4,4), 所以 41'|(4)22x y =-=⨯-=-,41'|422x y ==⨯=.所以 点P (-4,4)处抛物线切线方程为42(4)y x -=-+,即240x y ++=; 点P (4,4)处抛物线切线方程为42(4)y x -=-,即240x y --=.P点处抛物线切线方程为240x y ++=,或24x y --=. ……………………7分(Ⅱ)设直线l 的方程为2y x m =+,11(,)A x y ,22(,)B x y ,联立 242x y y x m⎧=⎨=+⎩,消y 得 2840x x m --=,64160m ∆=+>.所以 128x x +=,124x x m =-, 所以1242x x +=,1282y y m +=+, 即AB 的中点为(4,8)Q m +.所以 AB 的垂直平分线方程为1(8)(4)2y m x -+=--. 因为 四边形AMBN 为菱形,所以 (0,10)M m +,M ,N 关于(4,8)Q m +对称,所以 N 点坐标为(8,6)N m +,且N 在抛物线上, 所以 644(6)m =⨯+,即10m =, 所以直线l的方程为210y x =+. ……………………14分20.解:(Ⅰ)1a =时,()ln (1)ln(1)f x x x x x =+--,(01x <<),则()ln ln(1)ln 1xf x x x x'=--=-. 令()0f x '=,得12x =. 当102x <<时,()0f x '<,()f x 在1(0,)2是减函数,当112x <<时,()0f x '>,()f x 在1(,1)2是增函数, 所以 ()f x 在12x =时取得最小值,即11()ln 22f =. ……………………4分 (Ⅱ)因为 ()ln ()ln()f x x x a x a x =+--,所以 ()ln ln()ln xf x x a x a x'=--=-. 所以当2ax =时,函数()f x 有最小值. ∀x 1,x 2∈R +,不妨设12x x a +=,则121211221111ln ln ln ()ln()2ln()22x x x xx x x x x x a x a x +++=+--≥⋅[]1212()ln()ln 2x x x x =++-. ……………………8分(Ⅲ)(证法一)数学归纳法ⅰ)当1n =时,由(Ⅱ)知命题成立. ⅱ)假设当n k =( k ∈N *)时命题成立,即若1221k x x x +++= ,则112222ln ln ln ln2k k kx x x x x x +++≥- . 当1n k =+时,1x ,2x ,…,121k x +-,12k x +满足 11122121k k x x x x ++-++++= .设11111122212122()ln ln ln ln k k k k F x x x x x x x x x ++++--=++++ ,- 11 -由(Ⅱ)得111212212()()l nk k k F x x x x+++--≥++-++++- =111111212122122122()ln()()ln()(...)ln 2k k k k k x x x x x x x x x x x +++++--++++++-+++=11111212212212()ln()()ln()ln 2k k k k x x x x x x x x ++++--++++++- .由假设可得 1()ln 2ln 2ln 2k k F x +≥--=-,命题成立. 所以当 1n k =+时命题成立.由ⅰ),ⅱ)可知,对一切正整数n ∈N *,命题都成立, 所以若211nii x==∑,则21ln ln 2nniii x x =≥-∑*(,)i n ∈N . ……………………13分 (证法二)若1221n x x x +++= , 那么由(Ⅱ)可得112222ln ln ln n n x x x x x x +++1212212212()ln[()ln 2]()ln[()ln 2]n n n n x x x x x x x x --≥++-++++- 1212122122122()ln()()ln()(...)ln 2n n n n n x x x x x x x x x x x --=++++++-+++ 1212212212()ln()()ln()ln 2n n n n x x x x x x x x --=++++++-12341234212212()ln()()ln()2ln 2n n n n x x x x x x x x x x x x --≥+++++++++- 121222(...)ln[()ln 2](1)ln 2n n x x x x x x n ≥≥++++++--- ln 2n =-.……………………13分(若用其他方法解题,请酌情给分)。
2012年高考理科数学北京卷-答案

数学(理科)答案解析
第Ⅰ卷
一、选择题
1.【答案】D
【解析】 ,利用二次不等式的解法可得 或 ,易得 .
【提示】求出集合 ,然后直接求解 .
【考点】集合间的基本运算.
2.【答案】D
【解析】题目中 表示的区域表示正方形区域,而动点 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此 ,故选D.
20.【答案】(Ⅰ)
(Ⅱ1
(Ⅲ)
【解析】(Ⅰ)由题意可知 , , , ,
∴
(Ⅱ)先用反证法证明 :
若 ,则 ,∴
同理可知 ,
∴ ,由题目所有数和为 ,即 ,
∴ 与题目条件矛盾
∴ .
易知当 时, 存在
∴ 的最大值为1.
(Ⅲ) 的最大值为 .
首先构造满足 的 :
, .
经计算知, 中每个元素的绝对值都小于1,所有元素之和为0,且 , , .
下面证明 是最大值.若不然,则存在一个数表 ,使得 .
由 的定义知 的每一列两个数之和的绝对值都不小于 ,而两个绝对值不超过1的数的和,其绝对值不超过2,故 的每一列两个数之和的绝对值都在区间 中.由于 ,故 的每一列两个数符号均与列和的符号相同,且绝对值均不小于 .
设 中有 列的列和为正,有 列的列和为负,由对称性不妨设 ,则 .另外,由对称性不妨设 的第一行行和为正,第二行行和为负.
【考点】由三视图求几何体的表面积.
8.【答案】C
【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C.
【提示】由已知中图像表示某棵果树前 年的总产量 与 之间的关系,结合图像可得答案.
【考点】函数图像的应用.
2012年北京高考数学试题与答案(理科)已校对

数学(理) (北京卷) 第 1 页(共 5 页)2012年普通高等学校招生全国统一考试数 学 (理) (北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则A B =I(2)设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(3)设a ,b ∈R .“0a =”是“复数i a b +是纯虚数”的(4)执行如图所示的程序框图,输出的S 值为(A )(,1)-∞-(B )2(1,)3--(C )2(,3)3-(D )(3,)+∞(A )4π (B )22π- (C )6π (D )44π- (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(A )2 (B )4 (C )8 (D )16S=S ∙2kk=k+1k=0, S=1k <3是否输出S结束开始数学(理) (北京卷) 第 2 页(共 5 页)(5)如图,90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆与交BC 于点E .则(6)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(7)某三棱锥的三视图如图所示,该三棱锥的表面积是 (8)某棵果树前n 年的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的 年平均产量最高,m 的值为第二部分(非选择题 共110分)(A )CE CB AD DB ⋅=⋅ (B )CE CB AD AB ⋅=⋅ (C )2AD AB CD ⋅= (D )2CE EB CD ⋅=(A )24 (B )18(C )12(D )6(A )2865+(B )3065+(C )56125+(D )60125+(A )5(B )7 (C )9 (D )11俯视图侧(左)视图正(主)视图4324S nn4321567891011OADBEC数学(理) (北京卷) 第 3 页(共 5 页)二、填空题共6小题,每小题5分,共30分. (9)直线2(1x t t y t =+⎧⎨=--⎩为参数)与曲线3cos (3sin x y ααα=⎧⎨=⎩为参数)的交点个数为 .(10)已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . (11)在ABC ∆中,若2a =,7bc +=,1cos 4B =-,则b = . (12)在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A 、B两点,其中,A 点在x 轴上方.若直线l 的倾斜角为60︒,则OAF ∆的面积为 .(13)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅uuu r uu r的值为 .(14)已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)已知函数(sin cos )sin 2()sin x x xf x x-=.(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递增区间.数学(理) (北京卷) 第 4 页(共 5 页)(16)(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,3BC =,6AC =,D 、E 分别为AC 、AB 上的点,且DE //BC ,2DE =,将A D E ∆沿DE 折起到1A DE ∆的位置,使1A C CD ⊥,如图2.(Ⅰ)求证:1AC ⊥平面BCDE ; (Ⅱ)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小; (Ⅲ)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.(17)(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其 他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取 了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱厨余垃圾 400100 100 可回收物 30 240 30 其他垃圾20 20 60(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,a b c ++=600.当数据,,a b c 的方差2s 最大时,写出,,a b c的值(结论不要求证明),并求此时2s 的值. (注:222121[()()s x x x x n=-+-+…2()]n x x +-,其中x 为数据12,,,n x x x ⋅⋅⋅的平均数)图1图2ADECB A 1MDECB数学(理) (北京卷) 第 5 页(共 5 页)(18)(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (Ⅱ)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(]1-- ∞上的最大值.(19)(本小题共14分)已知曲线C :22(5)(2)8m x m y -+-=()m ∈R . (Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A 、B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M 、N ,直线1y =与直线BM 交于点G . 求证:,,A G N 三点共线.(20)(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所数学(理) (北京卷) 第 6 页(共 5 页)有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和(1≤i ≤)m ,()j c A 为A 的第j 列各数之和(1≤j ≤)n .记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值.(Ⅰ)对如下数表A ,求()k A 的值;1 1 0.8- 0.10.3- 1-(Ⅱ)设数表(2,3)A S ∈形如1 1 C ab 1-求()k A 的最大值;(Ⅲ)给定正整数t ,对于所有的(2,21)A S t ∈+,求()k A 的最大值.2012高考北京数学真题答案及简析一、选择题数学(理) (北京卷) 第 7 页(共 5 页)题号 1 2 3 4 5 6 7 8 答案 D D B C A B B C二、填空题 题号 9 10 11 12 13 14答案21;24n n +431;1()42--,三、解答题 15.解:(sin cos )sin 2(sin cos )2sin cos ()2(sin cos )cos sin sin x x x x x x x f x x x x x x--===-{}πsin 21cos 22sin 21|π4x x x x x k k ⎛⎫=-+=--≠∈ ⎪⎝⎭Z ,,(1)原函数的定义域为{}|πx x k k ≠∈Z ,,最小正周期为π.(2)原函数的单调递增区间为πππ8k k ⎡⎫-+⎪⎢⎣⎭,k ∈Z ,3πππ8k k ⎛⎤+ ⎥⎝⎦,k ∈Z16.解:(1) CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD , 又 1A C ⊂平面1A CD , ∴1A C ⊥DE又1A C CD ⊥,∴1A C ⊥平面BCDE(2)如图建系C xyz -,则()200D -,,,()0023A ,,,()030B ,,,()220E -,,∴()10323A B =-,,,()1210A E =-- ,,设平面1A BE 法向量为()n x y z =,,则1100A B n A E n ⎧⋅=⎪⎨⋅=⎪⎩∴323020y z x y ⎧-=⎪⎨--=⎪⎩∴322z y y x ⎧=⎪⎪⎨⎪=-⎪⎩ ∴()123n =- ,,又∵()103M -,, ∴()103CM =- ,,∴1342cos 2||||14313222CM n CM n θ⋅+====⋅++⋅+⋅∴CM 与平面1A BE 所成角的大小45︒(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则()1023A P a =-,,,()20DP a = ,,设平面1A DP 法向量为()1111n x y z =,,zy xA 1 (0,0,23)D (-2,0,0)E (-2,2,0)B (0,3,0)C (0,0,0)M数学(理) (北京卷) 第 8 页(共 5 页)则111123020ay z x ay ⎧-=⎪⎨+=⎪⎩∴11113612z ay x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()1363n a a =-,,假设平面1A DP 与平面1A BE 垂直 则10n n ⋅=,∴31230a a ++=,612a =-,2a =- ∵03a <<∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直17.(1)由题意可知:4002=6003 (2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =. 18.解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+⎺又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2) 24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭.综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.数学(理) (北京卷) 第 9 页(共 5 页)19.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x , MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭ ,,()2N N AN x x k =+,, 欲证A G N ,,三点共线,只需证AG ,AN共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.10
4.已知向量 a (sin ,cos ), b (3, 4) ,若 a b ,则 tan 2 等于 ( )
第1页
A.
24 7
B.
6 7
C.
24 25
D.
24 7
5.若正四棱锥的正视图和侧视图如右图所示,则该几何体的表面积是( A.4 B. 4 4 10 C.8 D. 4 4 11
1 1 1 1 , y1 y2 yP yQ
第5页
20. (本小题共 13 分) 已知函数 f ( x) x x, f '( x) 为函数 f ( x) 的导函数。
2
(1)若数列 {an } 满足 an1 f '(an ), 且a1 1 ,求数列 {an } 的通项公式; (2)若数列 {bn } 满足 b1 b, bn1 f (bn ) 。 (i)是否存在实数 b,使得数列 {bn } 是等差数列?若存在,求出 b 的值;若不存在, 请说明理由。 (ii)若 b 0 ,求证:
北京丰台区 2012 年高三年级第二学期统一练习(一)
数 学 试 题(理)
注意事项: 1.答题前,考生务必先将答题卡上的学校、班级、姓名、准考证号用黑色字迹签字笔 填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好 条形码。 2.本次考试所有答题均在答题卡上完成。选择题必须使用 2B 铅笔以正确填涂方式将 各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。非选择题必须使 用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。作图题用 2B 铅笔作图,要求 线条、图形清晰。 3.请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在 试题、草稿纸上答题无效。 4.请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第3页
15. (本小题共 13 分) 在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,且 a sin B b cos C c cos B. (I)判断△ABC 的形状; (Ⅱ)若 f ( x)
1 2 1 cos 2 x cos x ,求 f(A)的取值范围. 2 3 2
PQ ,当 PA//平面 DEQ 时,求 A 的值. PC
17. (本小题共 13 分) 某班共有学生 40 人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图 所示。 (I)请根据图中所给数据,求出 a 的值; (Ⅱ)从成绩在[50,70)内的学生中随机选 3 名学生,求这 3 名学生的成绩都在[60, 70)内的概率; (Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取 3 人的成绩进行分析,用 X 表示所选学生成绩在[ 60,70)内的人数,求 X 的分布列和数
13.执行如下图所示的程序框图,则输出的 i 值为
14 . 定 义 在 区 间 [a , b] 上 的 连 结 函 数 y f ( x) , 如 果 [a, b] , 使 得
f ( b) f ( a )
。下列函数: f'( ) b ( ,则称 a ) 为区间[a,b]上的“中值点”
1,
D.[-1,1]
y 0, 2.若变量 x,y 满足条件 x 2 y 1, 则 z 3x 5 y 的取值范围是 x 4 y 3,
A. 3, 3. ( B. [8,3] C. ,9
(
)
D. [8,9]
x 2 6 ) 的二项展开式中,常数项是 2 x
点,x 轴正方向为极轴的极坐标系中,圆 C 的极坐标方程是 4 cos 3 0. 则圆
2
心到直线的距离是___ . 12.如图所示,Rt△ABC 内接于圆, ABC 60 ,PA 是 圆的切线,A 为切点,PB 交 AC 于 E,交圆于 D。若 PA =AE, PD= 3, BD 3 3 ,则 AP= ,AC= 。 。
3 x ,则该双曲线的 4
第2页
离心率是
。
10.已知等比数列 {an } 的首项为 1,若 4a 1,2 a2, a3 ,成等差数列,则数列 { 为 。
1 } 的前 5 项和 an
3 x 1 t, 2 11.在平面直角坐标系 xOy 中,直线 l 的参数方程是 (t 为参数) 。以 O 为极 y 1 t 2
2
① f ( x) 3x 2; ② f ( x) x x 1; ③ f ( x) ln( x 1) ;④ f ( x) ( x 区间[0,1]上“中值点”多于一个函数序号为
1 3 ) 中,在 2
。 (写出所有 满足条件的函 ..
数的序号) 三、解答题共 6 小题,共 80 分,解答应写出文字说明,演算步骤或证明过程.
第4页
学期望.
18. (本小题共 13 分) 已知函数 f ( x) ax (a 2) x ln x. .
2
(I)当 a=l 时,求曲线 y=f(x)在点(1,f(l) )处的切线方程; (Ⅱ)当 a>0 时,若 f(x)在区间[1,e]上的最小值为-2,求 a 的取值范围; (Ⅲ)若对任意 x1 , x2 (0, ), x1 x2 ,且 f (x1) 2 x1 f (x 2) 2 x 2 恒成立,求 a 的 取值范围.
19. (本小题共 14 分)
x2 y 2 2 已知椭圆 C : 2 2 1(a b 0) 的离心率为 ,且经过点 M(一 2,0) . a b 2
(I)求椭圆 C 的标准方程; (Ⅱ)设直线 l : y kx m 与椭圆 C 相交于 A( x1 , y1 ), B( x2 , y2 ) 两点,连接 MA, MB 并 延长交直线 x=4 于 P, Q 两点, 设 yP , yQ 分别为点 P, Q 的纵坐标, 且 求证直线 l 过定点。
16. (本小题共 14 分) 四棱锥 P — ABCD 中,底面 ABCD 是边长为 2 的菱形,侧面 PAD 底面 ABCD ,
BCD 60, PA PD 2 ,E 是 BC 的中点,点 Q 在侧棱 PC 上.
(I)求证:AD PB; (Ⅱ)若 Q 是 PC 的中点,求二面角 E—DQ—C 的余弦值; (Ⅲ)若
b
i 1
n
bii 11Fra bibliotek . b第6页
第7页
第8页
第9页
第 10 页
第 11 页
第 12 页
第 13 页
)
6.学校组织一年级 4 个班外出春游,每个班从指定的甲、乙、丙、丁四个景区 中任选一个游览,则恰有 2 个班选择了甲景区的选法共有 ( ) A. A4 3 种
2 2
B. A4 A3 种
2 2
C. C4 3 种
2 2
D. C4 A3 种
2 2
7 . 已 知 a b , 函 数 f ( x) sin x, g ( x) cos x. 命 题 p : f ( a) p 是命题 q 成立的 q : g( x 在 ) (a ,内有最值,则命题 b) ( A.充分不必要条件 C.充要条件 )
第一部分
(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目 要求的一项. 1.已知集合 A {x | x 1}, B {a} ,若 A
2
B ,则 a 的取值范围是 (
)
A. (, 1) C. (-1,1)
(1, ) B. , 1
1 5
C. a [ , ] [5, 7]
1 1 7 5
1 5, 5 1 1 D. a [ , ] [5, 7] 7 5
B. a (0, ) (非选择题 共 110 分)
第二部分
二、填空题共 6 小题,每小题 5 分,共 30 分。 9.已知双曲线的中心在原点,焦点在 x 轴上,一条渐近线方程为 y
f ( b) , 0命 题
B.必要不充分条件 D.既不充分也不必要条件
3
8.已知定义在 R 上的函数 y f ( x) 满足 f ( x 2) f ( x) ,当 1 x 1 时, f ( x) x , 若函数 g ( x) f ( x) log a | x | 至少有 6 个零点,则 a ( A. a 5或a )