2019中考数学第一轮复习讲义6一次方程(组)

合集下载

2019中考数学第一轮复习 第2章第5讲一次方程(组)(共19张PPT)

2019中考数学第一轮复习 第2章第5讲一次方程(组)(共19张PPT)

4.某学校是乒乓球体育传统项目学校,为进一步推动该项目的 开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并 且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若 购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍 比购买5副直拍球拍多花费1600元.
(1)求两种球拍每副各多少元? (2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍 球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所 需费用.
得分要领►当遇到有关二元一次方程组的解的问题时,将解 代入各个方程进行检验即可确定出答案.
命题点2 一次方程(组)的应用
2.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果 每千克4元,乙种水果每千克6元,且乙种水果比甲种水果 少买了2千克,求小亮妈妈两种水果各买了多少千克?设小 亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程 组为( A )
__;
(4)合并同类项:化方程为④__ax=b(a≠0)__
的最简形式;
(5)未知数的系数化为1:方程两边同除以未知
数的系数,得到未知数的值,注意分子、分母
不要颠倒
一次方程组的 解一次方程组的思想是⑤__消元__,方法是代
解法 入消元法和Βιβλιοθήκη 减消元法考点3 一次方程(组)的应用
(1)审:审清题意,分清题的已知量、未知量;
得 3a+3b=6,即 a+b=2.
类型2 一次方程组的应用
【例2】 某中学新建了一栋四层的教学楼,每层楼有10间教室, 进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大 小也相同.安全检查中,对4个门进行了测试,当同时开启一个正 门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正 门和一个侧门时,4分钟内可以通过800名学生.

2019云南省中考数学一轮复习《第6讲:一次方程(组)》课件

2019云南省中考数学一轮复习《第6讲:一次方程(组)》课件
次数都是 1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.形式如
a1x+b1y=c1, a2x+b2y=c2,
其中 x,y 为未知数.
中考新突破 · 数学(云南)
知识要点 · 归纳
云南5 年真题 · 精选
重难点 · 突破
2019权威 · 预测
第一部分 教材同步复习
5
3.解二元一次方程组的方法和步骤 代入消元法
中考新突破 · 数学(云南)
知识要点 · 归纳
云南5 年真题 · 精选
重难点 · 突破
2019权威 · 预测
第一部分 教材同步复习
9
2.一次方程(组)常考应用类型及关系式 类型 重要等量关系
销售价=标价×折扣 销售额=销售价×销量 利润=销售价-进价 利润=进价×利润率 甲走的路程+乙走的路程=全程
(1)选取一个系数较简单的二元一次方程 变形,用含有一个未知数的代数式表示 另一个未知数 (2)将变形后的方程代入另一个方程中, 消去一个未知数,得到一个一元一次方 程
加减消元法
(1)利用等式的基本性质,将原方程组中 某个未知数的系数化成相等或互为相反 数的形式 (2)利用等式的基本性质将变形后的两个 方程相减或相加,消去一个未知数,得 到一个一元一次方程
中考新突破 · 数学(云南)
知识要点 · 归纳
云南5 年真题 · 精选
重难点 · 突破
2019权威 · 预测
第一部分 教材同步复习
6
代入消元法 (3)解这个一元一次方程,求出未知数的值
(4)将求得的未知数的值代入(1)中变形后
加减消元法
(4)将求得的未知数的值代入原 方程组中的任何一个方程中, 求出另一个未知数的值

人教版中考数学专题课件:一次方程(组)

人教版中考数学专题课件:一次方程(组)

皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组) 考点3
定义
一元一次方程的定义及解法
一 个未知数,且未知数的最高次数是________ 一 次的整 只含有______
式方程,叫做一元一次方程.
+b=0(a≠0) 一般形式 ax ______________.
最小公倍数 ; 1.去分母:在方程两边都乘以各分母的____________
方程 2x+a-9=0 得 4+a-9=0,解得 a=5.故选 D.
皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组)
根据方程的解的概念,用代入法把方程的解代入方程建 立关于字母系数的方程,通过解关于字母系数的方程求解.
皖考解读
考点பைடு நூலகம்焦
皖考探究
当堂检测
一次方程(组)
1.1-4x 1.3-3x 5x-0.4 例 3 [教材母题] 解方程: - = . 0.6 0.2 0.3
2.去括号:运用去括号法则和乘法分配律; 解一元一 次方程的 一般步骤 3.移项: 把含有未知数的项移到方程的一边, 其他项移到另一边,
符号 ; 注意移项要改变________
4.合并同类项:把方程化成 ax=b(a≠0)的形式;
系数 ,得到方程 5.系数化为 1:方程两边同除以未知数 x 的________
二元一次 方程 二元次方 程组的解 二元一次 方程组的 解法
皖考解读
考点聚焦
皖考探究
当堂检测
一次方程(组)
考点5 一次方程(组)的应用 1.审 审清题意,分清题中的已知量、未知量. 设未知数,设其中某个未知量为 x ,并注意单 列方程 2.设 位.对于含有两个未知数的问题,需要设两个未 (组)解 知数. 应用题 3.列 根据题意寻找等量关系列方程. 的一般 4.解 解方程(组). 步骤 5.验 检验方程(组)的解是否符合题意. 6.答 写出答案(包括单位). 1.基本关系:路程=速度×时间; 常见 行 2.相遇问题: 全路程=甲走的路程+乙走的路程; 重要 程 3.追及问题:若甲为快者,则被追路程=甲走的 关系 问 路程-乙走的路程; 式 题 4.水上航行问题:v 顺=v 静+v 水;v 逆=v 静-v 水.

【通用版】2019届中考数学知识点梳理:第5讲-一次方程(组)

【通用版】2019届中考数学知识点梳理:第5讲-一次方程(组)

第二单元方程(组)与不等式(组)中考数学知识点梳理:第5讲一次方程(组)一、知识清单梳理知识点一:方程及其相关概念关键点拨及对应举例1.等式的基本性质(1)性质1:等式两边加或减同一个数或同一个整式,所得结果仍是等式.即若a=b,则a±c=b±c .(2)性质2:等式两边同乘(或除)同一个数(除数不能为0),所得结果仍是等式.即若a=b,则ac=bc,a bc c=(c≠0).(3)性质3:(对称性)若a=b,则b=a.(4)性质4:(传递性)若a=b,b=c,则a=c.失分点警示:在等式的两边同除以一个数时,这个数必须不为0.例:判断正误.(1)若a=b,则a/c=b/c. (×)(2)若a/c=b/c,则a=b. (√)2.关于方程的基本概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程.(2)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程.(3)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.(4)二元一次方程组的解:二元一次方程组的两个方程的公共解.在运用一元一次方程的定义解题时,注意一次项系数不等于0.例:若(a-2)|a1|0x a-+=是关于x的一元一次方程,则a的值为0.知识点二:解一元一次方程和二元一次方程组3.解一元一次方程的步骤(1)去分母:方程两边同乘分母的最小公倍数,不要漏乘常数项;(2)去括号:括号外若为负号,去括号后括号内各项均要变号;(3)移项:移项要变号;(4)合并同类项:把方程化成ax=-b(a≠0);(5)系数化为1:方程两边同除以系数a,得到方程的解x=-b/a.失分点警示:方程去分母时,应该将分子用括号括起来,然后再去括号,防止出现变号错误.4.二元一次方程组的解法思路:消元,将二元一次方程转化为一元一次方程.已知方程组,求相关代数式的值时,需注意观察,有时不需解出方程组,利用整体思想解决解方程组. 例:已知2923x yx y-=⎧⎨-=⎩则x-y的值为x-y=4. 方法:(1)代入消元法:从一个方程中求出某一个未知数的表达式,再把“它”代入另一个方程,进行求解;(2) 加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法.知识点三:一次方程(组)的实际应用5.列方程(组)解应用题的一般步骤(1)审题:审清题意,分清题中的已知量、未知量;(2)设未知数;(3)列方程(组):找出等量关系,列方程(组);(4)解方程(组);(5)检验:检验所解答案是否正确或是否满足符合题意;(6)作答:规范作答,注意单位名称.(1)设未知数时,一般求什么设什么,但有时为了方便,也可间接设未知数.如题目中涉及到比值,可以设每一份为x.(2)列方程(组)时,注意抓住题目中的关键词语,如共是、等于、大(多)多少、小(少)多少、几倍、几分之几等.6.常见题型及关系式(1)利润问题:售价=标价×折扣,销售额=售价×销量,利润=售价-进价,利润率=利润/进价×100%. (2)利息问题:利息=本金×利率×期数,本息和=本金+利息.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间. ①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:a.同地不同时出发:前者走的路程=追者走的路程;b.同时不同地出发:前者走的路程+两地间距离=追者走的路程.。

中考数学《一次方程(组)》总复习训练含答案解析

中考数学《一次方程(组)》总复习训练含答案解析

一次方程(组)一、选择题1.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.5 B.4 C.3 D.22.若a=b﹣3,则b﹣a的值是()A.3 B.﹣3 C.0 D.63.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种 B.9种 C.16种D.17种4.方程2x+1=0的解是()A.B.C.2 D.﹣2二、填空题5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.6.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是.7.某商店一套秋装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为元.8.如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是元.9.某种服装按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元,这种服装的进价为元.三、解答题10.解方程组:.11.解方程:.12.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.13.预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?14.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?15.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?等级票价(元/张)A500B300C15016.四川汶川的特大地震灾害,牵动着全中国人民的心.某校发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?一次方程(组)参考答案与试题解析一、选择题1.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.5 B.4 C.3 D.2【考点】三元一次方程组的应用.【专题】压轴题.【分析】根据图中物体的质量和天平的平衡情况,设出未知数,列出方程组解答.【解答】解:设球体、圆柱体与正方体的质量分别为x、y、z,根据已知条件,得:,(1)×2﹣(2)×5,得:2x=5z,即2个球体相等质量的正方体的个数为5.故选:A.【点评】本题通过建立二元一次方程组,求得球体与正方体的关系,等量关系是天平两边的质量相等.2.若a=b﹣3,则b﹣a的值是()A.3 B.﹣3 C.0 D.6【考点】代数式求值.【分析】此题可用将a=b﹣3代入b﹣a,去括号合并同类项即可求得.【解答】解:∵a=b﹣3∴b﹣a=b﹣(b﹣3)=b﹣b+3=3.故选A.【点评】主要考查了整体思想.解题的关键是将a用b﹣3代替代入代数式求解.3.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则恰好能安置的搭建方案共有()A.8种 B.9种 C.16种D.17种【考点】推理与论证.【专题】方案型.【分析】可设6人的帐篷有x顶,4人的帐篷有y顶.根据两种帐篷容纳的总人数为100人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【解答】解:设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=100,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去)即共有8种搭建方案.故选A.【点评】解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.4.方程2x+1=0的解是()A.B.C.2 D.﹣2【考点】解一元一次方程.【专题】计算题;压轴题.【分析】先移项,再系数化1,可求出x的值.【解答】解:移项得:2x=﹣1,系数化1得:x=﹣.故选B.【点评】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.二、填空题5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是20g.【考点】二元一次方程组的应用.【分析】通过理解题意可知本题存在两个等量关系,即三块巧克力的质量=两个果冻的质量,一块巧克力的质量+一个果冻的质量=50克.根据这两个等量关系式可列一个方程组.【解答】解:设每块巧克力的重量为x克,每块果冻的重量为y克.由题意列方程组得:,解方程组得:.答:每块巧克力的质量是20克.故答案为:20.【点评】本题考查二元一次方程组的应用,根据图表信息列出方程组解决问题.6.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20.【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.【解答】解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.【点评】本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.7.某商店一套秋装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为340元.【考点】有理数的混合运算.【专题】应用题.【分析】认真审题找出等量关系:服装的标价的80%正好等于服装的进价加上获利,然后根据等量关系列方程解答.【解答】解:设先设服装的标价为x元.80%•x=200+72,解得x=340.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.8.如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是145元.【考点】一元一次方程的应用.【专题】经济问题;压轴题.【分析】此题等量关系为:一盒福娃的价格+奥运徽章的价格=170元,设一盒福娃价格是x元,可用代数式表示一枚奥运徽章的价格,即可根据等量关系列方程求解.【解答】解:设一盒福娃价格是x元,则x+(x﹣120)=170,解得:x=145.则一盒福娃价格是145元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.某种服装按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元,这种服装的进价为75元.【考点】一元一次方程的应用.【专题】销售问题;压轴题.【分析】要求进价,可用未知数设出进价,然后根据按进价提高50%后标价,又以8折优惠卖出,结果仍获利15元这个等量关系列出方程求解.【解答】解:设进价是x元.根据题意得:80%(1+50%)x﹣x=15,解得:1.2x﹣x=15,x=75故填75.【点评】注意:利润=售价﹣进价.8折即标价的80%.三、解答题10.解方程组:.【考点】解二元一次方程组.【分析】由于两个方程中y的系数相同,可以选择用加减消元法来解.【解答】解:,(2)﹣(1),得x=5,把x=5代入(1),得y=2.∴原方程组的解为:.【点评】解二元一次方程组体现了数学的转化思想,即二元方程一元化,本题也可以利用代入消元法求解,但是不如加减消元法简单,同学们不妨一试.11.解方程:.【考点】高次方程.【分析】先把方程组中的方程化简后再解.【解答】解:(2)可化为(x﹣y)(x+y)=5,原方程组可化为:把(1)代入(2)得:2x=﹣6x=﹣3把x=﹣3代入(1)得y=﹣2∴原方程组的解为【点评】解二元一次方程组时,方程组中的方程若能进行因式分解应先因式分解后再求值.12.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.【考点】一元一次方程的应用.【专题】增长率问题.【分析】设这个月的石油价格相对上个月的增长率为x.根据这个月进口石油的费用反而比上个月增加了14%列方程求解.【解答】解:设这个月的石油价格相对上个月的增长率为x.根据题意得:(1+x)(1﹣5%)=1+14%.解得:x==20%.答:这个月的石油价格相对上个月的增长率为20%.【点评】这里要分别把上个月的石油进口量和上个月的石油价格看作单位1.13.预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?【考点】一元一次方程的应用.【专题】行程问题.【分析】由题意可得:试验列车由北京到天津的行驶时间为36分钟,由天津返回北京的行驶时间为30分钟;但这36分钟与返回时30分钟所行驶路程是相等的.根据行驶路程相等这一等量关系列出方程求解即可.【解答】解:设这次试车时,由北京到天津的平均速度是每小时x千米,则由天津返回北京的平均速度是每小时(x+40)千米依题意得:(x+40)解得:x=200.答:这次试车时,由北京到天津的平均速度是每小时200千米.【点评】本题也是一道与时事紧密相关的数学题,在考核学生数学知识的同时让学生了解时事,本题着重考核了学生应用适当的数学模型解决实际问题的能力.易忽视点:预计时间为30分钟,学生易忽视.14.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?【考点】一元一次方程的应用.【专题】应用题;比赛问题.【分析】设这个队胜了x场,根据共得分是19分,即:胜场得分+平场得分=19分,列方程求解.【解答】解:设这个队胜了x场,依题意得:3x+(14﹣5﹣x)=19,解得:x=5.答:这个队胜了5场.【点评】理解此题中的等量关系:胜的场数得分+平的场数得分=19分,是解决本题的关键.15.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?等级票价(元/张)A500B300C150【考点】二元一次方程组的应用.【专题】图表型.【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=3张A门票的价格.据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张.依题意,得解方程组,得答:小明预订了B等级门票3张,C等级门票4张.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.16.四川汶川的特大地震灾害,牵动着全中国人民的心.某校发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?【考点】二元一次方程组的应用.【分析】本题中有两个等量关系:老师捐款数+学生捐款数=4万5千,学生捐款数=2×老师捐款数﹣9千.设两个未知数,根据以上等量关系列出二元一次方程组.【解答】解:设老师捐款x元,学生捐款y元.则有(1分)(4分)解得:(7分)答:该校老师捐款18 000元,学生捐款27 000元.(8分)【点评】关键是弄清题意,找出等量关系.11 / 11。

2019版河北省中考数学一轮复习《课题5:一次方程(组)及其应用》课件

2019版河北省中考数学一轮复习《课题5:一次方程(组)及其应用》课件

基础知识梳理
栏目索引
销售总利润=每件利润×销售数量 利息=本金×利率×期数; 本息和=本金+利息=本金×(1+利率×期数); 贷款利息=贷款额×利率×期数
工程问题 浓度问题
工作量=工作效率× 浓度=
溶质的质量(体积) 溶液的质量(体积)
工作时间 ×100%;
溶液质量=溶质质量+溶剂质量 行程问题 (1)相遇问题:(甲乙相向而行直至相遇):全路程=甲走的路程 (2)相离问题:(甲乙同地出发背向而行)相离路程=甲走的路程 (3)追及问题: (i)同地同向不同时出发:前者走的路程=追者走的路程; (ii)同时不同地出发:前者走的路程+两地间的距离=追者走的路程 (4)水中航行问题: (i)顺水速度=静水速度+ (ii)逆水速度=静水速度- 水速 ; 水速 + 乙走的路程 + 乙走的路程
去分母,得2(2x-1)=3(x-1)-6,
去括号,得4x-2=3x-3-6, 移项、合并同类项,得x=-7.
中考题型突破 栏目索引
名师点拨 本题的解题技巧是“将错就错”,即:利用错解在错误的方程中求
得a的值,由此得到正确的方程,而达到这一点,必须深刻理解方程的解的概念.
中考题型突破 栏目索引
变式训练1 (2017石家庄藁城模拟)解下列方程:
a b 或 = (c≠0). c c
基础知识梳理
栏目索引
考点二
一元一次方程的概念及其解法
1.方程:含有未知数的等式叫做方程.
2.方程的解:使方程左右两边相等的③ 3.解方程:求方程解的过程叫做解方程. 4.一元一次方程:方程仅含有④ 是⑤ 一 个未知数,并且所含未知数的项的次数 未知数 的值叫做方程的解.

【数学中考一轮复习】一次方程(组) (含答案)

【数学中考一轮复习】一次方程(组)  (含答案)

第三章 方程(组)与不等式(组)3.1 一次方程(组)考点突破考点一 一元一次方程及其解法 典例1 解方程:131223=+--x x . 思路导引方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.规律总结解一元一次方程的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项. 跟踪训练11.一元一次方程2x +1=3的解是x =___________.2.解方程:312122-+=--x x x .3.以下是圆圆解方程13321=--+x x 的解答过程. 解:去分母,得3(x +1)-2(x-3)=1. 去括号,得3x +1-2x +3=1. 移项,合并同类项,得x =-3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.考点二 一元一次方程的应用典例2为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?思路导引设甲工程队每天掘进x米,则乙工程队每天掘进x-2米.根据“甲工程队独立工作2天的工作量+甲乙合作1天的工作量=26米”列出方程,然后求工作时间.规律总结本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 跟踪训练21.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元2.暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图所示,请你为广告牌填上原价.原价:___________元.3.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?考点三二元一次方程组的解法典例3 解二元一次方程组:⎩⎨⎧=+=+.93822y x y x ,思路导引方程组利用加减消元法或代入消元法求出解即可.规律总结此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 跟踪训练3解方程组⎩⎨⎧7.=y +3x ,1=y -x考点四 二元一次方程组的应用典例4 某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天? 思路导引设改进加工方法前用了x 天,改进加工方法后用了y 天,根据6天共加工竹笋22吨,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.规律总结本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 跟踪训练41.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳长y 尺,那么可列方程组为( )A.⎩⎨⎧-=+=15.05.4x y x yB.⎩⎨⎧-=+=125.4x y x yC.⎩⎨⎧-=-=15.05.4x y x yD.⎩⎨⎧-=-=125.4x y x y 2.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名. 3.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?中考真题1.(2020·重庆)解一元一次方程x x 311)1(21-=+时,去分母正确的是( )A.3(x +1)=1-2xB.2(x +1)=1-3xC.2(x +1)=6-3xD.3(x +1)=6-2x2.(2020·嘉兴)用加减消元法解二元一次方程组⎩⎨⎧②1=y -2x ①,4=3y +x 时,下列方法中无法消元的是( )A.①×2-②B.②×(-3)-①C.①×(-2)+②D.①-②×3 3.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A.21x =(x-5)-5 B.21x =(x +5)+5 C.2x =(x-5)-5 D.2x =(x +5)+54.(2020·鸡西)若⎩⎨⎧1=b 2=a 是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax 的解,则x +2y 的算术平方根为( )A.3B.3,-3C.3D.3,-35.(2020·齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A.3种B.4种C.5种D.6种6.(2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A. 120 km B. 140 km C. 160 km D.180 km7.(2020·株洲)关于x 的方程3x-8=x 的解为x =___________.8.(2020·北京)方程组⎩⎨⎧7=y +3x ,1=y -x 的解为___________.9.(2020·沈阳)二元一次方程组⎩⎨⎧1=y -2x 5,=y +x 的解是__________.10.(2020·南京)已知x ,y 满足方程组⎩⎨⎧,3=y +2x ,1-=3y +x 则x +y 的值为__________.11.(2020·绍兴)若关于x ,y 的二元一次方程组⎩⎨⎧0=A 2=y +x 的解为⎩⎨⎧,1=y ,1=x 则多项式A 可以是______________(写出一个即可).12.(2020·江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,右下图符号表示一个两位数,则这个两位数是____________.13.(2020·常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是__________次.14.(2020·湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.15.(2020·淄博)解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+.22128213y x y x ,16.(2020·广东)已知关于x ,y 的方程组⎩⎨⎧=+-=+431032y x y ax 与⎩⎨⎧=+=-152by x y x ,的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.17.(2020·山西)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(2020·黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?参考答案考点突破典例1 解:去分母得:3(x—3)—2(2x+1)=6,去括号得:3x-9-4x-2-6,移项得:-x=17,系数化为1得:x=-17.跟踪训练11.12.解:去分母,得:6-3(x-2)=6+2(2x-1),去括号,得:6x-3x+6=6+4x-2,移项,得:63.x-4x-6-6-2,合并同类项,得:-x=-2,系数化为1,得:x-2.3.解:圆圆的解答过程有错误, 正确的解答过程如下:去分母,得3(x +1)-2(x-3)=6. 去括号,得3x +3-2x +6=6. 移项,合并同类项,得x =-3.典例2 解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x-2)米, 由题意,得2x +(x +x-2)=26,解得:x-7. 所以乙工程队每天掘进5米,5726146+-=10(天), 答:甲乙两个工程队还需联合工作10天. 跟踪训练 2 1. D 2. 2003,解:设这些学生共有x 人,根据题意得286=-xx ,解得x =48.答:这些学生共有48人.典例3 解:⎩⎨⎧=+=+,②,①93822y x y x ,法1:②-①×3,得2x =3,解得:23=x ,把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .法2:由②得:2x +3(2.x-y )=9, 把①代入上式,解得:23=x .把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .跟踪训练 3解:⎩⎨⎧,②7=y +3x ,①1=y -x①+②得:4x =8,解得:x =2, 把x =2代入①得:y =1,则该方程组的解为⎩⎨⎧1=y 2=x .典例4 解:设改进加工方法前用了x 天,改进加工方法后用了y 天,依题意,得:⎩⎨⎧,22=5y +3x ,6=y +x 解得:⎩⎨⎧ 2.=y ,4=x答:该合作社改进加工方法前用了4天,改进加工方法后用了2天. 跟踪训练4 1.A 2. 233.解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧==,90)y -x )4+6,90)y +6x ((解得:⎩⎨⎧ 3.=y ,12=x答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时. (2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:31290312--=+a a ,解得:a =4225. 答:甲、丙两地相距4225千米.中考真题1.D2.D3.A4.C5. B6. B7.4 8. ⎩⎨⎧==12y x 9.⎩⎨⎧==32y x 10.1 11,答案不唯一,如x-y12. 25 13.4 14. 915.解:⎪⎪⎩⎪⎪⎨⎧=-=+②,①.22128213y x y x①+②,得:5x-10,解得x=2,把x =2代入①,得:6+21y =8,解得y =4, 所以原方程组的解为⎩⎨⎧==42y x .16.解:(1)由题意列方程组;⎩⎨⎧=-=+24y x y x ,解得⎩⎨⎧==13y x .将x =3,y =1分别代入31032-=+y ax 和x +by =15,解得34-=a ,b =12, ∴34-=a ,b =12.(2)012342=+-x x ,解得322484834=-±=x .这个三角形是等腰直角三角形. 理由如下:∵(23)2+(23)2=(26)2, ∴该三角形是等腰直角三角形. 17.解:设该电饭煲的进价为x 元.根据题意,得(1+50%)x ·80%-128=568.解得 =580. 答:该电饭煲的进价为580元.18.解:设每盒羊角春牌绿茶需要 元,每盒九孔牌藕粉需要y 元,依题意,得: ⎩⎨⎧,300=3y +x ,960=4y +6x 解得:⎩⎨⎧60.=y ,120=x答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.。

中考数学一轮总复习 第6课时 一次方程(无答案) 苏科版

中考数学一轮总复习 第6课时 一次方程(无答案) 苏科版

第6课时:一次方程(组)【课前预习】 (一)知识梳理 1.等式的概念和性质。

2.方程的有关概念:方程、方程的解(根)、解方程。

3.一元一次方程、二元一次方程(组)、三元一次方程(组)的定义及解法。

(二)课前练习1.如果方程3240m x --=是一元一次方程,则m = . 2.已知x=1是方程31322x k x -=-的解,则2k+3= . 3.若132350m n m n x y +----+=是关于,x y 的二元一次方程,则m =_____,n =_____. 4.把方程28x y -=化成用含x 的代数式表示y 的形式,y = . 5.当x = 时,代数式42x +与39x -的值互为相反数.【解题指导】 例1. 解下列方程: 111210.121(9)(9) (2)133930.64x x x x x x -++⎡⎤--=--=-⎢⎥⎣⎦(1)x-例2. 解下列方程组:32132316(1) (2)274132312x y z x y x y z x y x y z ++=⎧+=⎧⎪++=⎨⎨+=⎩⎪+-=⎩例3. 若方程3x y +=,5x y -=和2x ky +=有公共解,求k 的值.例4. 写一个解为 12x y =⎧⎨=⎩的二元一次方程组 .【巩固练习】1..三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解。

”提出各自的想法。

甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”。

参考他们的讨论,你认为这个题目的解应该是 .2.22ax bx a b -=-解方程(1) 3419(2)4x y x y +=⎧⎨-=⎩ 27(3)3330x y y z x z +=⎧⎪+=⎨⎪+=⎩3., 3452x y z x y z x++==己知求:的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲:一次方程(组)姓名:_________ 日期:_________1.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )A .2B .3C .4D .52.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b = .3.方程组326x y x y +=⎧⎨-=⎩的解为 . 4.解下列方程(组):(1)3(x +1)-1=8x ; (2)⎩⎨⎧=+=-1732623y x y x ;(2)1432312=---x x ; (4)31328x y x y +=-⎧⎨-=⎩ ;5.已知(x-2)2+|x-y-4|=0,则x+y= .6.定义运算“*”,其规则是a*b=a-b 2,由这个规则,方程(x+2)*5=0的解为 .7.若关于x 、y 的方程组⎩⎪⎨⎪⎧x+y=5k ,x -y=9k 的解也是方程2x +3y =6 的解,则k 的值为 . 8.已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.一、等式的概念及性质1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么ac =③用等式性质进行等式变形,必须注意“都”,不能漏项,等式两边都除以一个数或式时必须保证它的值。

二、方程的有关概念1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程1、只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

3、去分母时应注意不要漏乘项,移项时要注意。

四、二元一次方程组及解法1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的叫做二元一次方程组的解;4、解二元一次方程组的基本思路是:;5、二元一次方程组的解法:①消元法②消元法6、一个二元一次方程的解有组,在实际应用中要求其正整数解五、列方程(组)解应用题:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6、答:写出答案(包括单位名称)7、几个常用的等量关系:①路程= ×②工作效率=考点一:二元一次方程组的解法考点二:一(二)元一次方程的应用1、假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种2、为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?3、四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有()A.1种B.11种C.6种D.9种考点三:一元一次方程组的应用1、2013年4月20日,芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?2、苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?3、某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量..1.把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm 2.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元3.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.222.5%0.5%10000x yx y-=⎧⎨⨯+⨯=⎩B.22100002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩C.100002.5%0.5%10000x yx y+=⎧⎨⨯-⨯=⎩D.10000100002.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩4.解方程组:23322x yx y-=⎧⎨+=-⎩①②.7353x yx y+=⎧⎨-=-⎩5.夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?6.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?1.一元一次方程2x=4的解是()A.x=1 B.x=2 C.x=3 D.x=42.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.0 B.-1 C.1 D.5A.23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩5.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25x)=338256.雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩7.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.8.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?。

相关文档
最新文档