高中数学课时作业:基本不等式

合集下载

基本不等式-高考数学复习

基本不等式-高考数学复习

2 +2.
2 +2,当且仅当 x
(2)已知正实数 a , b 满足 a +4 b =1,则 ab 的最大值为
1
16
.

1
1
+4 2
1
正实数 a , b 满足 a +4 b =1,则 ab = × a ·4 b ≤ ×
= ,当且
4
4
2
16
1
1
仅当 a = , b = 时等号成立.
2
8
方法总结
配凑法求最值的实质及关键点
∵ a >0, b >0,4 a +3 b =6,
1
1 3++3
∴ a ( a +3 b )= ·3 a ( a +3 b )≤
3
3
2
2
1
6 2
= ×
=3,当且仅当3
3
2
2
a = a +3 b ,即 a =1, b = 时, a ( a +3 b )的最大值是3.
3
2.
8
(2024·山西忻州模拟)已知 a >2,则2 a +
(200-1.5 y )2+ y 2+(200-1.5 y ) y =1.75 y 2-400 y +40 000=1.75 ቀ −
800 2
120 000
400
ቁ +
0 < <

7
7
3
800
200 21
200
当y=
时, PQ 有最小值
,此时 x =
.
7
7
7
200
800
即 AP 长为
米, AQ 长为
∴2 x + y =(2 x + y )
2

高中数学2-2基本不等式第2课时基本不等式的应用课时作业新人教A版必修第一册

高中数学2-2基本不等式第2课时基本不等式的应用课时作业新人教A版必修第一册

2.2 基本不等式 第2课时 基本不等式的应用必备知识基础练1.[2022·广东惠州高一期末]若a >1,则a +1a -1有( ) A .最小值为3 B .最大值为3 C .最小值为-1 D .最大值为-1 2.函数y =x +16x +2(x >-2)取最小值时x 的值为( ) A .6 B .2 C . 3 D . 63.[2022·湖南衡阳高一期末]已知x ,y 均为正数,且x +y =1,求1x +4y的最值( )A .最大值9B .最小值9C .最大值4D .最小值44.在班级文化建设评比中,某班设计的班徽是一个直角三角形图案.已知该直角三角形的面积为50,则它周长的最小值为( )A .20B .10 2C .40D .102+205.若正实数m ,n 满足2m +1n=1,则2m +n 的最小值为( )A .4 2B .6C .2 2D .96.[2022·湖北武汉高一期末](多选)下列说法正确的是( ) A .x +1x(x >0)的最小值是2B .x 2+2x 2+2的最小值是 2C .x 2+5x 2+4的最小值是2D .2-3x -4x的最小值是2-4 37.若x >-1,则x +1x +1的最小值是________,此时x =________. 8.用一根铁丝折成面积为π的长方形的四条边,则所用铁丝的长度最短为________.关键能力综合练1.[2022·湖南长郡中学高一期末]已知p =a +1a -2(a >2),q =-b 2-2b +3(b ∈R ),则p ,q 的大小关系为( )A .p ≥qB .p ≤qC .p >qD .p <q2.已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是( )A .3+2 2B .3-2 2C .6-4 2D .6+4 23.[2022·福建莆田一中高一期末]函数f (x )=x 2-4x +5x -2(x ≥52)有( )A .最大值52B .最小值52C .最大值2D .最小值24.[2022·山东薛城高一期末]已知a ,b ∈R +,且a +2b =3ab ,则2a +b 的最小值为( ) A .3 B .4 C .6 D .95.[2022·湖南雅礼中学高一期末]近来猪肉价格起伏较大,假设第一周、第二周的猪肉价格分别为a 元/斤、b 元/斤,甲和乙购买猪肉的方式不同,甲每周购买20元钱的猪肉,乙每周购买6斤猪肉,甲、乙两次平均单价分别记为m 1,m 2,则下列结论正确的是( )A .m 1=m 2B .m 1>m 2C .m 2>m 1D .m 1,m 2的大小无法确定6.[2022·山东枣庄高一期末]设正实数m 、n 满足m +n =2,则( )A .n m +2n的最小值为2 2 B .m +n 的最小值为2 C .mn 的最大值为1 D .m 2+n 2的最小值为27.函数f (x )=4x 2+1x(x >0)取得最小值时x 的取值为________.8.[2022·河北唐山高一期末]当x >0时,函数f (x )=xx 2+1的最大值为________.9.已知x ,y ∈R +,且满足x +2y =2xy ,那么x +4y 的最小值?xy 的最小值?10.做一个体积为48 m 3,高为3米的无上边盖的长方体纸盒,底面造价每平方米40元,四周每平方米为50元,问长与宽取什么数值时总造价最低,最低是多少?核心素养升级练1.已知a >0,b >0,1a +1b=1,若不等式2a +b ≥m 恒成立,则m 的最大值为( )A .2+ 3B .3+ 2C .3+2 2D .52.一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地铁路线长400 km ,为了安全,两列货车间距离不得小于(v20)2km ,那么这批物资全部运到B 市,最快需要________小时,(不计货车的车身长),此时货车的速度是________ km/h.3.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x 、y 满足2x +y =1,求1x +12y 的最小值.甲给出的解法:由1=2x +y≥22x ·y ,得xy ≤24,所以1x +12y≥2 1x ·12y =2xy≥4,所以1x +12y 的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y =1x +12-3x (0<x <23)的最小值.第2课时 基本不等式的应用必备知识基础练1.答案:A解析:∵a >1,∴a -1>0, ∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a -1=1a -1即a =2时取等号,∴a +1a -1有最小值为3. 2.答案:B解析:因为x >-2,所以x +2>0, 所以y =x +16x +2=x +2+16x +2-2≥2 (x +2)·16x +2-2=6, 当且仅当x +2=16x +2且x >-2,即x =2时等号成立. 3.答案:B解析:因为x ,y 均为正数,且x +y =1, 则1x +4y =(1x +4y )(x +y )=5+y x +4xy≥5+2y x ·4xy=9, 当且仅当x =13,y =23时,1x +4y 有最小值9.4.答案:D解析:设两直角边分别为a ,b ,则斜边为a 2+b 2, 所以该直角三角形的面积为S =12ab =50,则ab =100,周长为a +b +a 2+b 2≥2ab +2ab =20+102,当且仅当a =b =10时等号成立,故周长的最小值为102+20. 5.答案:D解析:正实数m ,n 满足2m +1n=1,2m +n =(2m +n )(2m +1n )=5+2m n +2nm≥5+4=9,等号成立的条件为:m n =n m⇒m =n =3. 6.答案:AB解析:当x >0时,x +1x≥2x ·1x =2(当且仅当x =1x,即x =1时取等号),A 正确; x 2+2x 2+2=x 2+2,因为x 2≥0,所以x 2+2x 2+2=x 2+2≥2,B 正确; x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4≥2,当且仅当x 2+4=1x 2+4,即x 2=-3时,等号成立,显然不成立,故C 错误;当x =1时,2-3x -4x=2-3-4=-5<2-43,D 错误.7.答案:1 0 解析:因为x >-1, 所以x +1x +1=x +1+1x +1-1≥2 (x +1)·1x +1-1=1, 当且仅当x +1=1x +1,即x =0时,等号成立, 所以其最小值是1,此时x =0. 8.答案:4π解析:设长方形的长宽分别为a ,b (a >0,b >0),所以ab =π,所用铁丝的长度为2(a +b )≥4ab =4π,当且仅当a =b =π时取等号.关键能力综合练1.答案:A解析:因为a >2,可得p =a +1a -2=(a -2)+1a -2+2≥2 (a -2)·1a -2+2=4, 当且仅当a -2=1a -2时,即a =3时,等号成立,即p ≥4, 又由q =-b 2-2b +3=-(b +1)2+4,所以q ≤4, 所以p ≥q . 2.答案:D解析:1a +1b +1c=⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c )=4+2b a +c a +a b +c b +a c +2bc ≥4+22ba·a b+2c a ·a c+2c b ·2bc =6+42, 当且仅当2b a=a b ,c a =a c ,c b=2bc时,等号成立, 即a 2=c 2=2b 2时,等号成立. 3.答案:D解析:方法一 ∵x ≥52,∴x -2>0,则x 2-4x +5x -2=(x -2)2+1x -2=(x -2)+1(x -2)≥2,当且仅当x -2=1x -2,即x =3时,等号成立. 方法二 令x -2=t ,∵x ≥52,∴t ≥12,∴x =t +2.将其代入,原函数可化为y =(t +2)2-4(t +2)+5t =t 2+1t =t +1t≥2t ·1t=2,当且仅当t =1t,即t =1时等号成立,此时x =3.4.答案:A解析:因为a +2b =3ab ,故2a +1b=3,故2a +b =13(2a +b )(2a +1b )=13(5+2b a +2a b )≥13(5+4)=3,当且仅当a =b =1时等号成立, 故2a +b 的最小值为3. 5.答案:C解析:根据题意可得m 1=20+2020a +20b=2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时等号成立,m 2=6a +6b 12=a +b2≥ab ,当且仅当a =b 时等号成立, 由题意可得a ≠b ,所以m 1<ab ,m 2>ab ,则m 2>m 1. 6.答案:CD解析:对于选项A ,因为m >0,n >0,m +n =2,所以n m +2n =n m+m +n n=n m +m n+1≥2n m ·mn+1=2+1=3,当且仅当n m =m n且m +n =2,即m =n =1时取等号,则A 错误;对于选项B, (m +n )2=m +n +2mn =2+2mn ≤2+m +n =4,当且仅当m =n =1时等号成立,则m +n ≤2,即m +n 的最大值为2,则B 错误;对于选项C ,m +n ≥2mn ,即mn ≤(m +n2)2=1,当且仅当m =n =1时,等号成立,则C正确;对于选项D, m 2+n 2=(m +n )2-2mn =4-2mn ≥4-2(m +n2)2=2,当且仅当m =n =1时,等号成立,则D 正确.7.答案:12解析:x >0,f (x )=4x +1x≥24x ·1x =4,当且仅当4x =1x ⇒x =12时取“=”.8.答案:12解析:∵x >0,∴f (x )=xx 2+1=1x +1x≤12x ×1x=12, 当且仅当x =1时取等号, 即函数f (x )=xx 2+1的最大值为12. 9.解析:x +2y =2xy ,则1x +12y=1,故x +4y =(x +4y )(1x +12y )=1+4y x +x 2y +2≥3+22,当且仅当4y x =x2y 即x =22y 时等号成立,x +4y 的最小值为3+2 2.又1x +12y =1≥2 12xy,解得xy ≥2,当且仅当x =2y =2时等号成立,xy 的最小值为2.10.解析:设长方体底面的长为a m ,宽为b m ,显然a ,b >0,则3ab =48,故b =16a,总造价为y 元,则y =2(3a +48a )×50+16×40=300(a +16a)+640≥300×2a ·16a+640=3 040,当且仅当a =16a,即a =b =4时等号成立,∴当底面的长与宽均为4米时总费用最少,最少为3 040元.核心素养升级练1.答案:C解析:由不等式2a +b ≥m 恒成立可知,只需m 小于等于2a +b 的最小值, 由a >0,b >0,1a +1b=1,可得2a +b =(2a +b )(1a +1b )=3+b a +2ab≥3+2b a ×2a b =3+22,当且仅当b a =2a b时取等号,∴m ≤3+22,∴m 的最大值为3+2 2.2.答案:8 100解析:设这批物资全部运到B 市用的时间为y 小时,因为不计货车的身长,所以设货车为一个点,可知最前的点与最后的点之间距离最小值为16×(v20)2千米时,时间最快.则y =(v20)2×16+400v =v 25+400v≥2v25×400v=8,当且仅当v 25=400v即v =100千米/小时时,时间y min =8小时.3.解析:(1)甲的解法中两次用到基本不等式,取到等号的条件分别是2x =y 和x =2y ,显然不能同时成立,故甲的解法是错的.正确的解法如下:因为x >0,y >0,且2x +y =1, 所以1x +12y =(2x +y )(1x +12y )=52+y x +x y ≥52+2 y x ·x y =92, 当且仅当y x =x y ,即x =y =13时取“=”,所以1x +12y 的最小值为92.(2)因为0<x <23,所以0<2-3x <2,所以y =1x +12-3x=12[3x +(2-3x )][1x +12-3x ] =12(4+3x 2-3x +2-3x x ) ≥12(4+2 3x 2-3x ·2-3xx)=2+3,当且仅当3x 2-3x =2-3xx ,即x =1-33∈(0,23)时取“=”, 所以y =1x +12-3x (0<x <23)的最小值为2+ 3.。

红对勾·讲与练高中数学北师大必修五:课时作业 基本不等式 含解析

红对勾·讲与练高中数学北师大必修五:课时作业 基本不等式 含解析

课时作业20 基本不等式时间:45分钟 满分:100分一、选择题(每小题5分,共35分)1.a +b ≥2ab (a >0,b >0)中等号成立的条件是( ) A .a =b B .a =-b C .a =|b | D .|a |=b【答案】 A【解析】 由基本不等式成立的条件易知. 2.x 2+y 2=4,则xy 的最大值是( ) A.12 B .1 C .2 D .4【答案】 C【解析】 xy ≤x 2+y 22=2,当且仅当x =y =2或x =y =-2时,等号成立,∴xy 的最大值为2.3.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q【答案】 B【解析】 ∵a >b >1,∴lg a ·lg b <lg a +lg b 2. ∵a ≠b ,∴“=”不成立.又∵lg a +lg b =lg ab <lg ⎝ ⎛⎭⎪⎪⎫a +b 22=2lg a +b 2, ∴lg a +b 2>12(lg a +lg b ),故选B. 4.下列不等式一定成立的是( ) A .x +1x ≥2 B.x 2+2x 2+2≥ 2C.x 2+3x 2+4≥2D .2-3x -4x ≥2【答案】 B【解析】 A 项中当x <0时,x +1x <0<2,∴A 错误. B 项中,x 2+2x 2+2=x 2+2≥2,∴B 正确.而对于C ,x 2+3x 2+4=x 2+4-1x 2+4, 当x =0时,x 2+3x 2+4=32<2,显然选项C 不正确.D 项中取x =1,2-3x -4x <2,∴D 错误. 5.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D.ab <a <a +b2<b【答案】 B【解析】 ∵0<a <b ,∴a ·a <ab .∴a <ab .由基本不等式知ab <a +b2(a ≠b ),又∵0<a <b ,a +b <b +b ,∴a +b 2<b . ∴a <ab <a +b2<b .6.下列选项中正确的是( ) A .当a ,b ∈R 时,a b +ba ≥2a b ×b a =2B .当a >1,b >1时,lg a +lg b ≥2lg a lg bC .当a ∈R 时,a +9a ≥2a ×9a =6D .当ab <0时,-ab -1ab ≤-2 【答案】 B【解析】 选项A 中,可能ba <0,所以A 不正确; 选项C 中,当a <0时,a +9a <0,所以C 不正确; 选项D 中,当ab <0时,-ab >0,-1ab >0, 则-ab -1ab ≥2,当且仅当-ab =-1ab ,即ab =-1时取等号,所以D 不正确; 很明显,选项B 中当a >1,b >1时,lg a >0,lg b >0, 则lg a +lg b ≥2lg a lg b 成立,所以B 正确.7.若两个正实数x ,y 满足2x +1y =1,并且x +2y >m +1恒成立,则实数m 的取值范围是( )A .(-∞,7]B .(-∞,7)C .(7,+∞)D .[7,+∞)【答案】 B【解析】 x +2y =(x +2y )(2x +1y )=2+4y x +xy +2≥8, 当且仅当4y x =xy ,即4y 2=x 2时,等号成立, ∴m +1<8,∴m <7.二、填空题(每小题5分,共20分)8.对于任意正数a ,b ,设A =a +b2,G =ab ,则A 与G 的大小关系是________.【答案】 A ≥G【解析】 ∵a >0,b >0,∴a +b2≥ab >0,∴A ≥G .9.已知a >0,b >0,且a +b =1,则ab 的取值范围是________. 【答案】 (0,14]【解析】 ∵a >0,b >0,a +b =1,∴ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22=14. 当且仅当a =b =12时,等号成立. ∴ab 的最大值为14.10.已知0<α<π,则2sin α+12sin α的取值范围是________. 【答案】 [2,+∞) 【解析】 ∵0<α<π,∴sin α>0. ∴2sin α+12sin α≥22sin α×12sin α=2,当且仅当2sin α=12sin α,即sin α=12时,等号成立. ∴2sin α+12sin α的最小值为2.11.函数y =log a (x -1)+1(a >0,且a ≠1)的图像恒过定点A ,若点A 在一次函数y =mx +n 的图像上,其中m ,n >0,则1m +2n 的取值范围为________.【答案】 [8,+∞)【解析】 由题意,得点A (2,1),则1=2m +n , 又m ,n >0,所以1m +2n =2m +n m +2(2m +n )n =4+n m +4m n ≥4+24=8. 当且仅当n m =4m n ,即m =14,n =12时取等号,则1m +2n 的最小值为8.三、解答题(共45分,解答应写出必要的文字说明、证明过程或演算步骤)12.(14分)设实数a 使a 2+a -2>0成立,t >0,比较12log a t 与log a t +12的大小.【解析】 ∵a 2+a -2>0,∴a <-2或a >1, 又a >0且a ≠1,∴a >1,∵t >0,∴t +12≥t ,∴log a t +12≥log a t =12log a t , ∴12log a t ≤log a t +12.13.(15分)已知y =x +9x (x ≠0),试比较|y |与6的大小.【解析】 (1)当x >0时,由基本不等式,得y =x +9x ≥6,(当且仅当x =3取等号),即y ≥6,∴|y |≥6;(2)当x <0时,-x >0,y =x +9x =-[(-x )+9-x ]≤-6(当且仅当x=-3时取等号),即y ≤-6,∴|y |≥6.综上所述,|y |≥6.14.(16分)已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8. 【解析】 ∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=a +b +c a -1=b +c a ≥2bc a >0. 同理,1b -1≥2ac b >0,1c -1≥2ab c >0.∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8ab ac bc abc =8.。

人教A版高中数学第一册(必修1)课时作业3:§2.2 第2课时 基本不等式的应用练习题

人教A版高中数学第一册(必修1)课时作业3:§2.2 第2课时 基本不等式的应用练习题

第2课时 基本不等式的应用1.已知x >0,则9x +x 的最小值为( )A .6B .5C .4D .3 『答 案』 A『解 析』 ∵x >0,∴9x+x ≥2x ·9x=6, 当且仅当x =9x ,即x =3时,等号成立.2.已知x >-2,则x +1x +2的最小值为( )A .-12B .-1C .2D .0『答 案』 D『解 析』 ∵x >-2,∴x +2>0, ∴x +1x +2=x +2+1x +2-2≥2-2=0,当且仅当x =-1时,等号成立.3.若正实数a ,b 满足a +b =2,则ab 的最大值为( ) A .1B .22C .2D .4 『答 案』 A『解 析』 由基本不等式得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =1时,等号成立. 4.(多选)设y =x +1x -2,则( )A .当x >0时,y 有最小值0B .当x >0时,y 有最大值0C .当x <0时,y 有最大值-4D .当x <0时,y 有最小值-4 『答 案』 AC『解 析』 当x >0时,y =x +1x -2≥2x ·1x-2 =2-2=0,当且仅当x =1x,即x =1时,等号成立,故A 正确,B 错误;当x <0时,y =-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时,等号成立,故C 正确,D 错误.5.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16B .25C .9D .36 『答 案』 B『解 析』 (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤(1+x )+(1+y )22=⎣⎢⎡⎦⎥⎤2+(x +y )22=⎝ ⎛⎭⎪⎫2+822=25, 当且仅当1+x =1+y ,即x =y =4时,等号成立. 6.已知a >0,b >0,则1a +1b +2ab 的最小值是________.『答 案』 4『解 析』 ∵a >0,b >0, ∴1a +1b+2ab ≥21ab+2ab ≥41ab·ab =4,当且仅当a =b =1时,等号成立. 7.若正数m ,n 满足2m +n =1,则1m +1n 的最小值为________.『答 案』 3+2 2 『解 析』 ∵2m +n =1, 则1m +1n =⎝⎛⎭⎫1m +1n (2m +n ) =3+2m n +n m ≥3+22,当且仅当n =2m ,即m =1-22,n =2-1时,等号成立,即最小值为3+2 2.8.要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 『答 案』 160『解 析』 设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m ,得另一边长为4x m.记容器的总造价为y 元,则y =4×20+2⎝⎛⎭⎫x +4x ×1×10=80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160, 当且仅当x =4x ,即x =2时,等号成立.因此当x =2时,y 取得最小值160, 即容器的最低总造价为160元. 9.(1)已知x <3,求4x -3+x 的最大值;(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值.解 (1)∵x <3,∴x -3<0, ∴4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时,等号成立,∴4x -3+x 的最大值为-1. (2)∵x ,y 是正实数,x +y =4, ∴1x +3y =⎝⎛⎭⎫1x +3y ·x +y4=14⎝⎛⎭⎫4+y x +3x y ≥1+234=1+32, 当且仅当y x =3xy,即x =2(3-1),y =2(3-3)时等号成立.故1x +3y 的最小值为1+32. 10.某农业科研单位打算开发一个生态渔业养殖项目,准备购置一块1800平方米的矩形地块,中间挖三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值分别为多少? 解 (1)由题意得,xy =1 800,b =2a , 则y =a +b +6=3a +6,S =a (x -4)+b (x -6)=a (x -4)+2a (x -6)=(3x -16)a =(3x -16)×y -63=xy -6x -163y +32=1832-6x -163y ,其中6<x <300,6<y <300.(2)由(1)可知,6<x <300,6<y <300,xy =1 800, 6x +163y ≥26x ·163y =26×16×600=480,当且仅当6x =163y 时等号成立,∴S =1 832-6x -163y ≤1 832-480=1 352,此时9x =8y ,xy =1 800,解得x =40,y =45, 即x 为40,y 为45.11.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92B.92C.14D .-4『答 案』 A『解 析』 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92, 当且仅当b =2a ,即a =13,b =23时,等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92.12.(多选)一个矩形的周长为l ,面积为S ,则下列四组数对中,可作为数对(S ,l )的有( ) A .(1,4) B .(6,8) C .(7,12) D.⎝⎛⎭⎫3,12 『答 案』 AC『解 析』 设矩形的长和宽分别为x ,y , 则x +y =12l ,S =xy .由xy ≤⎝ ⎛⎭⎪⎫x +y 22知,S ≤l 216,故AC 成立.13.已知x >-1,则(x +10)(x +2)x +1的最小值为________.『答 案』 16『解 析』 (x +10)(x +2)x +1=(x +1+9)(x +1+1)x +1=(x +1)2+10(x +1)+9x +1=(x +1)+9x +1+10,∵x >-1,∴x +1>0,∴(x +1)+9x +1+10≥29+10=16.当且仅当x +1=9x +1,即x =2时,等号成立.14.若对∀x >-1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________.『答 案』 a ≤0『解 析』 因为x >-1,所以x +1>0, 则x +1x +1-1=x +1+1x +1-2 ≥2(x +1)×1x +1-2=2-2=0,当且仅当x +1=1x +1,即x =0时等号成立,由题意可得a ≤⎝ ⎛⎭⎪⎫x +1x +1-1min =0,即a ≤0.15.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________.『答 案』 ⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥19 『解 析』 原不等式可转化为a (x 2+1)+1x 2+1≥23,又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1, 即a =1(x 2+1)2时,等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少?解 设2020年该产品利润为y , 由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1,又每件产品的销售价格为1.5×8+16xx 元,∴y =x ⎝ ⎛⎭⎪⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29,∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时,等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。

基本不等式 2022-2023学年高一上学期数学人教A版(2019)必修第一册

基本不等式 2022-2023学年高一上学期数学人教A版(2019)必修第一册
x2 4
分析:利用函数 y t 1 (t>0)的单调性.
t
t (0,1] 单调递减, t [1, ) 单调递增
解: y x2 5 x2 4 1 x2 4
x2 4
x2 4
令t x2 4 则y t 1 (t 2) t
当t
2,即:
x
0时,
ymin
5 2
1 x2 4
练习
等号成立.
ab a b 2
因此,基本不等式
ab a b 2
的几何意义是“半径不小于半弦”
基本不等式 ab a b 代数意义
2
如果把 a b看作是正数a、b的等差中项,把 ab
2
看作是正数a、b的等比中项,那么该定理可以叙 述为:两个正数的等差中项不小于它们的等比中项.
a b 为a、b的算术平均数, ab 为几何平均数, 那么 2
当直角三角形变为等腰直角三角形,即a=b时, 正方形EFGH缩为一个点,这时有
a2 b2 2ab
结论1:
若a, b R,则a2 b2 2ab(当且仅当 a b时“”成立).
证明: 作差比较 a2+b2-2ab=(a-b)2
当ab时,(a-b)2>0 得 a2+b2>2ab
当a=b时,(a-b)2=0 得 a2+b2=2ab
x y x bx x b(x a) ab (x a) ab a b
xa
xa
xa
2 ab a b ( a b)2
解2 : x y (x y)( a b ) xy
a b a y b x a b 2 ab ( a b)2 xy
例5.求函数 y x 2 5 的最小值.
解:(1)设矩形菜园的长为x m,宽为y m,则 xy=100,篱笆的长为2(x+y)m.由

新教材高中数学第一章预备知识3不等式 基本不等式第1课时基本不等式素养作业北师大版必修第一册

新教材高中数学第一章预备知识3不等式 基本不等式第1课时基本不等式素养作业北师大版必修第一册

第一章 §3 3.2 第1课时A 组·素养自测一、选择题1.下列不等式中正确的是( D ) A .a +4a≥4B .a 2+b 2≥4ab C .ab ≥a +b2D .x 2+3x2≥2 3[解析] a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b2,故C 错;由基本不等式可知D 项正确.2.不等式(x -2y )+1x -2y≥2成立的条件为( B ) A .x ≥2y ,当且仅当x -2y =1时取等号 B .x >2y ,当且仅当x -2y =1时取等号 C .x ≤2y ,当且仅当x -2y =1时取等号 D .x <2y ,当且仅当x -2y =1时取等号[解析] 因为不等式成立的前提条件是各项均为正,所以x -2y >0,即x >2y ,且等号成立时(x -2y )2=1,即x -2y =1,故选B .3.已知正数a ,b 满足ab =10,则a +b 的最小值是( D ) A .10 B .25 C .5D .210[解析] a +b ≥2ab =210,等号在a =b =10时成立,故选D . 4.已知0<x <1,则x (3-3x )取得最大值时x 的值为( B ) A .13 B .12C .34D .23[解析] 由x (3-3x )=13×3x (3-3x )≤13×⎣⎢⎡⎦⎥⎤3x +(3-3x )22=13×94=34,当且仅当3x =3-3x ,即x =12时取等号.5.设0<a <b ,且a +b =1,在下列四个数中最大的是( B )A .12B .bC .2abD .a 2+b 2[解析] ∵ab <⎝ ⎛⎭⎪⎫a +b 22,∴ab <14,∴2ab <12.∵a 2+b 22>a +b2>0,a +b =1,∴a 2+b 22>12,∴a 2+b 2>12. ∵b -(a 2+b 2)=(b -b 2)-a 2=b (1-b )-a 2=ab -a 2=a (b -a )>0,∴b >a 2+b 2,∴b 最大. 6.已知a >0,b >0,A =a +b2,B =ab ,C =2aba +b,则A ,B ,C 的大小关系为( D ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A[解析] 由基本不等式可知,A ≥B ,2ab a +b ≤2ab2ab=ab ,所以B ≥C ,当a =b 时等号成立.故选D .二、填空题 7.若a <1,则a +1a -1与-1的大小关系是__a +1a -1≤-1__. [解析] 因为a <1,即a -1<0, 所以-⎝⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a≥2(1-a )·11-a =2(当且仅当1-a =11-a,即a =0时取等号).即a +1a -1≤-1.8.设x >0,则x 2+x +3x +1的最小值为.[解析] 由x >0,可得x +1>1.令t =x +1(t >1),则x =t -1,则x 2+x +3x +1=(t -1)2+t -1+3t =t +3t-1≥2t ·3t-1=23-1,当且仅当t =3,即x =3-1时,等号成立.三、解答题9.当x 取什么值时,x 2+1x2取得最小值?最小值是多少?[解析] x 2+1x2≥2x 2·1x 2=2,当且仅当x 2=1x2,即x =±1时等号成立.∴x =1或-1时,x 2+1x2取得最小值,最小值为2.10.已知x ,y 都是正数,且x ≠y ,求证:(1)x y +y x>2; (2)2xyx +y<xy . [证明] (1)∵x >0,y >0,∴x y >0,y x>0, ∴x y +y x ≥2x y ·y x =2,∴x y +yx ≥2. 由于当且仅当x y =y x,即x =y 时取“=”,但x ≠y ,因此不能取“=”. ∴x y +y x>2.(2)∵x >0,y >0,x ≠y ,∴x +y >2xy ,∴2xy x +y <1,∴2xy ·xyx +y <xy ,∴2xyx +y<xy . B 组·素养提升一、选择题1.若正数x ,y 满足x +3y =5xy ,当3x +4y 取得最小值时,x +2y 的值为( B ) A .245B .2C .285D .5[解析] ∵x +3y =5xy ,x >0,y >0,∴15y +35x =1,∴3x +4y =(3x +4y )·⎝ ⎛⎭⎪⎫15y +35x =135+3x 5y +12y 5x ≥135+2·3x 5y ·12y5x=5, 当且仅当3x 5y =12y5x,即x =2y =1时取等号,∴当3x +4y 取得最小值时,x =2y =1,∴x +2y 的值为2,故选B . 2.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( B ) A .23 B .223C .33D .233[解析] 由x 2+3xy -1=0可得y =13⎝ ⎛⎭⎪⎫1x -x .因为x >0,所以x +y =2x 3+13x≥22x 3·13x=229=223(当且仅当2x 3=13x ,即x =22时,等号成立).故x +y 的最小值为223.3.(多选题)设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ABC ) A .ab <1 B .1<a 2+b 22C .ab <a 2+b 22D .a 2+b 22<ab[解析] ∵ab ≤⎝ ⎛⎭⎪⎫a +b 22,a ≠b ,∴ab <1,又∵a 2+b 22>a +b2,a +b =2,∴a 2+b 22>1,∴ab <1<a 2+b 22.4.(多选题)下列结论正确的是( AD ) A .当x >0时,x +1x≥2B .当x >2时,x +1x的最小值是2C .当x <54时,y =4x -2+14x -5的最小值为5D .当x >0,y >0时,x y +y x≥2[解析] 在A 中,当x >0时,x >0,x +1x≥2,当且仅当x =1时取等号,结论成立;在B 中,当x >2时,x +1x≥2x ·1x=2,当且仅当x =1时取等号,但x >2取不到1,因此x +1x 的最小值不是2,结论错误;在C 中,因为x <54,所以5-4x >0,则y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2×(5-4x )·15-4x +3=1,当且仅当5-4x =15-4x,即x =1时取等号,结论错误;显然D 正确,故选AD .二、填空题5.当x >0时,若2x +ax(a >0)在x =3时取得最小值,则a =__18__.[解析] ∵a >0,且2x +a x≥22x ·a x =22a ,当且仅当2x =a x ,即x =2a 2时,2x +a x取得最小值,∴2a2=3,解得a =18.6.已知3a +2b =1,a >0,b >0,则2a +1b的最小值为.[解析] ∵3a +2b =1,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b (3a +2b )=8+4b a +3ab≥8+212=8+43,当且仅当a =3-36,b =3-14时取到最小值.三、解答题7.设a ,b ,c 均为正数,且a +b +c =1.证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.[解析] 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c )(当且仅当a =b =c 时取等号), 即a 2b +b 2c +c 2a≥a +b +c . 又a +b +c =1,所以a 2b +b 2c +c 2a≥1.8.已知实数a ,b 满足a >0,b >0,a +b =2,且a 2a +1+b 2b +1≥m 恒成立,求实数m 的最大值.[解析] ∵a >0,b >0,a +b =2, 令a +1=p ,b +1=q ,则p >1,q >1, ∴a =p -1,b =q -1,p +q =4, ∴a 2a +1+b 2b +1=(p -1)2p+(q -1)2q=p +q -4+1p +1q =4pq≥4⎝ ⎛⎭⎪⎫p +q 22=1,∴m ≤1,所以实数m 的最大值为1.。

高中数学人教版必修五:基本不等式(共23张PPT)

高中数学人教版必修五:基本不等式(共23张PPT)
基本不等式:
ab

a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:

ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。

新人教版高中数学必修第一册全套课时作业第二章 2.2 第2课时

新人教版高中数学必修第一册全套课时作业第二章 2.2 第2课时

第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.答案 18解析 y =x (1-2x )=12·2x ·(1-2x )≤12⎝⎛⎭⎫2x +1-2x 22=18,当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 答案 20解析 总运费与总存储费用之和 y =4x +400x ×4=4x +1 600x ≥24x ·1 600x=160,当且仅当4x =1 600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 答案 8解析 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.答案 6解析 x +4x -2=x -2+4x -2+2,∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10 ≥2(x -1)(y -9)+10=16, 当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18. 当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.答案 9解析 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y ,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎡⎦⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎡⎦⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1 000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1,生产1 000千克该产品需要的时间是1 000x ,所以生产1 000千克该产品消耗的A 材料为y =1 000x (x 2+9)=1 000⎝⎛⎭⎫x +9x ≥1 000×29=6 000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6 000千克.基本不等式在实际问题中的应用典例 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图.已知旧墙的维修费用为45 元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360. 由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10 800.∴y =225x +3602x -360≥10 440.当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.[素养提升] 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3答案 D解析 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4答案 B解析 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.答案 4解析 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4.当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32 m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2 m ,则车厢的最大容积是________ m 3. 答案 16解析 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16, 当且仅当t =3,即a =2,b =4时等号成立.1.知识清单: (1)已知x ,y 是正数.①若x +y =S (和为定值),则当x =y 时,积xy 取得最大值. ②若x ·y =P (积为定值),则当x =y 时,和x +y 取得最小值. 即:“和定积最大,积定和最小”. (2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值. 3.常见误区:缺少等号成立的条件.1.已知正数x ,y 满足8x +1y =1,则x +2y 的最小值是( )A .18B .16C .8D .10 答案 A解析 x +2y =(x +2y )⎝⎛⎭⎫8x +1y =10+16y x +x y ≥10+216=18,当且仅当16y x =xy,即x =4y =12时,等号成立.2.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5 答案 C解析 由已知,可得6⎝⎛⎭⎫2a +1b =1, ∴2a +b =6⎝⎛⎭⎫2a +1b ×(2a +b ) =6⎝⎛⎭⎫5+2a b +2ba ≥6×(5+4)=54, 当且仅当2ab =2ba 时,即a =b =18等号成立,∴9m ≤54,即m ≤6,故选C.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设小王从甲地到乙地行驶的路程为s , ∵b >a >0,则v =2ss a +s b =2ab a +b <2ab 2ab =ab , 又2ab a +b >2ab2b=a ,故选A. 4.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A.23 B.223 C.33 D.233答案 B解析 由x 2+3xy -1=0,可得y =13⎝⎛⎭⎫1x -x . 又x >0,所以x +y =2x 3+13x≥229=223⎝⎛⎭⎫当且仅当x =22时等号成立. 5.已知m >0,n >0,m +n =1且x =m +1m ,y =n +1n ,则x +y 的最小值是( )A .4B .5C .8D .10 答案 B解析 依题意有x +y =m +n +1m +1n =1+m +n m +m +n n =3+n m +mn≥3+2=5,当且仅当m =n=12时取等号.故选B. 6.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg·L -1) 随时间t (单位:h)的变化关系为C =20t t 2+4,则经过_______ h 后池水中该药品的浓度达到最大.答案 2解析 C =20t t 2+4=20t +4t .因为t >0,所以t +4t≥2t ·4t=4 ⎝⎛⎭⎫当且仅当t =4t ,即t =2时等号成立.所以C =20t +4t≤204=5,当且仅当t =4t , 即t =2时,C 取得最大值.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.答案 20解析 设矩形花园的宽为y ,则x 40=40-y40,即y =40-x ,矩形花园的面积S =x (40-x )≤⎝⎛⎭⎫x +40-x 22=400,当且仅当x =20时,取等号,即当x =20 m 时,面积最大.8.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)满足关系y =-x 2+12x -25,则每辆客车营运________年时,年平均利润最大. 答案 5解析 ∵y =-x 2+12x -25, ∴年平均利润为y x =-x 2+12x -25x=-⎝⎛⎭⎫x +25x +12≤-2x ·25x+12=2, 当且仅当x =25x ,即x =5时,等号成立.9.已知x >0,y >0且2x +5y =20.(1)求xy 的最大值; (2)求1x +1y的最小值.解 (1)∵2x +5y =20,x >0,y >0, ∴2x +5y ≥210xy , ∴210xy ≤20,即xy ≤10,当且仅当x =5,y =2时,等号成立, ∴xy 的最大值为10. (2)1x +1y =⎝⎛⎭⎫1x +1y ·120(2x +5y ) =120⎝⎛⎭⎫2+5+5y x +2x y =120⎝⎛⎭⎫7+5y x +2x y ≥120(7+210), 当且仅当2x =5y 时,等号成立. ∴1x +1y 的最小值为120(7+210). 10.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100 km ,按交通法规定:这段公路车速限制在40~100(单位:km /h)之间.假设目前油价为7.2元/L ,汽车的耗油率为⎝⎛⎭⎫3+x2360L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资) 解 设总费用为y 元. 由题意,得y =76.4×100x +7.2×100x ×⎝⎛⎭⎫3+x 2360=9 800x+2x (40≤x ≤100). 因为y =9 800x +2x ≥219 600=280.当且仅当9 800x=2x ,即x =70时取等号.所以这次租车的总费用最少是280元,此时的车速为70 km/h.11.设0<x <1,则4x +11-x的最小值为( ) A .10 B .9 C .8 D.272答案 B解析 ∵0<x <1,∴1-x >0, 4x +11-x =[x +(1-x )]·⎝⎛⎭⎫4x +11-x =4+4(1-x )x +x 1-x+1≥5+24(1-x )x ·x 1-x=5+2×2=9. 当且仅当4(1-x )x =x 1-x, 即x =23时,等号成立. ∴4x +11-x的最小值为9. 12.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b的上确界为( ) A .-92 B.92 C.14D .-4 答案 A解析 因为a ,b 为正实数,且a +b =1,所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92,当且仅当b =2a ,即a =13,b =23时等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92. 13.一个矩形的周长为l ,面积为S ,则如下四组数对中,可作为数对(S ,l )的序号是( )①(1,4);②(6,8);③(7,12);④⎝⎛⎭⎫3,12. A .①③B .①③④C .②④D .②③④答案 A解析 设矩形的长和宽分别为x ,y ,则x +y =12l ,S =xy . 对于①(1,4),则x +y =2,xy =1,根据基本不等式满足xy ≤⎝⎛⎭⎫x +y 22,符合题意;对于②(6,8),则x +y =4,xy =6,根据基本不等式不满足xy ≤⎝⎛⎭⎫x +y 22,不符合题意;对于③(7,12),则x +y =6,xy =7,根据基本不等式满足xy ≤⎝⎛⎭⎫x +y 22,符合题意; 对于④⎝⎛⎭⎫3,12,则x +y =14,xy =3, 根据基本不等式不满足xy ≤⎝⎛⎭⎫x +y 22,不符合题意.综合,可作为数对(S ,l )的序号是①③.14.已知不等式2x +m +8x -1>0对任意的x >1恒成立,则实数m 的取值范围为________. 答案 {m |m >-10}解析 ∵2x +m +8x -1>0在x >1时恒成立, ∴m >-2x -8x -1=-2⎝⎛⎭⎫x +4x -1 =-2⎝⎛⎭⎫x -1+4x -1+1, 又x >1时,x -1>0,x -1+4x -1+1≥2(x -1)·4x -1+1=5, 当且仅当x -1=4x -1,即x =3时,等号成立, ∴-2⎝⎛⎭⎫x -1+4x -1+1≤-2×5=-10. ∴m >-10,∴实数m 的取值范围为{m |m >-10}.15.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________. 答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥19 解析 原不等式可转化为a (x 2+1)+1x 2+1≥23, 又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a , 当且仅当a (x 2+1)=1x 2+1, 即a =1(x 2+1)2时等号成立, 则根据恒成立的意义可知2a ≥23,解得a ≥19. 16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-k m +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少?解 设2020年该产品利润为y ,由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16x x元, ∴y =x ⎝⎛⎭⎫1.5×8+16x x -(8+16x +m ) =4+8x -m =4+8⎝⎛⎭⎫3-2m +1-m =-⎣⎡⎦⎤16m +1+(m +1)+29, ∵m ≥0,16m +1+(m +1)≥216=8, 当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业38 基本不等式一、选择题1.下列不等式一定成立的是( C )A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 解析:对选项A,当x >0时,x 2+14-x =⎝ ⎛⎭⎪⎫x -122≥0,所以lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x ;对选项B,当sin x <0时显然不成立;对选项C,x 2+1=|x |2+1≥2|x |,一定成立;对选项D,因为x 2+1≥1,所以0<1x 2+1≤1.故选C.2.若2x +2y =1,则x +y 的取值范围是( D ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2]解析:∵1=2x +2y ≥22x ·2y =22x +y⎝ ⎛⎭⎪⎫当且仅当2x =2y =12,即x =y =-1时等号成立,∴2x +y ≤12,∴2x +y ≤14,得x +y ≤-2.3.已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t =( C ) A .2 B .4 C .2 2D .2 5解析:∵a >0,b >0,∴ab ≤(a +b )24=t 24,当且仅当a =b =t2时取等号.∵ab 的最大值为2,∴t 24=2,t 2=8.又t =a +b >0,∴t =8=2 2.4.已知f (x )=x 2-2x +1x,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( D ) A.12 B.43 C .-1D .0解析:f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.5.已知x ,y 为正实数,且x +y +1x +1y =5,则x +y 的最大值是( C ) A .3 B.72 C .4D.92解析:∵x +y +1x +1y =5,∴(x +y )[5-(x +y )]=(x +y )·⎝ ⎛⎭⎪⎫1x +1y =2+y x +xy ≥2+2=4,∴(x +y )2-5(x +y )+4≤0,∴1≤x +y ≤4,∴x +y 的最大值是4,当且仅当x =y =2时取得.6.(吉林长春外国语学校质检)已知x >0,y >0,且3x +2y =xy ,若2x +3y >t 2+5t +1恒成立,则实数t 的取值范围是( B )A .(-∞,-8)∪(3,+∞)B .(-8,3)C .(-∞,-8)D .(3,+∞)解析:∵x >0,y >0,且3x +2y =xy ,可得3y +2x =1,∴2x +3y =(2x +3y )3y +2x =13+6x y +6yx ≥13+26x y ·6y x=25,当且仅当x =y =5时取等号.∵2x +3y >t 2+5t +1恒成立,∴t 2+5t +1<(2x +3y )min ,∴t 2+5t +1<25,解得-8<t <3.7.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( A )A .a ≥15 B .a >15 C .a <15D .a ≤15解析:由x >0,x x 2+3x +1=1x +1x +3,令t =x +1x ,则t ≥2x ·1x =2,当且仅当x =1时,t 取得最小值 2.x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则a ≥15.二、填空题8.已知a >0,则(a -1)(4a -1)a 的最小值为-1. 解析:(a -1)(4a -1)a =4a 2-a -4a +1a =4a -5+1a . ∵a >0,∴4a -5+1a ≥24a ·1a -5=-1,当且仅当4a =1a ,即a =12时取等号,∴(a -1)(4a -1)a的最小值为-1. 9.若x >0,y >0,x +4y +2xy =7,则x +2y 的最小值是3. 解析:因为x >0,y >0,x +4y +2xy =7,则2y =7-xx +2.则x +2y =x +7-x x +2=x +2+9x +2-3≥2(x +2)·9x +2-3=3,当且仅当x =1时取等号.因此其最小值是3.10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转5年时,年平均利润最大,最大值是8万元.解析:每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故yx ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.三、解答题11.(河北唐山模拟)已知x ,y ∈(0,+∞),x 2+y 2=x +y . (1)求1x +1y 的最小值.(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xyxy =2,当且仅当x =y =1时,等号成立, 所以1x +1y 的最小值为2. (2)不存在.理由如下: 因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ). 又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4, 因此不存在x ,y 满足(x +1)(y +1)=5.12.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值. 解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450). (2)因为8<x <450, 所以2x +7 200x ≥22x ·7 200x =240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.13.(海淀质监)当0<m <12时,若1m +21-2m ≥k 2-2k 恒成立,则实数k 的取值范围为( D )A .[-2,0)∪(0,4]B .[-4,0)∪(0,2]C .[-4,2]D .[-2,4]解析:因为0<m <12,所以12×2m ×(1-2m )≤12×⎣⎢⎡⎦⎥⎤2m +(1-2m )22=18,当且仅当2m =1-2m ,即m =14时取等号,所以1m +21-2m =1m (1-2m )≥8,又1m +21-2m ≥k 2-2k恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4].故选D.14.(湖南长郡中学月考)设正项等差数列{a n }的前n 项和为S n ,若S 2 017=4 034,则1a 9+9a 2 009的最小值为4.解析:由等差数列的前n 项和公式, 得S 2 017=2 017(a 1+a 2 017)2=4 034, 则a 1+a 2 017=4.由等差数列的性质得a 9+a 2 009=4,所以1a 9+9a 2 009=14⎝ ⎛⎭⎪⎫4a 9+9×4a 2 009 =14⎣⎢⎡⎦⎥⎤a 9+a 2 009a 9+9(a 9+a 2 009)a 2 009 =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2 009a 9+9a 9a 2 009+10 ≥14⎝ ⎛⎭⎪⎫2a 2 009a 9×9a 9a 2 009+10=4,当且仅当a 2 009=3a 9时等号成立.尖子生小题库——供重点班学生使用,普通班学生慎用15.(合肥模拟)已知函数f (x )=13ax 3-2x 2+cx 在R 上单调递增,且ac ≤4,则a c 2+4+c a 2+4的最小值为( B ) A .0 B .12 C .14D .1解析:因为函数f (x )=13ax 3-2x 2+cx 在R 上单调递增,所以f ′(x )=ax 2-4x +c ≥0在R 上恒成立.所以⎩⎪⎨⎪⎧a >0,Δ=16-4ac ≤0,所以ac ≥4,又ac ≤4,所以ac =4,又a >0,所以c >0,则a c 2+4+c a 2+4=a c 2+ac +c a 2+ac =a c (c +a )+c a (c +a )=1c -1c +a +1a -1c +a =1a +1c -2c +a≥21ac -22ac =1-12=12,当且仅当a =c =2时等号成立,故选B.16.(天津模拟)已知x ,y 为正实数,则2x x +2y +x +y x 的最小值为52.解析:∵x ,y 为正实数,则2xx +2y +x +y x=2x x +2y +y x+1=21+2y x+y x +1,令t =yx ,则t >0, ∴2x x +2y +x +y x =21+2t +t +1 =112+t +t +12+12≥ 2112+t·⎝ ⎛⎭⎪⎫t +12+12=52, 当且仅当t =12时取等号. ∴2x x +2y+x +y x 的最小值为52.。

相关文档
最新文档