专题40:点与圆、直线与圆、圆与圆的位置关系
点和圆直线和圆的位置关系课件

拓展点一
拓展点二
拓展点三
解答这类问题抓住点到圆心的距离与圆半径的大小关系,
数形结合,根据已知得出r与各边长的关系是解题关键.
拓展点一
拓展点二
拓展点三
拓展点三与外接圆有关的综合题
例3 在等腰△ABC中,AB=AC=13 cm,BC=10 cm,求等腰△ABC外
接圆的半径.
分析:设O为△ABC外接圆的圆心,连接AO,并延长AO交BC于D,连
交于B点,已知∠P=28°,C为☉O上一点,连接CA,CB,则∠C的度数为
(
)
A.28° B.62° C.31° D.56°
知识点一
知识点二
知识点三
知识点四
知识点五
解析:由于∠C 是圆周角,而图中没有所对的圆心角,又 A 为切
点,故想到连接 AO.
∵PA 是☉O 的切线,A 为切点,∴∠OAP=90°.
个数来判定它们的位置关系,也可以用圆心到直线的距离与半径的
大小关系来判定它们的位置关系.
知识点一
知识点二
知识点三
知识点四
知识点五
例1 如图,△ABC中,∠C=90°,∠B=60°,AO=x,O在AB上,且☉O的
半径为1.问当x在什么范围内取值时AC与☉O相离、相切、相交?
分析:由三角形的内角和定理可求出∠A的大小,根据含30°角的直
接OB,OC,得出AD⊥BC,BD=DC,根据勾股定理求出AD,设出等腰
△ABC外接圆的半径,在Rt△OBD中,由勾股定理得出
OB2=OD2+BD2,代入求出即可.
拓展点一
拓展点二
拓展点三
解:如图所示,设 O 为△ABC 外接圆的圆心,连接 AO,并延长 AO
点与圆、直线与圆、圆与圆的位置关系

例、两直线y= 3 x和x=1关于直线l对称,
3
则直线l的方程是_x_+__3_y-2=0或3x- 3 y-2=0
解:l上的点为到两直线y= 3 x与x=1距离相等的点的集合,即
3
| x 3y |
1 ( 3)2 =|x-1|,
化简得 x+ 3 y-2=0或3x- 3 y-2=0
(x 4a)( x 6a)
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
知识影响格局,格局决定命运! 多端互通
抽奖特权
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停!
福利特权
开通VIP后可在VIP福利专区定期领取多种福利礼券。
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
则l的方程为__3_x_-__y+3=0
分析:对称轴是以两对称点为端点的线段的中垂线
对称问题知识点归纳:
1、点关于点成中心对称: 对称中心恰是这两点为端点的线段的中点,因此 中心对称的问题是线段中点坐标公式的应用问题。 设P(x0,y0),对称中心为A(a,b),
则P关于A的对称点为P′(2a-x0,2b-y0)
1
例. 解不等式
2a 1
>0 (a为常数,a≠- 2)
【分析】含参不等式,参数a决定了2a+1的符号和两根
点、直线、圆与圆位置关系

点、直线、圆和圆的位置关系(一)基础知识1.点与圆的三种位置关系如果圆O半径为r,已知点P到圆心的距离OP=d,则:点P在圆外⇔d>r点P在圆上⇔d=r点P在圆内⇔d<r2.过三点的圆(1)不在同一直线上的三个点确定一个圆(2)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.3.直线和圆的位置关系(1)定义:如果直线和圆没有公共点,直线和圆相离;直线和圆只有一个公共点,直线和圆相切;直线和圆有两个公共点,直线和圆相交.(2)等价条件:设圆半径为r,圆心到直线距离为d,则:直线和圆相离⇔d>r直线和圆相切⇔d=r直线和圆相交⇔d<r4.圆的切线(1)切线的判定方法①用定义判断②用等价条件判断③用定理判断:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)切线的性质定理:圆的切线垂直于过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线比必经过圆心(3)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.5.两圆的位置关系设R、r(R>r)为两圆的半径,d为圆心距,则:两圆相离⇔d>R+r两圆外切⇔d=R+r两圆相交⇔R-r<d<R+r两圆内切⇔d=R-r两圆内含⇔d<R-r6.性质相交两圆的连心线,垂直平分公共弦,且平分两外公切线所夹的角.相切的两圆的连心线必过切点.7.公切线两圆的两条外公切线长相等;两条内公切线的长也相等.8.公切线的条数与两圆的位置关系两圆相离⇔4条公切线两圆外切⇔3条公切线两圆相交⇔2条公切线两圆内切⇔1条公切线两圆内含⇔0条公切线9.常见辅助线(1)连心线;(2)公共弦;(3)内、外公切线(二)经典例题1.如图,⊙O的直径AB=4,∠ABC=30 ,BC=4D是线段BC的中点,试判断点D与⊙O的位置关系,并说明理由2.(2009湖北荆门市)如图,在□ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A 、E 、C 、F 四点共圆;(2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND .3.(1)如图,在A B C 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E ,求证:DE 是⊙O 的切线.(2)已知:如图,O 为∠BAC 平分线上一点,OD ⊥AB 与D ,以O 为圆心,以OD 为半径作圆O ,求证:⊙O 与AC 相切4.ADFCM E BN5.(1)如图,A B C的内切圆与三边AB、BC、CA分别切于D、E、F,AB=11cm,BC=13cm,CA=14cm,求AD、BE、CF的长(2)在Rt A B C中,∠C=90 ,AC=3,BC=4,求A B C内切圆的半径.6.(1)已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是()A.外离B.外切C.相交D.内含(2)已知关于x的一元二次方程22R r x d-++=没有实数根,其中R、rx2()0分别为⊙O1,⊙O2的半径,d为两圆的圆心距,则⊙O1,⊙O2的位置关系()A.外离B.外切C.相交D.内切7.(三)历年中考试题1.(2011上海)2. (2006安徽)3.设⊙O 的半径为2,点P 到圆心O 的距离为m ,且满足方程2210x m -+-=有实数根,则定点P 的位置为( )A. 在⊙O 内B. 在⊙O 外C. 在⊙O 上D. 不在⊙O 外 4.(2011杭州)5.(2011日照)6.(2009年泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( )A .外离B .外切C .相交D .内切7.(2009年益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( )8. (2009年湖州)已知1O ⊙与2O ⊙外切,它们的半径分别为2和3,则圆心距12O O 的长是( )A .12O O =1B .12O O =5C .1<12O O <5D .12O O >59. (2009年遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于 A.B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )B . 3 1 0 2 4 5D .3 1 0 24 5A .1 0 C . 3 1 02 4 5A.4π-8B. 8π-16C.16π-16D. 16π-3210. (2010浙江绍兴)如图为某机械装置的截面图,相切的两圆⊙O 1,⊙O 2均与⊙O 的弧AB 相切,且O 1O 2∥l 1( l 1为水平线),⊙O 1,⊙O 2的半径均为30 mm ,弧AB 的最低点到l 1的距离为30 mm ,公切线l 2与l 1间的距离为100 mm .则⊙O 的半径为( )A.70 mmB.80 mmC.85 mmD.100 mm 11.(2011舟山)12.(2009成都)如图,A 、B 、c 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E .若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______.13.(2009年贵州省黔东南州)如图,⊙O 的半径为5,P 为圆内一点,P 点到圆心O 的距离为4,则过P 点的弦长的最小值是_____________第10题图AB单位:mml 1l 214.(2009年益阳市)如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm .15.(2009年南充)A B C △中,10cm 8cm 6cm A B A C B C ===,,,以点B 为圆心、6cm 为半径作B ⊙,则边AC 所在的直线与B ⊙的位置关系是 .16.(2010重庆市潼南县)如图,在矩形ABCD 中,AB=6 , BC=4, ⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是 .17.(2010湖北孝感)P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠APB=50°,点C 为⊙O 上一点(不与A 、B )重合,则∠ACB 的度数为18.(2009襄樊市)已知1O 和2O 的半径分别为3cm 和2cm ,且121cm O O =,则1O 与2O 的位置关系为 .19.(2009年浙江省绍兴市)如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距A B 为5cm .如果A ⊙由图示位置沿直线A B 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________.20.(2009威海)如图,⊙O 1和⊙O 2的半径为1和3,连接O 1O 2,交⊙O 2于点P ,O 1O 2=8,若将⊙O 1绕点P 按顺时针方向旋转360°,则⊙O 1与⊙O 2共相切_______次.21.(2009年崇左)如图,正方形A B C D 中,E 是B C 边上一点,以E 为圆心.E C 为半径的半圆与以A 为圆心,A B 为半径的圆弧外切,则sin E A B ∠的值为 .22.(2010 四川巴中)⊙O 1与⊙O 2的半径分别是方程27110x x -+=的两根,如果两圆外切,那么圆心距a 的值是 23.(2010福州)24.(2009柳州)如图10,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:C F B F =;(2)若2AD =,⊙O 的半径为3,求BC 的长.D C EB A25.(2010济宁)26.(2011福州)27.(2009安顺)28.(2011盐城)29.(2011菏泽)30.(2011十堰)31.(2010湖北十堰)如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C . (1)求证:O 2C ⊥O 1O 2;(2)证明:AB ·BC =2O 2B ·BO 1;(3)如果AB ·BC =12,O 2C =4,求AO 1的长.32.(2010湖北黄石)在△ABC 中,分别以AB 、BC 为直径⊙O 1、⊙O 2,交于另一点D. ⑴证明:交点D 必在AC 上;⑵如图甲,当⊙O 1与⊙O 2半径之比为4︰3,且DO 2与⊙O 1相切时,判断△ABC 的形状,并求tan ∠O 2DB 的值;⑶如图乙,当⊙O 1经过点O 2,AB 、DO 2的延长线交于E ,且BE =BD 时,求∠A 的度数.。
点与圆、直线与圆、圆与圆的位置关系

整节课以“探究过程,探究方法,探究结果,探究运用”为主线,高度重视学生的主动参与、亲自探究、动手操作,体验学习知识的过程,基本达到预期效果。上下来也有几处遗憾:
1、两圆相交时,圆心距与大圆半径R和小圆半径r的关系,要让学生主动发现,要让学生结合操作、完全思考后由学生自己得出结论,这样的感悟才深刻。
投影片(§3.5.1A)
(1)从公共点的个数来判断:
直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.
(2)从点到直线的距离d与半径r的大小关系来判断:
d<r时,直线与圆相交;
d=r时,直线与圆相切;
d>r时,直线与圆相离.
Ⅲ.播放ppt,观察圆与圆之间的五种位置关系,根据公共点的个数,进一步体会d与r之间的数量关系。探究圆与圆的位置关系和判别方法,学生通过类比、分类、数形结合,体会从不同的角度考虑事物的特点。判别圆与圆的位置关系的方法与判别直线与圆的位置的方法类似,因此本节课首先复习了直线与圆的位置关系,然后通过让学生动手操作,充分感受两圆位置的变化,猜测两圆可能存在的位置关系,经过讨论,归纳确定两圆位置关系的各种情况.通过直观感受可以得出由“公共点的个数”可以知道两圆的位置关系。在两圆位置关系相应的“数量关系”的研究中,先把课本上“读一读”的内容穿插在其中,因为只有认知了“两圆相切,切点在两圆的连心线上”,才能研究圆心到直线的距离d与两圆半径R、r的数量关系。
[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?
[生]有三种位置关系:
[师]直线和圆有三种位置关系,如下图:
它们分别是相交、相切、相离.
当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangentline).
点、直线、圆与圆的位置关系

平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内
当点在圆外时,d>r;反过来,当d>r时,点在圆外。
当点在圆上时,d=r;反过来,当d=r时,点在圆上。
当点在圆内时,d<r;反过来,当d<r时,点在圆内。
例1.如图1,已知矩形ABCD的边AB=4cm,AD=3cm。
(1)△ABC的形状是______,理由是______。
(2)求证:BC平分∠ABE;
(3)若∠A=60°,OA=2,求CE的长.
(3)若将图10-1中的半径OB所在直线向上平行移动到⊙O外的CF处,点E是DA的延长线与CF的交点,其他条件不变,如图10-3,那么上述结论CD=CE还成立吗?为什么?
题型四、切线长定理的运用
15.如图11,在△ABC中,O是△ABC的内心,若∠A=50°,则∠BOC=______。
16.如图12,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是______。
题型二、切线的判定
12.如图8,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。求证:AE与⊙O相切。
题型三、切线性质的应用及拓展
13.如图9,点P为⊙O外一点,PA为⊙O的切线,A为切点,OP交⊙O于点B,点C为优弧AMB上一点,若∠P=28°,求∠ACB的度数。
外离 d>R+r
外切 d=R+r
相交 R-r<d<R+r
内切 d=R-r
内含 0≤d<R-r(其中d=0,两圆同心)
点和圆、线和圆的位置关系

点和圆、线和圆的位置关系考点一1.点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.如果圆的半径是r,点到圆心的距离为d,那么:(1)点在圆上⇔d=r;(2)点在圆内⇔d<r;(3)点在圆外⇔d>r.2.过三点的圆(1)经过三点作圆:①经过在同一直线上的三点不能作圆;②经过不在同一直线上的三点,有且只有一个圆.(2)三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆;外接圆的圆心叫做三角形的外心;这个三角形叫做这个圆的内接三角形.(3)三角形外接圆的作法:①确定外心:作任意两边的中垂线,交点即为外心;②确定半径:两边中垂线的交点到三角形任一个顶点的距离作为半径.例1 (2009·江西)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不.正确..的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外例2考点二1.直线与圆的位置关系的有关概念(1)直线和圆有两个公共点时,叫做直线和圆相交,这时的直线叫做圆的割线;(2)直线和圆有唯一公共点时,叫做直线和圆相切,唯一的公共点叫做切点,这时的直线叫圆的切线;(3)直线和圆没有公共点时,叫做直线和圆相离.2.直线和圆的位置关系的性质与判定如果⊙O的半径为r,圆心O到直线l的距离为d,那么:(1)直线l和⊙O相交⇔d<r;(2)直线l和⊙O相切⇔d=r;(3)直线l和⊙O相离⇔d>r.例3 如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离B.相切C.相交D.相切或相交例4如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.-1≤x≤1 B.-2≤x≤ 2C.0≤x≤ 2 D.x> 2考点三1.切线的判定方法(1)和圆只有一个公共点的直线是圆的切线;(2)到圆心的距离等于半径的直线是圆的切线;(3)过半径外端点且和这条半径垂直的直线是圆的切线.2.切线的性质(1)切线的性质定理:圆的切线垂直于经过切点的半径;(2)推论1:经过切点且垂直于切线的直线必经过圆心;(3)推论2:经过圆心且垂直于切线的直线必经过切点.例5 如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连结BD.(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连结ED,试证明ED与⊙O相切.例6 如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连结BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)若AB=1,BC=2时,求△DEC外接圆的半径.考点四1.切线长:在经过圆外一点的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.2.切线长定理.....:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分这两条切线的夹角.例7 如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=8 cm,C是AB上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,则△PED的周长是________.例8变式练习1.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP =5,PA =4,则sin ∠APO 等于( B ) A.45 B.35 C.43 D.342.如图,从⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别为A 、B ,如果∠APB =60°,PA =8,那么弦AB 的长是( B )A .4B .8C .4 3D .833.⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( A )A .相交B .相切C .相离D .无法确定4.如图,CD 切⊙O 于点B ,CO 的延长线交⊙O 于点A.若∠C =36°,则∠ABD 的度数是( B )A .72°B .63°C .54°D .36°5.如图,⊙O 的半径OA =10 cm ,弦AB =16 cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为6cm.6.△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,以点B 为圆心、6 cm 为半径作⊙B ,则边AC 所在的直线与⊙B 的位置关系是相切.一、选择题1.(2011中考预测题)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A =25°,则∠D 等于( )A .40°B .50°C .60°D .70°2.(2009中考变式题)如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1.5C .1D .0.53.(2009中考变式题)如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M 、N 两点.若点M 的坐标是(2,-1),则点N 的坐标是( )A .(2,-4)B .(2,-4.5)C .(2,-5)D .(2,-5.5)4.(2011中考预测题)如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 是⊙O 的切线,C 是切点,连结AC ,若∠CAB =30°,则BD 的长为( )A .2R B.3RC .R D.32R④ ⑤5.(2009中考变式题)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连结BC 交⊙O 于点D ,连结AD ,若∠ABC =45°,则下列结论正确的是( ) A .AD =12BC B .AD =12AC C .AC>AB D .AD>DC6.(2011中考预测题)在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以C 为圆心、3 cm 长为半径的圆与AB 的关系为( )A .相切B .相离C .相交D .无法判断7.(2010·眉山)下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直8.(2009中考变式题)如图,PA 、PB 分别是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,已知∠BAC =35°,则∠P 的度数为( )A .35°B .45°C .60°D .70°9.(2009中考变式题)下列四个命题:①与圆有公共点的直线是该圆的切线;②到圆心的距离等于该圆半径的直线是该圆的切线;③垂直于圆的半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线,其中正确的是()A.①②B.①④C.②④D.③④10.(2011中考预测题)如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°11.(2009中考变式题)如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为()A. 3B. 5 C.2 3 D.2512.(2010·武汉)如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD的长为() A.7 B.7 2 C.8 2 D.9二、填空题13.(2009·河北)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC.若∠A=36°,则∠C=________.14.(2010·河南)如图,AB切⊙O于点A,BO交⊙O于点C,点D是OMA上异于点C、A的一点.若∠ABO=32°,则∠ADC的度数是________.15.(2011中考预测题)如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,若PA=8 cm,C是AB上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,则△PED的周长是________.16.(2010·杭州)如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC、BC分别相切于点D 与点E.点F是⊙O与AB的一个交点,连结DF并延长交CB的延长线于点G,则CG=________.三、解答题17.(12分)(2010·广东)如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点.已知OA =2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.18.(12分)(2010·北京)已知:如图,在△ABC中,D是AB边上的一点,⊙O过D、B、C三点,∠DOC=2∠ACD =90°.(1)求证:直线AC是⊙O的切线;(2)如果∠ACB=75°,⊙O的半径为2,求BD的长.19.(12分)(2010·襄樊)如图,已知:AC是⊙O的直径,PA⊥AC,连结OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并予以证明;(3)求sin∠OPA的值.。
点和圆、直线和圆的位置关系

学习笔记-点和圆、直线和圆的位置关系主要内容:点和圆的位置关系、直线和圆的位置关系、切线的判定及性质、圆和圆的位置关系。
(1)点和圆的位置关系:数量关系和位置关系的对应(2)圆的确定1、过一点可做无数个圆;2、过二点可做无数个圆;3、不在同一条直线上的三点确定(有且只有)一个圆;过在一条直线的三点不能做圆;4、不在同一条直线上的四点有可能作一个圆,也有可能做不出一个圆;(3)三角形的外接圆1、三角形外接圆、圆的内接三角形、外心(外接圆圆心,三角形三条边的中垂线交点);2、“接”:三角形顶点与圆的关系,顶点在圆上;“外、内”:三角形和圆的位置关系;(4)反证法1、定义:假设命题的结论不成立,由此经过推理得出矛盾,有矛盾断定假设不正确,从而得出原命题成立;2、使用场景:用于解决不易直接证明或不能直接证明的命题,主要适用于:①结论是否定形式的命题②结论是无限形式的命题③结论是“至多”或“至少”形式的命题3、否定形式“大(小)于——不大(小)于”“或——且”“至多有n个——至少有n+1个”“都是——不都是”(5)“一箭穿心”模型(圆外一点到圆的最大距离和最小距离)先把圆心到点的距离d求出来,最大距离为d+r,最小距离为d-r(三角形三边关系可证明);(1)直线和圆的位置关系:数量关系和位置关系的对应(2)直线与圆相离,直线到圆的最大距离和最小距离先把圆心到直线的距离d求出来,最大距离为d+r,最小距离为d-r(垂线段最短可证明);(1)切线的定义➢与圆只有一个交点的直线➢圆心到直线的距离等于半径的直线(2)切线的判定➢定义法:与圆只有一个公共点➢数量关系:d=r(圆心到直线的距离等于半径)➢位置关系(切线判定定理):经过半径的外端并且垂直于这条半径的直线是圆的切线证明切线的常用辅助线:◆有交点,连半径,证垂直◆无交点,作垂直,证半径(3)切线的性质➢切线与圆有且只有一个公共点➢圆心到切线的距离等于圆的半径➢(切线的性质定理)圆的切线垂直于过切点的半径以下是两个推论:⏹经过圆心且垂直于切线的直线必经过切点⏹经过切点且垂直于切线的直线必经过圆心有切线后的常用辅助线:切点的位置确定:连接圆心和切点,得垂直,即连切点得垂直切点位置不确定:过圆心作切线的垂线,垂足就是切点,即作垂直得切点(4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角主要讲解下面这个图形:找出图中互相垂直的线段、直角三角形、等腰三角形、全等三角形注意:适当讲解弦切角定理(两角互余可证明),开阔学生做题的思路。
圆圆的位置关系知识点总结

圆圆的位置关系知识点总结圆的位置关系是几何学中一个重要的概念,涉及到圆与直线、圆与圆之间的相对位置关系。
下面是关于圆的位置关系的知识点总结。
一、圆与直线的位置关系:1.外切:当直线与圆相切于圆的一点时,我们称这条直线与圆外切。
2.内切:当直线与圆只在圆的内部与圆相切时,我们称这条直线与圆内切。
3.交于两点:当直线与圆相交并有两个交点时,我们称这条直线与圆相交于两点。
4.不相交:当直线与圆没有交点时,我们称这条直线与圆不相交。
二、圆与圆的位置关系:1.相切:当两个圆相切于圆的一点时,我们称这两个圆相切。
2.相交:当两个圆有交点时,我们称这两个圆相交。
3.重合:当两个圆的圆心和半径完全相同时,我们称这两个圆重合。
4.内含:当一个圆完全在另一个圆内部时,我们称这个圆在另一个圆内含。
5.相离:当两个圆没有交点,且一个圆的外部不与另一个圆的内部相交时,我们称这两个圆相离。
三、判别圆与直线的位置关系的方法:1.利用距离:计算直线上一点到圆心的距离,根据距离与圆的半径的大小关系来判断圆与直线的位置关系。
-当直线上一点到圆心的距离等于圆的半径时,这条直线与圆相切。
-当直线上一点到圆心的距离大于圆的半径时,这条直线与圆相交。
-当直线上一点到圆心的距离小于圆的半径时,这条直线与圆不相交。
2.利用方程:通过圆的方程和直线的方程来求解相交的点,根据求解得到的交点的数量来判断圆与直线的位置关系。
四、判别圆与圆的位置关系的方法:1.利用距离:计算两个圆心之间的距离,根据距离与两个圆的半径之和、之差的大小关系来判断圆与圆的位置关系。
-当两个圆心之间的距离等于两个圆的半径之和时,这两个圆相交。
-当两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
-当两个圆心之间的距离等于两个圆的半径之差的绝对值时,一个圆完全包含在另一个圆内即一个圆内含于另一个圆。
-当两个圆心之间的距离大于两个圆的半径之差的绝对值,但小于两个圆的半径之和时这两个圆相交于两个交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题40-41:点与圆、直线与圆、圆与圆的位置关系
一:【课前预习】
(一):【知识梳理】
1.点与圆的位置关系:有三种:点在圆外,点在圆上,点在圆内.
设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点
在圆内⇔d<r.
2.直线和圆的位置关系有三种:相交、相切、相离.
设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r,直线与圆相切
⇔d=r,直线与圆相离⇔d>r
3.圆与圆的位置关系
(1)同一平面内两圆的位置关系:
①相离:如果两个圆没有公共点,那么就说这两个圆相离.
②若两个圆心重合,半径不同观两圆是同心圆.
③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.
④相交:如果两个圆有两个公共点,那么就说这两个圆相交.
(2)圆心距:两圆圆心的距离叫圆心距.
(3)设两圆的圆心距为d,两圆的半径分别为R和r,则
①两圆外离⇔d>R+r;有4条公切线;
②两圆外切⇔d=R+r;有3条公切线;
③两圆相交⇔R-r<d<R+r(R>r)有2条公切线;
④两圆内切⇔d=R-r(R>r)有1条公切线;
⑤两圆内含⇔d<R—r(R>r)有0条公切线.
(注意:两圆内含时,如果d为0,则两圆为同心圆)
4.切线的性质和判定
(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.
(2)切线的性质:圆的切线垂直于过切点的直径.
(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.(二):【课前练习】
1.△ABC中,∠C=90°,AC=3,CB=6,若以C为圆心,以r为半径作圆,那么:
⑴当直线AB与⊙C相离时,r的取值范围是____;
⑵当直线AB与⊙C相切时,r的取值范围是____;
⑶当直线AB与⊙C相交时,r的取值范围是____.
2.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=()
A
..3 D.4
3.已知⊙O
1和⊙O
2
相外切,且圆心距为10cm,若⊙O
1
的半径为3cm,则⊙O
2
的半
径 cm.二:【经典考题剖析】
4.已知⊙O
1和⊙O
2
的半径分别为3crn和5 cm,两圆的圆心距是6 cm,则这两圆的位置关
系是()A.内含 B.外离 C.内切 D.相交
5、(2011浙江杭州)在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()
A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交
C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离
A
B
D
O
C
A
第8题图
A
6. (2011浙江丽水)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()
A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1)
7.(2011甘肃兰州)如图7,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30° C.40° D.50°
8. (2011湖北黄冈,13,3分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延
长线于D,且CO=CD,则∠PCA=()A.30°B.45°C.60° D.67.5°
9(2011江苏宿迁)如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为.
10.(2011浙江义乌)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的
切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=3/4.
(1)求证:CD∥BF;
(2)求⊙O的半径;
(3)求弦CD的长.
11. (2011山东菏泽)如图,BD为⊙O的直径,AB=AC,AD交B C于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线F A与⊙O的位置关系,并说明理
由.
图9
12、(2011四川绵阳)如图,在梯形ABCD 中,AB //CD ,∠BAD =90°,以AD 为直径的 半圆O 与BC 相切. (1)求证:OB 丄OC ;
(2)若AD = 12,∠ BCD =60°,⊙O 1与半⊙O 外切,并与BC 、CD 相切,求⊙O 1的面积
.
三:【课后训练】
13 (2011贵州安顺)已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .
⑴求证:点D 是AB 的中点;
⑵判断DE 与⊙O 的位置关系,并证明你的结论;
⑶若⊙O 的直径为18,cosB =31
,求DE 的长.
14. (2011四川广安)如图12所示.P 是⊙O 外一点.P A 是⊙O 的切线.A 是切点.B 是⊙
O 上一点.且P A =PB ,连接AO 、BO 、AB ,并延长BO 与切线P A 相交于点Q .
第13题图
(1)求证:PB 是⊙O 的切线; (2)求证: AQ ·PQ = OQ ·BQ ;
15 (2011江苏南京)如图,在Rt △ABC 中,∠ACB=90°,AC=6㎝,BC=8㎝,P 为BC 的中
点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .
⑴当t=1.2时,判断直线AB 与⊙P 的位置关系,并说明理由;
⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.
16、已知两圆的半径R 、r 分别为方程0652
=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是( )
A .外离
B .内切
C .相交
D .外切 17、(2010江苏泰州)如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,
⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙
A 内切,应将⊙
B 由图示位置向左平移 个单位长度.
四:【课后小结】
_ P
_ B
图14
(第15题)。