随钻核磁共振测井
核磁共振测井不止用于井下测量_还可在地面测量岩芯

82023年4月上 第07期 总第403期能源科技| TECHNOLOGY ENERGY3月4日至13日,中国石油集团测井有限公司(简称中油测井)使用该企业自主知识产权的移动式全直径岩心核磁共振设备,在大港油田张巨河某重点评价井完成现场应用和全部解释评价任务,标志着该企业车载快速岩石物理实验室在大港油田首战告捷。
核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。
其中核磁测井(核磁共振测井),是测量地层中的氢核在地磁场中自由旋进的测井方法。
在传统的核磁测井中,现场作业人员需要将核磁仪器使用电缆下入井筒中。
中油测井天津分公司解释评价工程师宋宏业介绍传统核磁测井方法时表示,在地磁场的作用下,地层中那些自旋轴与地磁场不完全重合的氢核绕地磁场旋进。
如果在下井仪器中用极化线圈产生与地磁场垂直的强脉冲磁场(与地磁场比较而言),迫使氢核的自旋轴离开地磁场的方向,当极化磁场去掉后,它们绕地核磁共振测井不止用于井下测量 还可在地面测量岩芯通讯员 常洁芮磁场旋进并逐渐恢复到原有状态。
氢核的旋进在感应线圈中产生逐渐衰减的射频信号,其幅度取决于地层中自由流体的氢核数,称自由流体指数,而束缚水或死油对核磁测井不起明显作用。
井眼产生的信号衰减很快,可以通过延迟测量时间将其影响减至最小。
根据自由流体指数可获得岩石的自由流体孔隙度,配合其他资料可计算渗透率。
如果进而测量热弛豫时间,则可以区别油和水。
较传统的核磁测井方法相比,移动式全直径岩心核磁共振测井是车载岩石物理实验室搭载的移动式全直径岩心核磁共振测井仪器,能够实现在现场对刚出筒的岩心进行快速、连续、无损、高精度的一维T2与二维T1-T2核磁共振测量与资料快速处理解释,并获取可靠的地层孔隙度、孔隙结构、流体性质、含油饱和度等信息。
打个最恰当的比喻,在医院是把患者推进医疗核磁检测仪进行检测,而在井场,是把从地层取得的岩芯有序排入核磁共振测井仪进行检测。
在此次施工中,技术人员对钻井取心所获得的岩芯进行核磁共振测量,细化岩性综合分析,并结合显示情况,优化后续测量模式和井段,对于进一步系统掌握该区域产层岩性特点、分析储层物性主控因素有着重要意义。
随钻核磁共振测井技术参数

INTEQ 的6 ¾” MagTrak™随钻核磁共振测井技术提供实时总孔隙度,不需要放射源和岩性参考。
通过石油工业标准定义的T 2分布,随钻核磁共振测井可以得到自由水和束缚水含量,流体饱和度以及孔隙特征。
MagTrak 随钻测井工具有着很高的垂直分辨率。
探测直径可达12.6”。
6 ¾” 的MagTrak 工具可以适用8 3/8” – 9 7/8” 大小的井眼。
预先设定操作模式,简易井上操作。
这种模式能够适应绝大多数地层和流体特性。
■ “孔渗核磁”模式:可以得到总孔隙度,毛管束缚水孔隙度,粘土束缚水孔隙度和预测的渗透率 ■ “孔渗核磁+轻烃”模式:可以得到总孔隙度,毛管束缚水孔隙度,粘土束缚水孔隙度,预测的渗透率和轻烃饱和度对于特殊的应用也可以自定义测量参数。
每一种模式的原始数据都在井下处理。
经计算的地层性质参数,如总孔隙度和束缚水孔隙度等可以实时传输到地面。
所有原始数据都被储存在内存中,工具出井后可下载,进行高级处理。
MagTrak 随钻测量工具由一个传感器短节和两个扶正器组成。
工具下面需要配置一个柔性短节以减少震动。
MagTrak 传感器短节有独立的发电装置,需要泥浆驱动发电。
服务优势:■ 核磁共振随钻测量数据- 总孔隙度和有效孔隙度(实时数据) - 自由水孔隙度和束缚水孔隙度(实时数据) - 预测的渗透率(实时数据) - 孔隙特征- 轻烃饱和度■ 优化的井下测量环境- 原始地层- 无污染的井眼■ 可适用于高井斜井■ 高的垂直分辨率■ 对定向测量没有磁干扰■ 低的震动敏感性技 术 参 数 表6 3/4" MagTrak6 3/4" MagTrak 井眼尺寸 8 3/8“ - 9 7/8“传感器距底端位置 9.97ft(3.04m)公称外径 6 3/4" (17.15cm)公称直径12.6“(320mm)两个低震动扶正器回波间隔可自定义,最小0.6ms 套筒长度9.6“(24.5cm)回波数可自定义,最大5000外径1/8“欠尺寸共振频率500kHz 总长/总重名义磁场梯度 2.0G/cm 传感器带下扶正器 24.2ft(7.4m)3 197lbs(1 450kg)内存384MB,相当于340小时上扶正器 5.7ft(1.73m)705lbs(320kg) 2.8"(70mm)电源泥浆涡轮发电*静态纵向分辨率接头纵向分辨率 2 ft(钻速50ft/hr 和1空隙单位) 4 ft(钻速100ft/hr 和1空隙单位) NC50下:INTEQ 标准扣NC50NC50下:INTEQ 标准扣NC501 300 - 2 500 lpm 1 000 - 1688 lpm 最大钻压562 022 lbf(2 500kN)最大扭矩(钻头处)23 500ft-lbf(32 kNm)最大失效扭矩(钻头处)47 500ft-lbf(65 kNm)最大失效拉力无旋转持续操作无旋转最大温度最大最小操作时300°F (150°C)-14°F(-10°C)极限温度347°F(175°C)-40°F(-40°C)最大静水压25 000 psi (1 725 bar)泥浆类型不含铁矿粉,不含海绵铁最小泥浆电阻率0.02ohm-m 最大轴向,径向,切向震动参阅《补充技术参数》881 251 lbf (3 920 kN)1 162 262 lbf (5 170 kN) 最大狗腿度值对应相应的钻具组合,它受到不同参数的影响,如钻具组合方式,井身结构,钻进模式(造斜、降斜或稳斜)。
核磁测井

测井新技术之核磁共振测井随着石油勘探开发需要,测井技术发展十分迅速,高分辨阵列感应、微扫、三分量感应和正交偶极声波等新型成像测井仪为研究地层各向异性提供了强有力的手段;核磁共振、电缆地层测试、井壁取心等提供了对地层流体的精确认识;新的过套管井测井仪器,如电阻率、新型脉冲中子类测井仪、核磁共振、电缆地层测试及永久监测等现代测井技术的发展可以在套管井中确定地层参数,精细描述油藏动态变化;新的水泥胶结评价仪直观提供一、二胶结面、水泥环形新空间及套管的剖面成像;新的套损成像测井仪为修井作业提供井精确套损质量。
随钻测井系列不断增加,如随钻声电成像、核磁共振测井、随钻地层测试等。
生产测井中的新型仪器出现,如流动成像仪、持率计等可较精确地提供大斜度、水平井测井[1]。
从上述可以看出,核磁共振测井(NMR)在测井新技术中占据着非常重要的地位,在油气勘探开发的许多方面都起着重要的作用。
自上个世纪九十年代核磁共振现象被发现以来,核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。
核磁共振在石油勘探中的应用始于20世纪50年代,经过近60年的发展,核磁共振测井仪器不断更新换代,功能逐渐增强,采集的信息更加丰富。
随着勘探程度的提高和勘探目标的复杂化,核磁共振侧井已经成为一种十分重要的地球物理探测方法,在复杂油气藏勘探开发中正在发挥不可替代的作用。
在复杂岩性、复杂孔隙结构、复杂流体成分、低孔低渗以及低电阻率、低含油气饱和度等情况下,当其他测井大多显得无能为力时,核磁共振测井却是储层评价和流体识别的有效手段,因而具有独特的价值和生命力[2,3]。
人们第一次认识NMR的潜在价值是在上世纪50年代。
核磁共振测井仪器的构想最早由Varian提出,并进行了可行性研究,迈出了核磁共振在石油工业应用的第一步。
20世纪60年代,Chevron和Schlumberger合作研制出利用地磁场的核磁共振测井仪器(nuclear magnetism logging,NML),并用于油田测井。
核磁共振测井的基本原理

核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。
当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。
核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。
核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。
感应线圈的作用是把发射出去的核磁共振信号接收下来。
一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。
这些铁屑和颗粒对核磁共振信号会产生很大的干扰。
当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。
在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。
—— 1 —1 —。
核磁共振测井

核磁共振测井与录井对比班级:勘查技术与工程07-1 姓名:学号:0701********摘要:石油工程中的核磁共振技术是利用油和水中的氢原子在磁场中具有共振并产生信号的特征来探测和评价岩石特性。
核磁共振测井是在井筒中测量井周地层的物性参数.核磁共振录井是在地而(钻井现场)分析岩心、岩屑和井壁取心的物性参数(随钻分析)。
对同深度13 u 井中的核磁共振测井孔隙度、渗透率参数与核磁共振录井分析岩心、岩屑和井壁取心样品得到的孔隙度、渗透率参数进行对比分析表明.两者虽存在定差异.但整体有较好的趋势致性。
关键词:核磁共振;测井;录井;孔隙度;渗透率Abstract:The hydrogen atoms in oil and water are able to resonate and generate signalsin the magnetic field,which is used by the NMR (nuclear magnetic resonance) technolo-gy in petroleum engineering to research and uate rock characteristics. NMR welllogging was used to measure the physical property parameters of the strata in well bore,whereas NMR mud logging was used to analyze(while drilling) the physical propertyparameters of cores,cuttings and sidewall coring samples on surface(drilling site).Based on the comparative analysis of the porosity and permeability parameters obtainedby NMR well logging and those from analysis of the cores,cuttings and sidewall coringsamples by NMR mud logging in the same depth of 13 wells,these two methods are ofcertain difference,but their integral tendency is relatively good.Key words:nuclear magnetic resonance;well logging;mud logging;porosity;permea-Bility1基本原理自然界元素的同位素中将近一半能够产生核磁共振r2,。
随钻核磁共振测井仪运动检测电路模块研制

随钻核磁共振测井仪运动检测电路模块研制在随钻测井作业中,随钻核磁测井仪(LWD-NMR)钻井时对井下储层流体实时测量。
在钻进的过程中,由于钻头与岩石发生摩擦,测井仪处在一个复杂多变的运动中,导致测井质量不理想,而提高测井准确性和钻井效率的重要途径是获取仪器横向振动位移数据。
因此,在随钻测井中,通过安装在钻头部位的二轴加速度传感器获取钻井仪器的振动加速度信号。
理论上,对加速度信号两次积分即可获得测井仪的位移信号。
但由于实际所获取的加速度信号中含有直流偏置和随机噪声,如果直接对加速度信号两次积分获取位移,则会产生相当大的趋势项和随机噪声项,趋势项可以通过多项式拟合或者频域积分去除,而随机噪声项去除难度较大。
为此,本文在综合分析随钻运动机理和随机噪声项产生的原因的基础上,探讨了新的方法,主要内容如下:(1)分析了测井仪器所面临的难题,简要剖析了随钻钻具的受力情况,并解析了其4种运动形态;然后依据核磁共振测井原理,验证了钻头的横向振动对测井回波信号质量影响最大。
最后论述了2轴加速度传感器和磁力计共同检测钻头横向振动的方法,同时根据检测结果获得位移的算法。
(2)参与研制运动测量电路系统,由调理模块、电源模块、ADC采集模块及FPGA与DSP构成,针对以往信号采样分辨率低、转换速率低等缺点,对信号调理采集电路进行了改进,并绘制了运动测量电路的原理图和pcb,且经过振动试验测试,运动测量电路采集的加速度功率谱,其误差在百分之五以内,满足检测加速度的要求。
(3)采用卡尔曼滤波算法对加速度信号进行处理,首先在Matlab中实现Kalman滤波算法并确定Kalman系数,然后采用FPGA实现此算法,并使用FPGA辅助工具DSP Builder搭建Kalman滤波模型,依次经过Simulink模型、Modelsim 功能仿真等,并对两者的去噪效果做对比,其误差分析指标表明FPGA实现的Kalman滤波效果几乎达到了Matlab程序实现的效果。
核磁共振录井技术在石油工程中的应用

核磁共振录井技术在石油工程中的应用在石油的查看以及开采程序中,核磁共振措施获得了普遍的运用。
这种措施包含以下几个部分:随钻、录井、测井、辨别流体模块样式的底层检查等核磁共振措施。
在石油的开采程序中施展着日益关键的用途。
文章主要从核磁共振措施的理论解析着手,对核磁共振录井措施在存储物性评估地层等部分使用的方案开展解析,关键对储存物性评估开展具体讲述,进一步解释了核磁共振录井措施对石油项目部分有着日益关键的位置以及用途。
标签:核磁共振技术;石油工程;录井;储层物性评价引言伴随着石油业的前进,油田查看开采的范畴持续扩张,录井业也随之有了新的前进机会。
在承袭以及开展以往录井优点措施的过程中,人类凭借措施发展以及科学技术改革,持续拓展录井业新的服务范畴,开采出新的利益成长点。
当前,录井工艺以开展成以往石油业以及信息措施相综合的集化学、电子资料、电、声、磁、机器为整体的全面措施,牵扯到石油地况、钻井项目、地球化学以及物理、传感措施、信息处置以及运送等很多科目、很多范畴的现代化专业措施,其特征是信息化以及智能化。
身为一项新的科技,在上世纪末核磁共振就已经被普遍的运用到石油地况以及石油项目的探索部分。
它对信号的测验有着显著的优点,就是能够不会因固体骨架等遇到干扰,拥有安稳性质同时信息丰厚。
并且,可以有选择的对物体开展检测,能够检测的更准确,在检测的程序中可以更清楚的辨析出油、气、水等在核磁共振部分存在显著的不一样,防止在以往方式中的不足。
以往的行为是经过对外形模子的使用开展的,会遭到岩性、井眼以及地层水矿化的作用。
尤其辨别情况以及储存位置的评估都在使用核磁共振之后获得了处理。
全部这些措施的运用,能够更加精准的评估地层油气构造,计算的储存量更加科学,对产层的构造估算更加精准,推动了油气田的开采量。
1 核磁共振技术的基本原理人类在不一样的范畴中都运用了核磁共振措施,在石油项目部分的运用和别的部分存在着很大的差距。
在石油项目部分,这项措施充分使用核磁对油水开展检测以及解析,最后解析出油水在地层以及岩石中是什么样的形式以及状况留存的。
随钻测井

随钻测井一、随钻测井的引入在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。
一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量. 遇到的问题:1、某些情况下,如井的斜度超过65 度的大斜度井甚至水平井,用电缆很难将仪器放下去2、井壁状况不好易发生坍塌或堵塞3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层二、随钻测井的概念随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井):是在钻开地层的同时, 对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术.首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。
其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性.而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。
另外,近二十年来海洋定向钻井大量增加。
采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化(现代随钻测井技术大致可分为三代)●20 世纪80 年代后期以前属于第一代可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
●20 世纪90 年代初至90 年代中期属于第二代过地质导向精确地确定井眼轨迹;司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据发现目标位臵。
这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。