高中寒假数学作业
2023年高三数学寒假作业16(Word含答案解析)

【解析】
【分析】分别求出导数,设出切点,得到切线方程,再由两点的斜率公式,结合切点满足曲线方程,运用导数求的单调区间、极值、最值即可得出a的取值范围.
【详解】设
切线: ,即
切线: ,即 ,
令
在 上单调递增,在 上单调递减,
所以
故选:A.
8.已知双曲线 ,若过点 能作该双曲线的两条切线,则该双曲线离心率 取值范围为()
1.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()
A. B. C. D.
【答案】C
【解析】
【分析】根据Venn图表示的集合运算作答.
【详解】阴影部分在集合 的公共部分,但不在集合 内,表示为 ,
故选:C.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
(参考数据: )
A. B. C. D.
【答案】D
【解析】
【分析】根据给定条件,确定标准对数视力 从下到上的项数,再利用等比数列计算作答.
【详解】依题意,以标准对数视力 为左边数据组的等差数列的首项,其公差为-0.1,标准对数视力 为该数列第3项,
标准对数视力 对应的国际标准视力值1.0为右边数据组的等比数列的首项,其公比为 ,
A. B. C. D.
8.已知双曲线 ,若过点 能作该双曲线的两条切线,则该双曲线离心率 取值范围为()
A. B. C. D.以上选项均不正确
二、多选题
9.已知向量 ,则下列命题正确的是()
A.存在 ,使得 B.当 时, 与 垂直
C.对任意 ,都有 D.当 时,
10.一个质地均匀的正四面体表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A为“第一次向下的数字为偶数”,事件B为“两次向下的数字之和为奇数”,则下列说法正确的是()
高一数学寒假作业01 集合及其运算(教师版)

高一数学寒假作业专题01集合及其运算1.给出下列表述:①联合国常任理事国;②充分接近√2的实数的全体;③方程x2+x−1=0的实数根④全国著名的高等院校.以上能构成集合的是()A.①③B.①②C.①②③D.①②③④【答案】A【解析】①联合国的常任理事国有:中国、法国、美国、俄罗斯、英国.所以可以构成集合.②中的元素是不确定的,不满足集合确定性的条件,不能构成集合.③方程x2+x−1=0的实数根是确定,所以能构成集合.④全国著名的高等院校.不满足集合确定性的条件,不构成集合.故选:A2.设集合U={1,2,3,4,5},M={1,2},N={2,3},则∁U(M⋃N)=()A.{4,5}B.{1,2}C.{2,3}D.{1,3,4,5}【答案】A【解析】根据题意,易得M⋃N={1,2,3},故∁U(M∪N)={4,5}.故选:A.3.若集合A={x|−1<x<1},B={x|0≤x≤2},则A⋂B=()A.{x|−1<x<1}B.{x|−1<x<2}C.{x|0≤x<1}D.{x|−1<x<0}【答案】C【解析】因为A={x|−1<x<1},B={x|0≤x≤2},所以A⋂B={x|0≤x<1}.故选:C.4.已知集合A满足{1}⊆A⫋{1,2,3,4},这样的集合A有()个A.5B.6C.7D.8【答案】C【解析】由题得集合A={1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}.故选:C5.已知集合A={x|y=log2(x+1)},B={x∈Z||x−1|≤1},则A⋂B=()A.{x|−1<x<2}B.{x∈Z|0≤x≤2}C.{x|0≤x<2}D.{0,1}【答案】B【解析】因为A={x|x>−1},B={x∈Z|0≤x≤2},所以A∩B={x∈Z|0≤x≤2}故选:B.6.60名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有40名,参加乙项的学生有35名,则仅参加了一项活动的学生人数为()A.50B.35C.40D.45【答案】D【解析】用集合A表示参加甲项体育活动的学生,用集合B表示参加乙项体育活动的学生,用card(A)来表示有限集合A中的元素个数,于是有:card(A∪B)=card(A)+card(B)−card(A∩B),即:60=40+35−card(A⋂B)⇒card(A⋂B)=15,因此仅参加了一项活动的学生人数为:60−15=45,故选:D7.已知全集U=R,集合A={x|0≤x≤2},B={x|x2−x>0},则图中的阴影部分表示的集合为()A.{x|x≤1或x>2}B.{x|x<0或1<x<2}C.{x|1≤x<2}D.{x|1<x≤2}【答案】A【解析】解不等式可得B={x|x<0或x>1},由题意可知阴影部分表示的集合为∁U(A⋂B)⋂(A⋃B),且A⋂B={x|1<x≤2},A⋃B=R,∴∁U(A⋂B)={x|x≤1或x>2},所以∁U(A⋂B)⋂(A⋃B)={x|x≤1或x>2},故选:A.8.若函数f(x)=√x2−5x+6的定义域是F,g(x)=√x−2+√x−3的定义域是G,则F 和G的关系是()A .G ⊂FB .F ⊂GC .F =GD .F ∩G =∅【答案】A【解析】由题设,x 2−5x +6=(x −2)(x −3)≥0,可得F ={x|x ≤2或x ≥3},又{x −2≥0x −3≥0,可得G ={x|x ≥3},∴G ⊂F .故选:A.9.设P ={x|x ≤3},a =2√2,则下列关系中正确的是( )A .a ⊆PB .a ∈PC .{a }⊆PD .{a }∈P【答案】BC【解析】因为2√2≤3,所以2√2∈{x|x ≤3},即a ∈P ,{a }⊆P故选:BC10.如图所示的阴影部分表示的集合是( )A .M ∩(N ∩P)B .(C U M )∩(N ∩P)C .P ∩[C U (M ∪N)]D .P ∩(C U M )∩(C U N )【答案】CD【解析】A 选项表示的是图1的部分,不合题意,B选项表示的是图2的部分,不合题意CD选项表示的是题干中的阴影部分故选:CD11.已知集合M={2,4},集合M⊆N {1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}【答案】ABC【解析】因为集合M={2,4},对于A:N={2,4}满足M⊆N {1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N {1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N {1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.12.集合A ,B 是实数集R 的子集,定义A −B ={x|x ∈A,x ∉B },A ∗B =(A −B )∪(B −A )叫做集合的对称差.若集合A ={y|y =(x −1)2+1,0≤x ≤3},B ={y|y =x 2+1,1≤x ≤3},则以下说法正确的是( )A .A ={y|−1≤y ≤5}B .A −B ={y|1≤y <2}C .B −A ={y|5<y ≤10}D .A ∗B ={y|1<y ≤2}∪{y|5<y ≤10}【答案】BC【解析】A ={y|y =(x −1)2+1,0≤x ≤3}={y |1≤y ≤5},A 错误;B ={y|y =x 2+1,1≤x ≤3}={y |2≤y ≤10},A −B ={x |1≤x <2},B 正确; B −A ={y|5<y ≤10},C 正确;A ∗B =(A −B )∪(B −A )={y|1≤y <2}∪{y|5<y ≤10},D 错误.故选:BC.三、填空题13.已知集合M ={y |y =x,x ≥0},N ={x |y =lg (2x −x 2)},则M⋂N =______.【答案】(0,2)【解析】M ={y |y =x,x ≥0}={y|y ≥0},N ={x |y =lg (2x −x 2)}={x |2x −x 2⟩0}={x|x 2−2x <0}={x|0<x <2}, 所以M ∩N ={x|0<x <2}=(0,2),故答案为:(0,2).14.若集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则a =_________.【答案】0或1或0【解析】因集合A ={x ∈R |ax 2−2x +1=0}中只有一个元素,则当a =0时,方程为−2x +1=0,解得x =12,即集合A ={12},则a =0,当a ≠0时,由Δ=22−4a =0,解得a =1,集合A ={1},则a =1,所以a =0或a =1.故答案为:0或115.我们将b −a 称为集合{x |a ≤x ≤b }的“长度”.若集合M ={x |m ≤x ≤m +2022},N ={x |n −2023≤x ≤n },且M ,N 都是集合{x |0≤x ≤2024}的子集,则集合M ∩N 的“长度”的最小值为______.【答案】2021【解析】由题意得,M的“长度”为2022,N的“长度”为2023,要使M∩N的“长度”最小,则M,N分别在{x|0≤x≤2024}的两端.当m=0,n=2024时,得M={x|0≤x≤2022},N={x|1≤x≤2024},则M∩N={x|1≤x≤2022},此时集合M∩N的“长度”为2022−1=2021;当m=2,n=2023时,M={x|2≤x≤2024},N={x|0≤x≤2023},则M∩N={x|2≤x≤2023},此时集合M∩N的“长度”为2023−2=2021.故M∩N的“长度”的最小值为2021.故答案为:202116.当两个集合中有一个集合为另一集合的子集时称这两个集合之间构成“全食”,当两个集合有公共元素,但互不为对方子集时称两集合之间构成“偏食”.对于集合A={−12,12,1},B={x|ax2+1=0,a≤0},若A与B构成“全食”,或构成“偏食”,则a的取值集合为__________ _.【答案】{0,−1,−4}【解析】当A与B构成“全食”即B⊆A时,当a=0时,B=∅;当a≠0时,B={√−1a ,−√−1a},又∵B⊆A,∴a=−4;当A与B构成构成“偏食”时,A⋂B≠∅且B⊈A,∴a=−1.故a的取值为:0,−1,−4,故答案为:{0,−1,−4}17.已知集合A={x|1≤x≤4},B={x|2<x<5},C={x|a−1≤x≤a+1},且B∪C= B.(1)求实数a的取值范围;(2)若全集U=A⋃(B⋃C),求∁U B.【答案】(1)(3,4);(2)∁U B={x|1≤x≤2}.【解析】(1)由B∪C=B,可知C⊆B,又∵B={x|2<x<5},C={x|a−1≤x≤a+1},∴2<a−1<a+1<5,解得:3<a<4,∴实数a的取值范围是(3,4).(2)依题意得,U=A⋃(B⋃C)=A⋃B,又A={x|1≤x≤4},B={x|2<x<5},∴U={x|1≤x<5},∴∁U B={x|1≤x≤2}.18.设全集U=R,集合A={x|x−6x+5≤0},B={x|x2+5x−6≥0},求:(1)A∩∁U B;(2)(∁U A)∪(∁U B).【答案】(1)A⋂∁U B={x|−5<x<1};(2)(∁U A)∪(∁U B)={x|x<1或x>6}.【解析】(1)由x−6x+5≤0可得{(x−6)(x+5)≤0x+5≠0,解得:−5<x≤6,所以A={x|−5<x≤6},由x2+5x−6≥0,可得(x−1)(x+6)≥0,解得:x≤−6或x≥1,所以B={x|x≤−6或x≥1},所以∁U B={x|−6<x<1},所以A⋂∁U B={x|−5<x<1}.(2)由(1)知A={x|−5<x≤6},所以∁U A={x|x≤−5或x>6},所以(∁U A)∪(∁U B)={x|x<1或x>6}.19.已知集合A={x|log2(x+1)<4},B={x|4x>8},C={x|a−1≤x≤2a+1}.(1)计算A⋂B;(2)若C⊆(A∩B),求实数a的取值范围.【答案】(1){x∣32<x<15}(2)(−∞,−2)∪(52,7)【解析】(1)由log2(x+1)<4得log2(x+1)<log224,又函数y=log2x在(0,+∞)上单调递增,则0<x+1<24即A={x∣−1<x<15},由4x>8,得x>32,即B={x∣x>32},则A ∩B ={x ∣32<x <15}.(2)因为C ⊆(A ∩B ),当C =∅时,2a +1<a −1,即a <−2;当C ≠∅时,由C ⊆(A ∩B ),可得{2a +1⩾a −1,a −1>32,2a +1<15,即52<a <7,综上,a 的取值范围是(−∞,−2)∪(52,7).20.已知集合A ={x|a ≤x ≤a +3},B ={x|x <−6或x >1}.(1)若A⋂B =∅,求a 的取值范围;(2)若A ∪B =B ,求a 的取值范围.【答案】(1){a|−6≤a ≤−2};(2){a|a <−9或a >1}.【解析】(1)因为A⋂B =∅,所以{a ≥−6a +3≤1,解得:−6≤a ≤−2, 所以a 的取值范围是{a|−6≤a ≤−2}.(2)因为A ∪B =B ,所以A ⊆B ,所以a +3<−6或a >1,解得:a <−9或a >1, 所以a 的取值范围是{a|a <−9或a >1}.21.已知集合P ={x|x 2+4x =0},Q ={x|x 2−4mx −m 2+1=0}.(1)若1∈Q ,求实数m 的值;(2)若P⋃Q =P ,求实数m 的取值范围.【答案】(1)m =−2±√6.(2)−√55<m <√55或m =−1. 【解析】(1)由1∈Q 得1−4m −m 2+1=0,即m 2+4m −2=0,解得m =−2±√6;(2)因为P⋃Q =P ,所以Q ⊆P ,由P ={0,−4}知Q 可能为∅,{0},{−4},{0,−4};①当Q =∅,即x 2−4mx −m 2+1=0无解,所以Δ=16m 2+4m 2−4=20m 2−4<0, 解得−√55<m <√55;②当Q={0},即x2−4mx−m2+1=0有两个等根为0,所以依据韦达定理知{Δ=0,0=4m,0=1−m2所以m无解;③当Q={−4},即x2−4mx−m2+1=0有两个等根为−4,所以依据韦达定理知{Δ=0,−8=4m,16=1−m2所以m无解;③当Q={0,−4},即x2−4mx−m2+1=0有两个根为0,−4,所以依据韦达定理知{Δ>0,−4=4m,0=1−m2解得m=−1;综上,−√55<m<√55或m=−1.22.已知集合A={x|3−a≤x≤3+a},B={x|x2−4x≥0}.(1)当a=2时,求A⋂B;(2)若a>0,且“x∈A”是“x∈∁R B”的充分不必要条件,求实数a的取值范围.【答案】(1)[4,5](2)0<a<1【解析】(1)x2−4x=x(x−4)≥0,解得x≤0或x≥4,所以B=(−∞,0]∪[4,+∞)a=2时,A=[1,5],所以A∩B=[4,5].(2)∁R B=(0,4),因为“x∈A”是“x∈∁R B”的充分不必要条件,所以A是∁R B的真子集,且A≠∅;∴{3−a>03+a<4所以实数a的取值范围为:0<a<1.。
2022-2023学年高二数学寒假作业四(含答案)

数列(B 卷)寒假作业1.已知数列{}n a 的前n 项和22n S kn n =+,511a =,则k 的值为( ). A.2B.-2C.1D.-12.已知等比数列{}n a 和等差数列{},n b n *∈N ,满足11233532,0,,24a b a a b a b ==>=-=,则6102a b -=( ) A.2-B.1C.4D.63.程大位《算法统宗》里有诗云:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.”意思为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,之后每人依次多17斤,直到第八个孩子为止,分配时一定要等级分明,使孝顺子女的美德外传.则第八个孩子分得棉花的斤数为( ) A.65B.176C.183D.1844.已知数列{}n a 是等差数列,且14745a a a ++=,381234a a a ++=,则369369a a a -+的值为( ) A.60B.30C.48D.2165.已知n S 是等比数列{}1n a +的前n 项和,且公比0q >,其中n a ∈Z ,且满足337,14a S ==,则下列说法错误的是( )A.数列{}1n a +的公比为2B.531a =C.22n n S =-D.21n n a =-6.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A.12B.18C.24D.327.(多选)设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则下列结论中正确的是( ) A.23n S n n =-B.2392n n nS -=C.36n a n =-D.2n a n =8.(多选)已知等比数列{}n a 的公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( ) A.{}n a 为单调递增数列 B.639S S = C.369,,S S S 成等比数列D.12n n S a a =-9.若无穷等比数列{}n a 的各项均大于1,且满足15144a a =,2430a a +=,则公比q =__________.10.已知数列{}n a 对任意m ,*n ∈N 都满足m n m n a a a +=+,且11a =,若命题“*n ∀∈N ,212n n a a λ+≤”为真,则实数λ的最大值为_____________.11.已知等比数列{}n a 的公比0q >,其前n 项和为n S ,且236,14S S ==,则数列2211log log nn a a +⎧⎫⎨⎬⋅⎩⎭的前2021项和为___________. 12.已知等比数列{}n a 的前n 项和为n S ,且21n n a S -=. (1)求n a 与n S ; (2)记21n nn b a -=,求数列{}n b 的前n 项和n T . 一元函数的导数及其应用(A 卷)寒假作业1.已知函数2()2ln f x x a x =+的图像在点(1,2)处的切线过点(0,5)-,则实数a 的值为( ) A.3B.-3C.2D.-22.已知函数()(3)e x f x x ax =--在(0,2)上为减函数,则a 的取值范围是( ) A.(,2e)-∞B.(,0)-∞C.(,2)-∞D.24,e ⎛⎫-∞-⎪⎝⎭3.已知函数e ,0,()lg ,0,x x x f x x x ⎧⋅≤=⎨>⎩2()()(1)()g x f x m f x m =-++有4个不同的零点,则m的取值范围为( )A.1,e ⎛⎫-∞- ⎪⎝⎭B.1,0e ⎛⎫- ⎪⎝⎭ C.1,e⎛⎫-+∞ ⎪⎝⎭D.(0,)+∞4.已知()f x 是R 上的单调递增函数,(0,)x ∀∈+∞,不等式ln ln ()(1)1x x f m f f m f x x ⎛⎫⎛⎫-+≤++- ⎪ ⎪⎝⎭⎝⎭恒成立,则m 的取值范围是( ) A.12,e -⎛⎤-∞ ⎥⎝⎦B.2,e⎡⎫+∞⎪⎢⎣⎭C.1,1e ⎛⎤-∞+ ⎥⎝⎦D.11,e⎡⎫-+∞⎪⎢⎣⎭5.若函数()(1)e x f x x ax =--(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( )A.1,0e ⎛⎫- ⎪⎝⎭ B.(,0)-∞C.1,e⎛⎫-+∞ ⎪⎝⎭D.(0,)+∞6.已知函数2()ln e 2f x x x x x m =-++(e 为自然对数的底数),若()0f x =在区间1,2e⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根,则m 的取值范围为( ) A.(0,)+∞ B.1,e ⎛⎫+∞ ⎪⎝⎭ C.2ln 210,4e -⎛⎤ ⎥⎝⎦ D.2ln 21,4e -⎛⎫+∞ ⎪⎝⎭7.(多选)已知函数2()e 21x f x x x x =---,则( ). A.()f x 的极大值为-1 B.()f x 的极大值为1e-C.曲线()y f x =在点(0,(0))f 处的切线方程为10x y --=D.曲线()y f x =在点(0,(0))f 处的切线方程为10x y ++=8.(多选)对于函数3211()32f x x x cx d =+++,c ,d ∈R ,下列说法正确的是( ). A.存在c ,d 使得函数()f x 的图象关于原点对称 B.()f x 是单调函数的充要条件是14c ≥C.若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D.若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条9.已知曲线()e a x f x x =在1x =处的切线方程为4e y x b =+,则a b +=___________.10.若定义在R 上的函数()f x 满足()3()0f x f x '->,1e 3f ⎛⎫= ⎪⎝⎭,则不等式3()e x f x >的解集为__________________.答案以及解析1.答案:C解析:由题意可得,当2n ≥时,122n n n a S S kn k -=-=-+,又511a =,9211k ∴+=,可得1k =.故选C. 2.答案:D解析:设等比数列{}n a 的公比和等差数列{}n b 的公差分别为,q d .因为122,0a a =>,所以0q >.由题意得2222q d ⋅=+,又42(22)24q d ⋅-+=,解得2,3q d ==,所以2,31n n n a b n ==-,所以6610222(3101)64586a b -=-⨯⨯-=-=,故选D.3.答案:D解析:根据题意可得每个孩子分得棉花的斤数构成一个等差数列{}n a ,其中公差17d =,项数8n =,前8项和8996S =.由等差数列的前n 项和公式可得1878179962a ⨯+⨯=,解得165a =,所以865(81)17184a =+-⨯=. 4.答案:A解析:设等差数列{}n a 的公差为d ,因为在等差数列{}n a 中,14745a a a ++=①,381234a a a ++=②,所以由②-①可得2453445d d d ++=-,解得1d =-.又1474345a a a a ++==,即415a =,所以14318a a d =-=,所以19n a n =-,所以3693693(193)6(196)9(199)60a a a -+=⨯--⨯-+⨯-=,故选A.5.答案:C解析:根据题意知等比数列{}1n a +的公比为()0q q >,记1n n b a =+,则31238,14b b b b =++=,所以21118,6,b q b b q ⎧=⎪⎨+=⎪⎩解得12,2,q b =⎧⎨=⎩故2n n b =,则21n n a =-, ()12122212n n n S +-==--,所以531a =,选项C 错误,故选C.6.答案:C解析:设正项等比数列{}n a 的公比为(0)q q >,则()()2543232643232218a a a a a a q +--=+-=,322832021a a q +=>-,令221q t -=,0t >,则()42476322246(1)9633221q t a a q a a q t ++=+===-1626224t t ⎛⎫⎛⎫++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1t =时取等号,则7696a a +的最小值为24. 7.答案:BC解析:设等差数列{}n a 的公差为d .因为30S =,46a =,所以113230,236,a d a d ⨯⎧+=⎪⎨⎪+=⎩解得13,3,a d =-⎧⎨=⎩所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=.故选BC. 8.答案:BD解析:本题考查等比数列的通项公式、性质及前n 项和.由638a a =,可得3338a q a =,解得2q =.当首项10a <时,{}n a 为单调递减数列,故A 错误;663312912S S -==-,故B 正确;假设369,,S S S 成等比数列,则2693S S S =⋅,即()()()2639121212-=--,等式不成立,则369,,S S S 不成等比数列,故C 错误;11122121n n n n a a q a a S a a q --===---,故D 正确.故选BD. 9.答案:2解析:本题考查等比数列的性质.因为数列{}n a 是等比数列,所以2415144a a a a ==.又因为2430a a +=,解得246,24,a a =⎧⎨=⎩或2424,6.a a =⎧⎨=⎩由无穷等比数列{}n a 的各项均大于1,可知1q ≥,所以246,24.a a =⎧⎨=⎩因为242a a q =⋅,所以2246q =,解得2q =(负值舍去).10.答案:7解析:令1m =,则11n n a a a +=+,111n n a a a +-==,所以数列{}n a 为等差数列,所以n a n =,所以22121212n n a a n n n n λλλ≤≤≤+⇒+⇒+,又函数12y x x=+在(0,上单调递减,在)+∞上单调递增,当3n =时,12373λ≤+=,当4n =时,12474λ≤+=,所以12n n +的最小值为7,所以λ的最大值为7. 11.答案:20212022解析:因为233212118,6a S S a q S a a q =-===+=,所以211143a q a a q =+,所以23440q q --=,得2q =或23-(舍去),所以12a =,故2n n a =. 因为2211111log log (1)1n n a a n n n n +==-⋅++,所以20211111112021112232021202220222022T =-+-++-=-=. 故答案为:2021202212.答案:(1)12n n a a -=;21n n S =-. (2)12362n n n T -+=-.解析:(1)由21,n n a S -=得21n n S a =-, 当1n =时,11121,a S a ==-得11a =;当2n ≥时,()()112121n n n n n a S S a a --=-=---, 得12n n a a -=,所以数列{}n a 是以1为首项,2为公比的等比数列, 所以12n n a -=. 所以2121n n n S a =-=-. (2)由(1)可得1212n n n b --=, 则2113521111222n n n T --=++++=⨯+2111135(21)222n n -⨯+⨯++-⋅,2311111135(21)22222n nT n =⨯+⨯+⨯++-⋅, 两式相减得23111111112(21)222222n n nT n -⎛⎫=+++++--⋅ ⎪⎝⎭, 所以23111111124(21)22222n n n T n --⎛⎫=+++++--⋅ ⎪⎝⎭ 11112224(21)1212n n n --=+⋅--⋅-12362n n -+=-. 答案以及解析1.答案:A解析:本题考查利用导数的几何意义求参数.对()f x 求导得()4af x x x'=+,所以(1)4f a '=+.又(1)2f =,所以函数2()2ln f x x a x =+的图像在点(1,2)处的切线的方程为2(4)(1)y a x -=+-,把点(0,5)-代入,解得3a =.故选A. 2.答案:B解析:()(3)e x f x x ax =--,()e (2)x f x x a '=--. 因为函数()(3)e x f x x ax =--在(0,2)上为减函数,所以()e (2)0x f x x a '=--≤在(0,2)上恒成立,即e (2)x x a -≤,所以max e (2)xx a ⎡⎤-⎣≤⎦.设()e (2)x g x x =-,()e (1)x g x x '=-,所以当(0,1)x ∈时,()0g x '>,当(1,2)x ∈时,()0g x '<,所以函数()g x 在(0,1)上单调递增,在(1,2)上单调递减,故max ()(1)e g x g ==, 所以e a ≥,故选B. 3.答案:B解析:当0x ≤时,()e x f x x =⋅,()(1)e x f x x '=+⋅,可得()f x 在(,1)-∞-上单调递减,在(1,0]-上单调递增,且1(1)ef -=-,所以()f x 的大致图象如图所示,由2()(1)()0f x m f x m -++=,解得()1f x =或()f x m =.由()f x 的图象可知,当()1f x =时,有1个根,所以()f x m =要有3个根,故实数m 的取值范围为1,0e⎛⎫- ⎪⎝⎭,故选B.4.答案:D解析:依题意,()()(1)g x f x f x =--在R 上是增函数,(0,)x ∀∈+∞,不等式ln ln ()(1)1x x f m f f m f x x ⎛⎫⎛⎫-+≤++- ⎪ ⎪⎝⎭⎝⎭恒成立,即ln ln 1(1)()x x f f f m f m x x ⎛⎫⎛⎫--≤+-- ⎪ ⎪⎝⎭⎝⎭恒成立,等价于ln (1)x g g m x ⎛⎫≤+ ⎪⎝⎭恒成立,ln 1x m x ∴+≥.令ln ()(0)x h x x x =>,则21ln ()(0)x h x x x -'=>,易得max 1()(e)e h x h ==,11e m ∴+≥,11em ≥-,故选D. 5.答案:A解析:由题意得()e x f x x a '=-,因为函数()e (1)x f x x ax =--有两个极值点,所以()0f x '=有两个不等的实根,即e x a x =有两个不等的实根,所以直线y a =与e x y x =的图象有两个不同的交点.令()e x g x x =,则()e (1)x g x x '=+.当1x <-时,()0g x '<,当1x >-时,()0g x '>,所以函数()g x 在(,1)-∞-上单调递减,在(1,)-+∞上单调递增,所以当1x =-时,()g x 取得最小值,且最小值为1e-.易知当0x <时,()0g x <,当0x >时,()0g x >,则可得函数()g x 的大致图象,如图所示,则10ea -<<,故选A.6.答案:C解析:因为()ln 2e 3f x x x '=-+,记()ln 2e 3g x x x =-+,则112e ()2e xg x x x-'=-=. 当12e x ≥时,()0g x '≤,所以函数()g x 在1,2e ⎡⎫+∞⎪⎢⎣⎭上单调递减. 又10e f ⎛⎫'= ⎪⎝⎭,所以当112e e x ≤<时,()0f x '>,()f x 单调递增; 当1ex >时,()0f x '<,()f x 单调递减.当1ex =时,()f x 有极大值也是最大值,1e f m ⎛⎫= ⎪⎝⎭. 若()0f x =在1,2e ⎡⎫+∞⎪⎢⎣⎭上有两解,应有10e f m ⎛⎫=> ⎪⎝⎭,112ln 202e 4e f m -⎛⎫=+≤ ⎪⎝⎭,所以2ln 2104e m -<≤,此时(1)2e 0f m =-+<,所以()0f x =在1,2e ⎡⎫+∞⎪⎢⎣⎭上有两解成立,故选C. 7.答案:BD解析:因为2()e 21x f x x x x =---,所以()()e e 22(1)e 2x x x f x x x x '=+--=+-,所以当ln2x >或1x <-时,()0f x '>,当1ln2x -<<时,()0f x '<,所以()f x 在(,1)-∞-和(ln 2,)+∞上单调递增,在(1,ln 2)-上单调递减,故()f x 的极大值为1(1)ef -=-,故A 错误,B 正确;因为(0)1f =-,(0)1f '=-,所以曲线()y f x =在(0,(0))f 处的切线方程为(1)(0)y x --=--,即10x y ++=,故C 错误,D 正确.故选BD.8.答案:BC解析:若存在c ,d 使得函数()f x 的图象关于原点对称,则函数()f x 为奇函数,因为3211()32f x x x cx d -=-+-+,所以2()()2f x f x x d +-=+,对于任意的x ,并不满足()()0f x f x +-=,故函数()f x 不为奇函数,故A 错误; 由3211()32f x x x cx d =+++得2()f x x x c '=++,要使()f x 是单调函数,必满足140c ∆=-≤,解得14c ≥,故B 正确; 若函数有两个极值点,则必须满足0∆>,即14c <,此时12121,,x x x x c +=-⎧⎨=⎩则()222121212212x x x x x x c +=+-=-, 所以()2442222221212122(12)2x x x x x x c c +=+-=--=222412(1)1c c c -+=--,因为14c <,所以22112(1)121148c ⎛⎫-->--= ⎪⎝⎭,故441218x x +>,故C 正确; 耇2c d ==-,则3211()2232f x x x x =+--,2()2f x x x '=+-,画出函数的大致图象,如图所示,三条虚线代表三条相切的切线,故D 错误.故选BC.9.答案:33e -解析:根据题意得1()e e a x a x f x ax x -+'=, (1)e f =,所以(1)e e 4e,e 4e f a b =+==+',解得3,3e a b ==-,故33e a b +=-.10.答案:1,3⎛⎫+∞ ⎪⎝⎭ 解析:构造函数3()()ex f x F x =,则3363e ()3e ()()3()()e e x x x x f x f x f x f x F x ''--'==, 函数()f x 满足()3()0f x f x '->,()0F x '∴>,故()F x 在R 上单调递增. 又1e 3f ⎛⎫= ⎪⎝⎭,113F ⎛⎫∴= ⎪⎝⎭,∴不等式33()()e 1e x x f x f x >⇔>,即1()3F x F ⎛⎫> ⎪⎝⎭, 由()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.。
高二数学寒假作业

高二数学寒假作业篇一:高二数学假期作业(2)高二数学假期作业(2)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12分,每小题5分,共60分.1.若函数f(某)在某=1处的导数为3,则f(某)的解析式可以为A.f(某)=(某-1)2+3(某-1)B.f(某)=2(某-1)C.f(某)=2(某-1)2D.f(某)=某-12.(某)10的展开式中某6y4项的系数是A.840B.-840C.210D.-2103.一个学生能够通过某种英语听力测试的概率是得通过的概率是A.,他连续测试2次,那么其中恰有一次获2D.14B.13C.12344.已知曲线y=co某,其中某∈[0,A.1B.23π],则该曲线与坐标轴围成的面积等于25C.D.325.一位母亲纪录了儿子39岁的身高的数据(略),她根据这些数据建立的身高y(cm)与年龄某的回归模型为y=7.19某+73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是A.身高一定是145.83cmC.身高在145.83cm以上6.若复数B.身高在145.83cm左右D.身高在145.83cm以下a3i(a∈R,i为虚数单位)是纯虚数,则实数a的值为12iA.-2B.4C.-6D.67.若z∈C且|z+2-2i|=1,则|z-2-2i|的最小值等于A.2B.3C.4D.58.通过随机询问250名不同性别的大学生在购买食物时是否看营养说明书,得到如下2某2联A.95%以上认为无关B.90%95%认为有关C.95%99.9%认为有关D.99.9%以上认为有关9.从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人,要求这3位教师中男、女教师都要有,则不同的选派方案有A.210种B.186种C.180种D.90种10.若A,B,C,D,E,F六个不同元素排成一列,要求A不排在两端,且B、C相邻,则不同的排法共有A.72种B.96种C.120种D.144种11.(某2+2某+1)d某=().A.4B.13C.12D.3412.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A,那么第2次也抽到A的概率为().A.B.13C.12D.117第Ⅱ卷(非选择题,共74分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡指定位置上.13.在数列{an}中,a1=3,且an1=a2,则数列{an}的通项公式an=_____.n(n为正整数)14.若(2某-1)7=a7某7+a6某6+…+a1某+a0,则a7+a5+a3+a1=_____________.15.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示___________种不同的信号.16.函数y=in3某+co3某在[-,]上的最大值是________________.44三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)n2(n1)2用数学归纳法证明:当n为正整数时,1+2+3+……+n=.433318.(本小题满分12分)某年级的联欢会上设计了一个摸奖游戏,在一个不透明的口袋中装有10个红球和20个白球,这些球除颜色外完全相同,一次从中摸出5个球,至少摸到3个红球就中奖,求中奖概率.根据工资待遇的差异情况,你愿意选择哪家单位?请说明你的理由.20.(本小题满分12分)先阅读下面的文字,再按要求解答.如图,在一个田字形地块的A、B、C、D四个区域中栽种观赏植物,要求同一区域种同一种植物,相邻两区域(A与D,B与C不相邻)种不同的植物,现有四种不同的植物可供选择,问不同的种植方案有多少种?AB某学生给出如下的解答:CD解:完成四个区域种植植物这件事,可分4步,第一步:在区域A种植物,有C14种方法;第二步:在区域B种植与区域A不同的植物,有C13种方法第三步:在区域D种植与区域B不同的植物,有C13种方法第四步:在区域C种植与区域A、D均不同的植物,有C12种方法根据分步计数原理,共有C14C3C3C2=72(种)答:共有72种不同的种植方案.问题:(Ⅰ)请你判断上述的解答是否正确,并说明理由;(Ⅱ)请写出你解答本题的过程.为了研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相22.(本小题满分14分)已知函数f(某)=(某2-2某)ek某(k∈R,e为自然对数的底数)在(和∞)上递增,在[上递减.(Ⅰ)求实数k的值;(Ⅱ)求函数f(某)在区间[0,m]上的最大值和最小值.根据193个病人的数据,能否作出药的效果与给药方式有关的结论?请说明理由.高二数学假期作业(2)参考答案二、填空题:每小题4分,共16分.13.3214.109415.1516.1三、解答题:共74分.n1122217.证明:(1)当n=1时,左边=1,右边==1,4∴等式成立.································································································2分(2)假设当n=k时,等式成立,即k2(k1)21+2+3+……+k =.··································································4分43333那么,当n=k+1时,有k2(k1)21+2+3+……+k+(k+1)=+(k+1)3.········································6分422(k1)2(k2)22k2k4k4=(k+1)(+k+1)=(k+1)=444(k1)[(k1)1]2=.··················································································9分433333这就是说,当n=k+1时,等式也成立.···························································10分根据(1)和(2),可知对n∈N某等式成立.·······················································12分18.解:设摸出红球的个数为某,则某服从超几何分布,其中N=30,M=10,n=5.············································································4分于是中奖的概率为P(某≥3)=P(某=3)+P(某=4)+P(某=5) (6)分353454555C10C30C10C30C10C30101010=++································································9分555C30C30C30≈0.191.······································································································12分19.解:根据月工资的分布列,可得E某1=1200某0.4+1400某0.3+1600某0.2+1800某0.1=1400.··································································································2分22D某1=(1200-1400)某0.4+(1400-1400)某0.3+(1600-1400)2某0.2+(1800-1400)2某0.1=40000···································································································4分E某2=1000某0.4+1400某0.3+1800某0.2+2200某0.1=1400·····································································································6分D某2=(1000-1400)2某0.4+(1400-1400)2某0.3篇二:2022高二数学下册寒假作业答案D.4某-3y+7=08.过点的直线中,被截得最长弦所在的直线方程为()A.B.C.D.9.(2022年四川高考)圆的圆心坐标是10.圆和的公共弦所在直线方程为____.11.(2022年天津高考)已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程为.12(2022山东高考)已知圆过点,且圆心在轴的正半轴上,直线被该圆所截得的弦长为,则圆的标准方程为____________13.求过点P(6,-4)且被圆截得长为的弦所在的直线方程.14、已知圆C的方程为某2+y2=4.(1)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=23,求直线l的方程;(2)圆C上一动点M(某0,y0),ON=(0,y0),若向量OQ=OM+ON,求动点Q的轨迹方程人的结构就是相互支撑,众人的事业需要每个人的参与。
寒假作业(三)不等式、基本不等式-【新教材】人教A版(2019)高中数学必修第一册

2.解: 3a 4b 0 , ab 0 ,a 0 . b 0
log4 (3a 4b) log2 ab ,log4 (3a 4b) log4 (ab) 3a 4b ab , a 4 , a 0 . b 0
b 3a 0 a4
,
a 4
,
则
a
b
a
3a a4
a
3(a
4) 12 a4
A. lg(x2 1 ) lgx(x 0) 4
B. sin x 1 2(x k , k Z ) sin x
C. x2 1 2 | x | (x R)
D.
1 x2 1
1( x
R)
7.设正实数 x , y , z 满足 x2 3xy 4y2 z 0 .则当 xy 取得最大值时, 2 1 2 的最大
若 1 1 1,可取 a 7 , b 7 ,则 a b 1 , B 错误;
ba
8
若 | a b | 1 ,则可取 a 9 , b 4 ,而 | a b | 5 1, C 错误;
由 | a3 b3 | 1,
若 a b 0 ,则 a3 b3 1 ,即 (a 1)(a2 a 1) b3 , a2 1 a b2 , a 1 b ,即 a b 1
20.合肥六中德育处为了更好的开展高一社团活动,现要设计如图的一张矩形宣传海报,该 海报含有大小相等的左右三个矩形栏目,这三栏的面积之和为 60000cm2 ,四周空白的宽度 为10cm ,栏与栏之间的中缝空白的宽度为 5cm .
(1)怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,并求最小值;
有最小值,故选: A .
5.解:由题意可得若 p f ( ab) ln( ab) 1 lnab 1 (lna lnb) ,
高一上学期数学寒假作业二

启明班寒假作业二学校:___________姓名:___________班级:___________考号:___________一、单选题1.若函数2(0)3y x πωω⎛⎫=-> ⎪⎝⎭两零点间的最小距离为2π,则ω=( )A .1B .2C .3D .42.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象与直线1y =的相邻两个交点的距离分别为3π和23π,若13 f π⎛⎫= ⎪⎝⎭,则ϕ的值为( )A .6π B .6π- C .3π- D .3π3.设函数())f x x ωϕ=-,x ∈R ,其中0ω>,||ϕπ<.若08f π⎛⎫-= ⎪⎝⎭,58f π⎛⎫= ⎪⎝⎭()f x 的最小正周期大于2π,则( )A .13ω=,1124πϕ=B .13ω=,712πϕ=-C .23ω=,1112πϕ=D .23ω=,12πϕ=-4.已知函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间,2ππ⎡⎤⎢⎥⎣⎦内单调递减,则实数ω的取值范围是( )A .2,13⎡⎤⎢⎥⎣⎦B .24,33⎡⎤⎢⎥⎣⎦C .[)1,2D .3,22⎡⎫⎪⎢⎣⎭5.已知函数()()sin f x x α=+在,43x ππ⎛⎫∈- ⎪⎝⎭上单调递增,则α的值可以是( )A .3π-B .4π-C .4π D .3π 6.若函数()()()sin πf x x ϕϕ=+<在π2π,33-⎡⎤⎢⎥⎣⎦上单调,则ϕ的值为( )A .2π3-或π3B .π3-或2π3C .5π6-或6π D .π6-或5π6 7.若函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭与()πcos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为( )A .π3B .π2C .6πD .π 8.若函数()2sin 23f x x πϕ⎛⎫=-+ ⎪⎝⎭是奇函数,则ϕ的值可以是( )A .56π B .2π C .23π-D .2π-9.函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数的一个充分条件( )A .6πϕ=B .6πϕ=-C .3πϕ=D .3πϕ=-10.已知函数()sin 22f x x x =,若函数()y f x ϕ=-为奇函数,则||ϕ的最小值是( ) A .12π B .6π C .3π D .712π 11.已知函数()sin(2)f x x ϕ=+的图象关于点π,06⎛⎫⎪⎝⎭中心对称,则||ϕ的最小值为( )A .π6B .π3C .2π3D .4π312.将函数2sin()3y x π=+的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .12π B .6π C .3π D .23π13.已知函数()21cos cos (0,)2f x x x x a x R ωωω=+->∈在[]0,π内有且仅有三条对称轴,则ω的取值范围是( ) A .27,36⎛⎫ ⎪⎝⎭B .75[,)63C .513,36⎫⎡⎪⎢⎣⎭D .138,63⎛⎫ ⎪⎝⎭14.已知函数π()sin (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在(π,2π)内不存在对称中心,则ω的取值范围为( ).A .12,33⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .10,6⎛⎤⎥⎝⎦ D .1120,,633⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦15.若函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间(),2ππ内没有最值,则ω的取值范围是( )A .1120,,1233⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦B .1170,,12612⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .70,12⎛⎤ ⎥⎝⎦D .12,33⎡⎤⎢⎥⎣⎦ 16.若函数()sin 6f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)在,44ππ⎛⎫- ⎪⎝⎭有最大值无最小值,则ω的取值范围是( )A .48,33⎛⎫ ⎪⎝⎭B .48,33⎛⎤ ⎥⎝⎦C .416,33⎛⎫ ⎪⎝⎭D .416,33⎛⎤ ⎥⎝⎦17.已知函数()()sin cos 0f x x a x a =+>的最大值为2,若方程()f x b =在区间13π0,6⎛⎫⎪⎝⎭内有三个实数根123,,x x x ,且123x x x <<,则1232x x x ++等于( )A .8π3 B .10π3C .4πD .25π618.已知函数()()22cos 10,2xf x x x ωωω=->∈R ,若函数()f x 在区间(),2ππ上没有零点,则ω的取值范围是( ) A .55110,,12612⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦ B .211,312⎡⎤⎢⎥⎣⎦ C .511,612⎛⎫⎪⎝⎭D .250,,1211312⎛⎫ ⎪⎝⎝⎛⎤ ⎥⎦⎭19.已知函数()()1sin 0f x x x ωωω=+>在()0,π上有且只有3个零点,则实数ω的取值范围是( ) A .1137,26⎛⎤ ⎥⎝⎦B .137,62⎛⎤ ⎥⎝⎦C .725,26⎛⎤ ⎥⎝⎦D .2511,62⎛⎤ ⎥⎝⎦20.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象的两相邻对称轴之间的距离为2π,且3f x π⎛⎫+ ⎪⎝⎭为偶函数,则ϕ=( )A .6π B .6π- C .3π- D .3π21.若直线12x π=是曲线()sin 04y x πωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数sin 4y x πω⎛⎫=- ⎪⎝⎭在区间0,12π⎡⎤⎢⎥⎣⎦上不单调,则ω的最小值为( )A .9B .15C .21D .3322.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间3,34ππ⎡⎤-⎢⎥⎣⎦上单调递增,且在区间[]0,π上只取得一次最大值,则ω的取值范围是( )A .30,4⎡⎤⎢⎥⎣⎦ B .80,9⎛⎤ ⎥⎝⎦ C .28,39⎡⎤⎢⎥⎣⎦ D .38,49⎡⎤⎢⎥⎣⎦23.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,若函数()f x 的一个零点为6π.其图像的一条对称轴为直线512x π=,且()f x 在,64ππ⎛⎫ ⎪⎝⎭上单调,则ω的最大值为( )A .2B .6C .10D .1424.已知函数()sin()(0,0)f x A x ωϕωϕπ=+><<为偶函数,在0,3π⎡⎫⎪⎢⎣⎭单调递减,且在该区间上没有零点,则ω的取值范围为( ) A .30,2⎛⎫ ⎪⎝⎭B .31,2⎡⎤⎢⎥⎣⎦C .35,22⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦二、填空题25.已知函数()cos f x x x ωω-(0)ω>的最小正周期为π,则ω=___.26.已知函数()()sin f x x ω=(0ω>)在区间ππ,123⎛⎤- ⎥⎝⎦上单调递增,在区间π5π,312⎡⎫⎪⎢⎣⎭上单调递减,则ω的值是______.27.已知函数()sin 2062f x x ππϕϕ⎛⎫⎛⎫=++<< ⎪ ⎪⎝⎭⎝⎭在,32ππ⎛⎫ ⎪⎝⎭上单调递增,则ϕ的取值范围为_________.28.将函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭图像上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数()y g x =的图像,若函数()y g x =为偶函数,则ω的最小值为_________.29.已知函数()()()sin 0,0f x x ωϕωϕπ=+><<,且()f x 与()3f x π+均为偶函数,则ω的最小值是______.30.已知函数()()ππsin 22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线π4x =对称,则ϕ=__________.31.若函数sin y x ω=(0ω>)在区间[]0,2上恰好取到3次最小值,请写出一个符合题意的ω的值:___________. 32.已知函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________.33.设函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在0,2π⎛⎫ ⎪⎝⎭上有且仅有2个零点,则实数ω的取值范围为______.34.已知函数()sin (0)f x x x ωωω=>,若函数()f x 的图像在区间π()0,x ∈上恰有2个零点,则实数ω的取值范围为__________. 35.函数()()4sin 6f x x πωω*⎛⎫=+∈ ⎪⎝⎭N ,若,06π⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,且()f x 在52,369ππ⎛⎫ ⎪⎝⎭上单调,则ω的最小值为_________.36.已知函数π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,若π3f x ⎛⎫+ ⎪⎝⎭为偶函数,()f x 在区间π7π,312⎛⎫ ⎪⎝⎭内单调,则ω的最大值为_________.37.已知函数()2sin f x x ω=(0ω>)在区间3,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,且函数()2sin 2g x x ω=+在[]2,0π-上有且仅有一个零点,则实数ω的取值范围是_______. 38.已知函数()()sin f x x ωϕ=+(其中0ω>,2πϕ<),若()0f T =(T 为周期),4x π=是函数()f x 图像的一条对称轴,()f x 在区间3,816ππ⎛⎫⎪⎝⎭上单调,则ω的值为______.。
-学年高一数学人教A版()寒假作业(共15份 含解析)

2020-2021学年高一数学人教A 版(2019)寒假作业(9)对数与对数函数1.函数23()lg(31)1x f x x x=++-的定义域是( ) A .(),1-∞B .1,13⎛⎫- ⎪⎝⎭C .1,13⎡⎫-⎪⎢⎣⎭D .1,3⎛⎫-+∞ ⎪⎝⎭2.函数()()2ln 3f x x ax =--在()1,+∞单调递增,求a 的取值范围( ) A.2a ≤B.2a <C.2a ≤-D. 2a <-3.函数()213log 23y x x =-++的单调递增区间是( ) A .(]1,1- B .(),1-∞ C .[)1,3 D .()1,+∞4.函数()()2ln 1f x x =+的图象大致是 ( )A. B.C. D.5.函数2log (1)y x =-的图像是图中的( )A. B.C. D.6.函数2log (1)y x =+的图象大致是( )A. B.C. D.7.(多选)已知函数()ln(2)ln(6)f x x x =-+-,则A. ()f x 在(2,6)上的最大值为2ln 2B. ()f x 在(2,6)上单调递增C. ()f x 在(2,6)上无最小值D. ()f x 的图象关于直线4x =对称8.求值:331log 15log 252-=_________.9.函数()2log 1f x x =-___________.10.1ln 238lg5lg 20e ++-=__________.11.函数()2lg 2y x x =+-的单调递增区间是_____________. 12.已知函数()()()log 1log 1a a f x x x =+--,0a >,且1a ≠. (1)求()f x 的定义域.(2)判断()f x 的奇偶性,并予以证明. (3)当1a >时,求使()0f x >的x 的取值范围.答案以及解析1.答案:B解析:函数2()lg(31)f x x ++的定义域是10310x x ->⎧⎨+>⎩,解得113x x <⎧⎪⎨>-⎪⎩,所以函数()f x 的定义域是113x x ⎧⎫-<<⎨⎬⎩⎭.2.答案:C解析:令()23t x x ax =--,由复合函数的单调性可知,11220a a ⎧≤⎪⎨⎪--≥⎩ 解可得,2a ≤-. 故选:C . 3.答案:C解析:令223t x x =-++, 由2230x x -++>,得13x -<<.函数223t x x =-++的对称轴方程为1x =, 二次函数223t x x =-++在[)1,3上为减函数, 而函数13log y t=为定义域内的减函数,∴函数()213log 23y x x =-++的单调增区间是[)1,3 故选:C. 4.答案:A解析:由于函数为偶函数又过(0,0)所以直接选A. 5.答案:C解析:由函数2log (1)y x =-的定义域为{}|1x x <,排除A,B;由复合函数的单调性可知函数为减函数,排除D.故选C. 6.答案:C解析:函数2log (1)y x =+的图象是把函数2log y x =的图象向左平移了一个单位得到的,定义域为(1,)-+∞,过定点(0,0),在(1,)-+∞上是增函数, 故选:C . 7.答案:ACD解析:()ln(2)ln(6)ln[(2)(6)]f x x x x x =-+-=--,定义域为(2,6). 令(2)(6)t x x =--,则ln y t =.因为二次函数(2)(6)t x x =--的图象的对称轴为直线4x =,且在(2,4)上单调递增,在(4,6)上单调递减,所以当4x =时,t 有最大值,所以max ()(4)2ln 2,()f x f f x ==在(2,6)上无最小值. 故选ACD . 8.答案:1解析:由对数运算,化简可得 331log 15log 252-1233=log 15log 25-33=log 15log 5- 3=log 3=1故答案为:1 9.答案:[)2,+∞解析: 由题意得:2log 1x≥, 解得:2x ≥,∴函数()f x 的定义域是[)2,+∞ 故答案为:[)2,+∞ 10.答案:2解析:1ln 238lg5lg 20e 2lg10022222++-=+-=+-= 11.答案:()1,+∞解析: 由()2lg 2y x x =+-可得2x <-或1x >∵22u x x =+-在()1,+∞单调递增,而lg y u =是增函数,由复合函数的同增异减的法则可得,函数()2lg 2y x x =+-的单调递增区间是()1,+∞ 12.答案:(1)因为()()()log 1log 1a a f x x x =-+-,所以1010x x +>->⎧⎨⎩,解得11x -<<.故所求函数的定义域为{}|11x x -<<. (2)()f x 为奇函数证明如下:由(1)知()f x 的定义域为{}|11x x -<<,且()()()log 1log 1a a f x x x -=-++-()()()log 1log 1a a x x f x =+--=-⎡⎤⎣⎦.故()f x 为奇函数 (3)因为当1a >时,()f x 在定义域{}|11x x -<<上是增函数, 由()0f x >,得111x x+>-,解得01x <<.所以x 的取值范围是(0)1,.。
2022-2023学年高一数学寒假作业一(1)

高一数学上学期寒假作业(一)一、选择题1.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}2.如果2,B A ∈∈并且2,则下列错误的是( )A. 2A B ∈⋂B. 2A B ∈⋃C. {}A B 2⋂=3.不等式123>-x 的解集为( )。
A .()+∞⎪⎭⎫ ⎝⎛-∞-,131, B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131, D. ⎪⎭⎫ ⎝⎛1,31 4.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( );A.φB.AC.{}1- AD.B5.下列函数中是奇函数的是( )。
A .3+=x y B.12+=x y C.3x y = D.13+=x y 6.函数34+=x y 的单调递增区间是( )。
A .()+∞∞-, B. ()+∞,0 C. ()0,∞- D.[)∞+.07.f (x )是定义在[-6,6]上的偶函数,且f (3)>f (1),则下列各式一定成立的是( ).A .f (0)<f (6)B .f (3)>f (2)C .f (-1)<f (3)D .f (2)>f (0)8.下列图形是函数y =x |x |的图象的是( )9.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A .(],40-∞B .[40,64]C .(][),4064,-∞+∞D .[)64,+∞10.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4二、填空题1. 函数f (x )=1x -的定义域是2.不等式02≥++k kx x 的解集为R ,则k 的取值范围是_____________3.已知320()30x x f x x x ⎧+≥=⎨<⎩,若()11f x =,则x = 4.当=m ____________时,函数122)1()(-+-=m m x m x f 是二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学业水平考试模块复习卷(必修①)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {}4,2,1,B = {}的约数是8x x ,则A 与B 的关系是 A. A = B B. A B C. A B D. A ∪B = φ 2.集合A = {}52<≤x x,B = {}x x x 2873-≥-则B A C R ⋂)(等于 A. φ B.{}2<x x C. {}5≥x x D.{}52<≤x x3.已知x x x f 2)(3+=,则)()(a f a f -+的值是A. 0B. –1C. 1D. 2 4.下列幂函数中过点(0,0),(1,1)的偶函数是A.21x y = B. 4x y = C. 2-=x y D.31x y = 5.函数322++-=x x y 的单调递减区间是A. (-∞,1)B. (1, +∞)C. [-1, 1]D. [1,3] 6.使不等式02213>--x 成立的x 的取值范围是A. ),23(+∞B. ),32(+∞C. ),31(+∞D.1(,)3-+∞.7.下列图像表示的函数能用二分法求零点的是( )8.下列各式错误的是 A.7.08.033> B.6.0log 4.0log 5..05..0> C.1.01.075.075.0<- D.4.1lg 6.1lg >9.如图,能使不等式xx x 2log 22<<成立的自变量x 的取值范围是 A. 0>x B. 2>x c. 2<x D. 20<<x 10.已知)(x f 是奇函数,当0>x 时)1()(x x x f +-=,当0<x 时)(x f 等于 A. )1(x x -- B. )1(x x - C. )1(x x +- D. )1(x x + 二、填空题:本大题共5小题,每小题4分,共20分。
11.设集合{}73),(=+=y x y x A ,集合{}1),(-=-=y x y x B ,则=⋂B A 12.在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重)400(≤<x x 克的函数,其表达式为:f(x)=13.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值范围是 14.若函数y=f (x )的定义域是[2,4],则y=f (12log x )的定义域是15.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示,某天0点到6点,该水池的蓄水量如图丙甲 乙 丙进水量出水量蓄水量给出以下3个论断(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)3点到6点不进水不出水。
则一定正确的论断序号是___________.三、解答题:本大题共5小题,共40分。
解答应写出文字说明、证明过程或演算步骤16.集合{}02=++=q px x x A ,{2-=px xx B17.函数31)(2+--=x x x f(1)函数解析式用分段函数形式可表示为)(x f (2)列表并画出该函数图象; (3)指出该函数的单调区间.18.函数322)(--=ax x x f 是偶函数.(1)试确定a (2)证明函数)(x f 在区间)0,(-∞上是减函数(3)当]0,2[-∈x 时求函数322)(--=ax x x f 的值域19.设f(x)为定义在R 上的偶函数,当20≤≤x 时,y =x ;当顶点在P(3,4),且过点A(2,2)的抛物线的一部分 (1)求函数f (x )在)2,(--∞上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的图像; (3)写出函数f(x)值域。
数学学业水平考试模块复习卷(必修②)一、选择题:本大题共10小题,每小题4分,共40有一项是符合题目要求的。
1.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的.A. 2倍B.C. D. 12倍 2.在x 轴上的截距为2且倾斜角为135°的直线方程为.A. y=-x+2 B. y=-x-2 C. y=x+2 D. y=x-23.设点M 是Z 轴上一点,且点M 到A (1,0,2)与点B (1,-3,1)的距离相等,则点M 的坐标是. A .(-3,-3,0) B .(0,0,-3) C .(0,-3,-3) D .(0,0,3) 4.将直线:210l x y +-=向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为.A B C .15 D .755.已知长方体的相邻三个侧面面积分别为6,3,2,则它的体积是 A . 5 B .6 C.5 D .66.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方 形,俯视图是一个直径为1的圆,那么这个几何体的全面积为A .3π2B .2πC .3πD .4π7.已知圆4)1(22=+-y x 内一点P (2,1),则过P 点最短弦所在的直线方程是 ( ) A .01=+-y x B .03=-+y x C .03=++y x D .2=x8.两圆(x ―2)2+(y+1)2 = 4与(x+2)2+(y ―2)2 =16的公切线有( )A .1条B .2条C .4条D .3条9.已知直线n m l 、、及平面α,下列命题中的假命题是( ) A.若//l m ,//m n ,则//l n . B.若l α⊥,//n α,则l n ⊥.C.若//l α,//n α,则//l n .D.若l m ⊥,//m n ,则l n ⊥.10.设P 是△ABC 所在平面α外一点,若P A ,PB ,PC 两两垂直,则P 在平面α内的射影是△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 二、填空题:本大题共5小题,每小题4分,共20分。
11.c b a ,,是三直线,α是平面,若,,,c a c b a b αα⊥⊥⊂⊂,且 ,则有α⊥c .(填上一个条件即可)12.在圆 224x y +=上,与直线4x +3y -12=0的距离最小的点的坐标 . 13.在空间直角坐标系下,点),,(z y x P 满足1222=++z y x ,则动点P 表示的空间几何体的表面积是 。
14.已知曲线02)2(2222=+-+-+y a ax y x ,(其中R a ∈),当1=a 时,曲线表示的轨迹是 。
当R a ∈,且1≠a 时,上述曲线系恒过定点 。
15.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .三、解答题:本大题共5小题,共40分。
解答应写出文字说明、证明过程或演算步骤。
16.求过直线17810l x y --=:和221790l x y ++=:的交点,且垂直于直线270x y -+=的直线方程.17.直线l 经过点(5,5)P ,且和圆C :2225x y +=相交,截得弦长为l 的方程.18.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是P C 的中点,作EF ⊥PB 交PB 于点F . (1)证明 P A //平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C-PB-D 的大小.19.已知线段AB 的端点B 的坐标为 (1,3),端点A 在圆C:4)1(22=++y x 上运动。
(1)求线段AB 的中点M 的轨迹; (2)过B 点的直线L 与圆C 有两个交点A ,B 。
当OA ⊥OB 时,求L 的斜率20.如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.数学学业水平考试模块复习卷(必修③)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.459和357的最大公约数是( ) A .3 B .9 C .17 D .51 2.下列给出的赋值语句中正确的是( )A .4M =B .M M =-C .3B A ==D .0x y += 3.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是( ) A. A 与C 互斥 B. B 与C 互斥C. A 、B 、C 中任何两个均互斥D. A 、B 、C 中任何两个均不互斥A .37.0%B .20.2%C .0分D .4分5.若回归直线的方程为ˆ2 1.5yx =-,则变量x 增加一个单位时 ( ) A.y 平均增加1.5个单位 B. y 平均增加2个单位 C.y 平均减少1.5个单位 D. y 平均减少2个单位 6.右边程序运行后输出的结果为( )A. 50B. 5C. 25D. 07.若五条线段的长度分别为1,3,5,7,9,从这5条线段中任取3条线段,则所取3条线段能构成一个三角形的概率为( )A .101 B .103 C .21 D .107 8.设x 是1x ,2x ,…,100x 的平均数,a 是1x ,2x ,…,40x 的平均数,b 是41x ,42x ,…,100x 的平均数,则下列各式中正确的是( )A.4060100a b x += B.6040100a b x +=C.x a b =+ D.2a bx +=9.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中不死鱼,也不增加),则鱼池中大约有鱼 ( )A. 120条B. 1200条C. 130条D.1000条10.下面给出三个游戏,袋子中分别装有若干只有颜色不同的小球(大小,形状,质量等均二、填空题:本大题共5小题,每小题4分,共20分。
11.完成下列进位制之间的转化:101101(2)=____________(10)____________(7)12.某人对一个地区人均工资x 与该地区人均消费y 进行统计调查得y 与x 具有相关关系,且回归直线方程为562.1x 66.0y ^+=(单位:千元),若该地区人均消费水平为7.675,估计该地区人均消费额占人均工资收入的百分比约为____________。