高中数学课时作业:一元二次不等式及其解法

合集下载

高考文数复习---一元二次不等式及其解法课时练习题(含答案解析)

高考文数复习---一元二次不等式及其解法课时练习题(含答案解析)

7.不等式 x2-2ax-3a2<0(a>0)的解集为

{x|-a<x<3a} [x2-2ax-3a2<0⇔(x-3a)(x+a)<0.
又 a>0,则-a<3a,所以-a<x<3a.]
8.关于 x 的不等式 x2+ax+a≤1 对一切 x∈(0,1)恒成立,则 a 的取值范围


(-∞,0] [原不等式可化为 x2+ax+a-1≤0,设 f(x)=x2+ax+a-1,
a

1 3










xx>3a+3+
9a2-30a+9 4
3a+3- 或x<
9a2-30a+9

4
当 a=13时,原不等式的解集为{x|x≠1};
当13<a<1 时,原不等式的解集为 R.
综合运用练习
1.函数 f(x)=ln-x2+1 4x-3的定义域是(
)
A.(-∞,1)∪(3,+∞)
又当 x∈[1,2]时,x+2x≥2 2,当且仅当 x= 2时等号成立,则-x-2x≤-2 2.
∴m>-2 2.]
3.已知一元二次不等式 f(x)<0 的解集为xx<-1或x>13
,则 f(ex)>0 的
解集为

{x|x<-ln 3} [f(x)>0 的解集为 x∈-1,13.
不等式 f(ex)>0 可化为-1<ex<13,
A.xx<-1或x>12
B.x-1<x<12
C.{x|-2<x<1}
D.{x|x<-2 或 x>1}
-ba=-1+2, A [由题意知2a=-1×2,
ba=-1, 即2a=-2,
a=-1, 解得

2020版高考数学一轮复习第七章不等式第2讲一元二次不等式的解法配套课时作业(理)(含解析)新人教A版

2020版高考数学一轮复习第七章不等式第2讲一元二次不等式的解法配套课时作业(理)(含解析)新人教A版

第2讲 一元二次不等式的解法配套课时作业1.(2019·潍坊模拟)函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞)B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3)答案 D解析 由题意知⎩⎪⎨⎪⎧-x 2+4x -3>0,-x 2+4x -3≠1,即⎩⎪⎨⎪⎧1<x <3,x ≠2,故函数f (x )的定义域为(1,2)∪(2,3).故选D.2.若集合A ={x |x 2-x <0},B ={x |(x -a )(x +1)<0},则“a >1”是“A ∩B ≠∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若A ∩B ≠∅,则只需要满足条件a >0即可, ∴“a >1”是“A ∩B ≠∅”的充分不必要条件.3.关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1.故选B. 4.(2019·郑州模拟)已知关于x 的不等式ax -1x +1>0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞,则a 的值为( )A .-1B .12C .1D .2答案 D解析 由题意可得a ≠0且不等式等价于a (x +1)( x - ⎭⎪⎫1a>0,由解集的特点可得a >0且1a =12,故a =2.故选D. 5.(2019·江西九江模拟)不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的范围为( )A.⎝⎛⎭⎪⎫-2,65 B.⎣⎢⎡⎭⎪⎫-2,65 C.⎣⎢⎡⎦⎥⎤-2,65 D.⎣⎢⎡⎭⎪⎫-2,65∪{2} 答案 B解析 当a =-2时,不等式解集为空集;当a ≠-2时,不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,即(a 2-4)x 2+(a +2)x -1<0恒成立.∴⎩⎪⎨⎪⎧a 2-4<0,Δ=a +22+4a 2-4<0,解得-2<a <65综上可知a 的取值范围是⎣⎢⎡⎭⎪⎫-2,65.故选B. 6.若关于x 的不等式x 2-ax +1≤0的解集中只有一个整数,且该整数为1,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫2,52B.⎝ ⎛⎦⎥⎤2,52C.⎣⎢⎡⎦⎥⎤2,52 D.⎝ ⎛⎭⎪⎫2,52 答案 A解析 令f (x )=x 2-ax +1,由题意可得⎩⎪⎨⎪⎧f1≤0,f 2>0,解得2≤a <52.7.(2019·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]答案 C解析 函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意.当a 2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16a -12-12a 2+4a -5<0,解得1<a <19.综上1≤a <19.故选C.8.设实数a ∈(1,2),关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为( )A .(3a ,a 2+2) B .(a 2+2,3a ) C .(3,4) D .(3,6)答案 B解析 由x 2-(a 2+3a +2)x +3a (a 2+2)<0,得(x -3a )(x -a 2-2)<0,∵a ∈(1,2),∴3a >a 2+2,∴关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为(a 2+2,3a ).故选B.9.(2019·云南模拟)若关于x 的不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]答案 B解析 原不等式等价于(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.故选B.10.(2019·山东临沂模拟)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞) 答案 C解析 ∵关于x 的不等式ax -b <0的解集为(1,+∞),∴a <0且ba=1,即a =b ,∴不等式(ax +b )(x -3)>0可转化为(x +1)(x -3)<0.解得-1<x <3,故选C.11.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 答案 A解析 依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎪⎨⎪⎧b a =-12-13,-1a =-12×⎝ ⎛⎭⎪⎫-13,即⎩⎪⎨⎪⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-b a x -1>0,即-16x 2+56x -1>0,即x 2-5x +6<0,解得2<x <3.故选A.12.(2019·广西陆川中学月考)关于x 的不等式ax 2-2x +1 <0的解集非空的一个必要不充分条件是( )A .a <1B .a ≤1C .0<a <1D .a <0答案 B解析 由题意得,当a =0时,原不等式化为-2x +1<0,原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x >12;当a >0时,要使得关于x 的不等式的解集非空,则Δ=4-4a >0⇒a <1,即0<a <1;当a <0时,不等式的解集非空恒成立.所以关于x 的不等式ax 2-2x +1<0的解集非空时,实数a 的取值范围是a <1.所以关于x 的不等式ax 2-2x +1<0的解集非空的一个必要不充分条件是a ≤1,故选B.13.若不等式x 2+ax -2<0在区间[1,5]上有解,则a 的取值范围是________. 答案 (-∞,1)解析 不等式x 2+ax -2<0在区间[1,5]上有解,a <2x -x ,x ∈[1,5]有解,显然g (x )=2x-x 在[1,5]上递减,g max (x )=g (1)=1,∴a <1.14.若关于x 的不等式-12x 2+2x >mx 的解集是{x |0<x <2},则实数m 的值是________.答案 1解析 将原不等式化为12x 2+(m -2)x <0,即x (x +2m -4)<0,故0,2是对应方程x (x +2m -4)=0的两个根,代入得m =1.15.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是________. 答案 [-5,+∞)解析 由题意得,a ≥-⎝⎛⎭⎪⎫x +4x ,设f (x )=-⎝ ⎛⎭⎪⎫x +4x ,x ∈(0,1],则只要a ≥[f (x )]max ,由于函数f (x )在(0,1]上单调递增,所以[f (x )]max =f (1)=-5,故a ≥-5.16.关于x的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+2k +5x +5k <0的整数解的集合为{-2},则实数k的取值范围是________.答案 [-3,2)解析 由x 2-x -2>0,可得x >2或x <-1,又由2x 2+(2k +5)x +5k <0,可得(2x +5)(x +k )<0,如图所示,由已知条件可得⎩⎪⎨⎪⎧-k >-52,-2<-k ≤3,解得-3≤k <2.17.(2019·日照模拟)已知x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,且关于x 的不等式ax 2+2x -1>0 有解,求实数a 的取值范围.解 ∵x 1,x 2是方程x 2-mx -2=0的两个实根, ∴x 1+x 2=m ,x 1x 2=-2, ∴|x 1-x 2|=x 1+x 22-4x 1x 2=m 2+8,∴当m ∈[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立, 可得a 2-5a -3≥3,∴a ≥6或a ≤-1.① 又不等式ax 2+2x -1>0有解,则 当a >0时,ax 2+2x -1>0显然有解; 当a =0时,ax 2+2x -1>0有解; 当a <0时,由Δ=4+4a >0,得-1<a <0. ∴不等式ax 2+2x -1>0有解时a >-1,② 由①②可得实数a 的取值范围为[6,+∞). 18.解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1; 当2a<-1,即a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a 或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1; 当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 19.已知关于x 的不等式2x -1>m (x 2-1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立?并说明理由; (2)若对于m ∈[-2,2]不等式恒成立,求实数x 的取值范围.解 (1)原不等式等价于mx 2-2x +(1-m )<0, 若对于任意实数x 恒成立,当且仅当m <0且Δ=4-4m (1-m )<0,不等式解集为∅,所以不存在实数m ,使不等式恒成立. (2)设f (m )=(x 2-1)m -(2x -1), 当m ∈[-2,2]时,f (m )<0恒成立. 而f (m )在m ∈[-2,2]时表示线段,当且仅当⎩⎪⎨⎪⎧f 2<0,f-2<0⇔⎩⎪⎨⎪⎧2x 2-2x -1<0,①-2x 2-2x +3<0.②由①,得1-32<x <1+32.由②,得x <-1-72或x >-1+72.取交集,得-1+72<x <1+32.所以x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1+72<x <1+32. 20.(2019·兰州模拟)已如函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意,可得m =0或⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0, 故m 的取值范围是(-4,0].(2)解法一:要使f (x )<5-m 在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,则m <0.综上所述,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.解法二:因为f (x )<5-m ⇔m (x 2-x +1)<6, 又因为x 2-x +1>0,所以m <6x 2-x +1对于x ∈[1,3]恒成立.只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67,即m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.。

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

2021_2022学年高中数学第3章不等式3.2.1一元二次不等式及其解法作业

2021_2022学年高中数学第3章不等式3.2.1一元二次不等式及其解法作业

课时分层作业(十八) 一元二次不等式及其解法(建议用时:40分钟)一、选择题1.不等式9x 2+6x +1≤0的解集是( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B .⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13 C .∅ D .⎩⎨⎧⎭⎬⎫x ⎪⎪x =-13 D [(3x +1)2≤0, ∴3x +1=0,∴x =-13.]2.若集合A ={x |(2x +1)(x -3)<0},B ={x |x ∈N *,x ≤5},则A ∩B 等于( ) A .{1,2,3} B .{1,2}C .{4,5}D .{1,2,3,4,5} B [(2x +1)(x -3)<0,∴-12<x <3,又x ∈N *且x ≤5,则x =1,2.]3.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪1t<x <t B .⎩⎨⎧⎭⎬⎫x ⎪⎪x >1t或x <t C .⎩⎨⎧⎭⎬⎫x ⎪⎪x <1t或x >t D .⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t D [t ∈(0,1)时,t <1t ,∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t .] 4.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}C [由题意知,-2+3=-b a ,-2×3=ca ,∴b =-a ,c =-6a ,∴ax 2+bx +c =ax 2-ax -6a >0, ∵a <0,∴x 2-x -6<0, ∴(x -3)(x +2)<0,∴-2<x <3.]5.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)B [根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是(-2,1).]二、填空题6.不等式-x 2-3x +4>0的解集为 .(用区间表示) (-4,1) [由-x 2-3x +4>0得x 2+3x -4<0,解得-4<x <1.]7.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是 .(-3,1)∪(3,+∞) [f (1)=12-4×1+6=3, 当x ≥0时,x 2-4x +6>3, 解得x >3或0≤x <1; 当x <0时,x +6>3, 解得-3<x <0.所以f (x )>f (1)的解集是(-3,1)∪(3,+∞).]8.关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+(2k +5)x +5k <0的整数解的集合为{-2},则实数k 的取值范围是________.[-3,2) [由x 2-x -2>0,解得x >2或x <-1,又由2x 2+(2k +5)x +5k <0可得,(2x +5)(x +k )<0,如图所示,由已知条件可得⎩⎪⎨⎪⎧-k >-52,-2<-k ≤3,解得-3≤k <2.]三、解答题9.求下列不等式的解集: (1)x 2-5x +6>0;(2)-12x 2+3x -5>0.[解] (1)方程x 2-5x +6=0有两个不等实数根x 1=2,x 2=3,又因为函数y =x 2-5x +6的图象是开口向上的抛物线,且抛物线与x 轴有两个交点,分别为(2,0)和(3,0),其图象如图(1).根据图象可得不等式的解集为{x |x >3或x <2}.(2)原不等式可化为x 2-6x +10<0,对于方程x 2-6x +10=0,因为Δ=(-6)2-40<0,所以方程无解,又因为函数y =x 2-6x +10的图象是开口向上的抛物线,且与x 轴没有交点,其图象如图(2).根据图象可得不等式的解集为∅.10.解关于x 的不等式x 2-(3a -1)x +(2a 2-2)>0. [解] 原不等式可化为 [x -(a +1)][x -2(a -1)]>0, 讨论a +1与2(a -1)的大小(1)当a +1>2(a -1),即a <3时,x >a +1或x <2(a -1). (2)当a +1=2(a -1),即a =3时,x ≠a +1.(3)当a +1<2(a -1),即a >3时,x >2(a -1)或x <a +1, 综上:当a <3时,解集为{x |x >a +1或x <2(a -1)}, 当a =3时,解集为{x |x ≠a +1},当a >3时,解集为{x |x >2(a -1)或x <a +1}.1.不等式mx 2-ax -1>0(m >0)的解集可能是( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32D .∅A [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D ,故选A.]2.关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为( )A .{x |-2<x <1}B .{x |x >2或x <-1}C .{x |x >1或x <-2}D .{x |x <-1或x >1}C [∵ax 2+bx +2>0的解集为{x |-1<x <2}, ∴⎩⎨⎧2a =-2,-b a=1,解得⎩⎪⎨⎪⎧a =-1,b =1,∴bx 2-ax -2>0, 即x 2+x -2>0, 解得x >1或x <-2.]3.不等式2x 2-x <4的解集为 . {x |-1<x <2} [∵2x 2-x <4, ∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0, ∴-1<x <2.]4.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.{x |-7<x <3} [当x ≥0时,f (x )=x 2-4x <5的解集为[0,5).又f (x )为偶函数,所以f (x )<5的解集为(-5,5),所以-5<x +2<5,故所求解集为{x |-7<x <3}.]5.已知M 是关于x 的不等式2x 2+(3a -7)x +3+a -2a 2<0的解集,且M 中的一个元素是0,求实数a 的取值范围,并用a 表示出该不等式的解集.[解] 原不等式可化为(2x -a -1)(x +2a -3)<0,由x =0适合不等式得(a +1)(2a -3)>0,所以a <-1或a >32.若a <-1,则-2a +3-a +12=52(-a +1)>5,所以3-2a >a +12,此时不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +12<x <3-2a ;若a >32,由-2a +3-a +12=52(-a +1)<-54,所以3-2a <a +12,此时不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪3-2a <x <a +12. 综上,当a <-1时,原不等式的解集为⎝⎛⎭⎪⎫a +12,3-2a ,当a >32时,原不等式的解集为⎝⎛⎭⎪⎫3-2a ,a +12.。

一元二次不等式及其解法作业答案

一元二次不等式及其解法作业答案

一元二次不等式及其解法作业1.不等式x 2-12x 2+3x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞)答案 A解析 由原不等式得(x +1)(x -1)(2x +1)(x +1)≤0,原不等式等价于⎩⎪⎨⎪⎧x +1≠0,2x +1≠0,(x -1)(2x +1)≤0, 解得-12<x ≤1.∴原不等式的解集为⎝⎛⎦⎤-12,1.2.当x ∈(1,2)时,x 2+mx +4<0恒成立,则m 的取值范围是( )A .m ≤-4B .m <-4C .m <-5D .m ≤-5答案 D解析 设f (x )=x 2+mx +4,因为当x ∈(1,2)时,x 2+mx +4<0恒成立,所以只需⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧ 5+m ≤0,8+2m ≤0,解得m ≤-5. 3.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是()A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2]答案 A解析 原不等式可整理为(2-m )x 2+(4-2m )x +4>0.(*)当m >2时,(*)对应的二次函数图象的开口向下,其在R 上不可能恒成立;当m =2时,(*)恒成立,故m =2符合题意;当m <2时,由⎩⎪⎨⎪⎧ m <2,Δ=(4-2m )2-16(2-m )<0, 解得-2<m <2.综上所述,实数m 的取值范围是(-2,2].4.在区间⎣⎡⎦⎤13,2上,不等式mx 2-4x +1<0有解,则m 的取值范围为( )A .m ≤4B .m <74C .m <4D .m <3 答案 C解析 在区间⎣⎡⎦⎤13,2上,不等式mx 2-4x +1<0有解,等价于x ∈⎣⎡⎦⎤13,2时,不等式m <-1x 2+4x有解. 设t =1x,则t ∈⎣⎡⎦⎤12,3, 所以f (t )=-t 2+4t =-(t -2)2+4,且f (t )的最大值是f (2)=4,所以m 的取值范围是m <4.5.任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2 答案 B解析 对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,设g (a )=(x -2)a +x 2-4x +4,即g (a )>0在a ∈[-1,1]上恒成立.g (a )在a ∈[-1,1]上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即⎩⎪⎨⎪⎧g (-1)=x 2-5x +6>0,g (1)=x 2-3x +2>0, 解得x >3或x <1.6.已知一元二次不等式2kx 2+kx +12≥0对一切实数x 都成立,则实数k 的取值范围是________. 答案 (0,4]解析 ∵一元二次不等式2kx 2+kx +12≥0对一切实数x 都成立,由题意知k ≠0,根据y =2kx 2+kx +12的图象, ∴⎩⎪⎨⎪⎧ 2k >0,Δ≤0,即⎩⎪⎨⎪⎧k >0,k 2-4k ≤0,解得0<k ≤4. ∴k 的取值范围是(0,4].7.在R 上定义运算a ※b =(a +1)b ,若存在x ∈[1,2],使不等式(m -x )※(m +x )<4成立,则实数m 的取值范围为________.答案 (-3,2)解析 因为存在x ∈[1,2],使不等式(m -x )※(m +x )<4成立,所以存在x ∈[1,2],使不等式(m -x +1)(m +x )<4成立,所以存在x ∈[1,2],使不等式x 2-x +4>m 2+m 成立,因为x ∈[1,2]时,函数y =x 2-x +4是增函数,所以函数y =x 2-x +4的最大值为22-2+4=6.所以6>m 2+m ,解得-3<m <2.8.已知不等式x 2-mx +4<0的解集为{x |n <x <-1}.(1)求m ,n 的值;(2)求不等式mx -12-nx≥0的解集. 解 (1)不等式x 2-mx +4<0的解集为{x |n <x <-1},所以-1,n 是方程x 2-mx +4=0的两根,所以⎩⎪⎨⎪⎧ n 2-mn +4=0,(-1)2-m ×(-1)+4=0, 解得⎩⎪⎨⎪⎧ m =-5,n =-4或⎩⎪⎨⎪⎧m =-5,n =-1(舍去). (2)由(1)知不等式mx -12-nx ≥0,即为-5x -12+4x ≥0, 所以⎩⎪⎨⎪⎧(5x +1)(4x +2)≤0,4x +2≠0,解得-12<x ≤-15,所以不等式mx -12-nx ≥0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x ≤-15. 9.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)由题意,得y =[12(1+0.75x )-10(1+x )]×10 000×(1+0.6x )(0<x <1),整理,得y =-6 000x 2+2 000x +20 000(0<x <1).(2)要保证本年度的年利润比上年度有所增加,则⎩⎪⎨⎪⎧ y -(12-10)×10 000>0,0<x <1,即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13, 所以投入成本增加的比例x 应在⎝⎛⎭⎫0,13内. 10.解关于x 的不等式:x x -1>a . 解 原不等式可化为x x -1-a >0,即(1-a )x +a x -1>0. 所以(x -1)[(1-a )x +a ]>0.当1-a =0,即a =1时,不等式可化为x -1>0,则x >1;当1-a >0,即a <1时,不等式可化为(x -1)·⎝ ⎛⎭⎪⎫x +a 1-a >0, 由于1-⎝ ⎛⎭⎪⎫-a 1-a =11-a>0, 所以x >1或x <a a -1; 当1-a <0,即a >1时,不等式可化为(x -1)·⎝ ⎛⎭⎪⎫x +a 1-a <0,由于1-⎝ ⎛⎭⎪⎫-a 1-a =11-a <0,所以1<x <a a -1. 综上所述,当a =1时,不等式的解集为(1,+∞);当a <1时,不等式的解集为(1,+∞)∪⎝ ⎛⎭⎪⎫-∞,a a -1; 当a >1时,不等式的解集为⎝ ⎛⎭⎪⎫1,a a -1.。

高中数学 第二章 等式与不等式 2.2.3 一元二次不等式的解法练习(含解析)新人教B版必修第一册-

高中数学 第二章 等式与不等式 2.2.3 一元二次不等式的解法练习(含解析)新人教B版必修第一册-

2.2.3 一元二次不等式的解法最新课程标准:从函数观点看一元二次不等式.①经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.②借助一元二次函数的图像,了解一元二次不等式与相应函数、方程的联系.知识点二次函数与一元二次方程、不等式的解的对应关系Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图像ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅状元随笔一元二次不等式的解法:(1)图像法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax2+bx+c=0的解;②画出对应函数y=ax2+bx+c的图像简图;③由图像得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p<q时,若(x-p)(x-q)>0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q.有口诀如下“大于取两边,小于取中间”.[基础自测]1.下列不等式中是一元二次不等式的是( )A.a2x2+2≥0 B.1x2<3C.-x2+x-m≤0 D.x3-2x+1>0解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.答案:C2.不等式x(x+1)≤0的解集为( )A.[-1,+∞) B.[-1,0)C.(-∞,-1] D.[-1,0]解析:解不等式得-1≤x≤0,故选D.答案:D3.函数y=17-6x-x2的定义域为( )A.[-7,1]B.(-7,1)C.(-∞,-7]∪[1,+∞)D.(-∞,-7)∪(1,+∞)解析:由7-6x-x2>0,得x2+6x-7<0,即(x+7)(x-1)<0,所以-7<x<1,故选B. 答案:B4.不等式1+2x+x2≤0的解集为________.解析:不等式1+2x+x2≤0化为(x+1)2≤0,解得x=-1.答案:{-1}题型一解不含参数的一元二次不等式[教材P65例1 P66例3、例4]例1 (1)求不等式x2-x-2>0的解集.(2)求不等式x2-6x-1≤0的解集.(3)求不等式-x2+2x-1<0的解集.【解析】(1)因为x2-x-2=(x+1)(x-2),所以原不等式等价于(x+1)(x-2)>0,因此所求解集为(-∞,-1)∪(2,+∞).(2)因为x2-6x-1=x2-6x+9-9-1=(x-3)2-10,所以原不等式可化为(x-3)2-10≤0,即(x-3)2≤10,两边开平方得|x-3|≤10,从而可知-10≤x-3≤10,因此3-10≤x≤3+10,所以不等式的解集为[3-10,3+10].(3)原不等式可化为x2-2x+1>0,又因为x2-2x+1=(x-1)2,所以上述不等式可化为(x-1)2>0.注意到只要x≠1,上述不等式就成立,所以不等式的解集为(-∞,1)∪(1,+∞).教材反思我们以求解可化成ax2+bx+c>0(a>0)形式的不等式为例,用框图表示其求解过程.跟踪训练1 解下列不等式: (1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)-2x 2+3x -2<0.解析:(1)因为Δ=1>0,所以方程x 2-7x +12=0有两个不等实根x 1=3,x 2=4.再根据函数y =x 2-7x +12的图像开口向上,可得不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘-1,原不等式可化为x 2+2x -3≤0.因为Δ=16>0,所以方程x 2+2x -3=0有两个不等实根x 1=-3,x 2=1.再根据函数y =x 2+2x -3的图像开口向上,可得不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)因为Δ=0,所以方程x 2-2x +1=0有两个相等的实根x 1=x 2=1.再根据函数y =x 2-2x +1的图像开口向上,可得不等式x 2-2x +1<0的解集为∅.(4)原不等式可化为2x 2-3x +2>0,因此Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图像开口向上,所以原不等式的解集为R .状元随笔化二次项系数为正―→计算相应方程的判别式Δ及两根x 1,x 2――→函数图像结果题型二 三个“二次”之间的关系[经典例题]例2 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.【解析】 方法一 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系可知b a =-5,c a =6.由a <0知c <0,b c =-56,故不等式cx 2+bx +a <0,即x 2+b c x +a c >0,即x 2-56x +16>0,解得x <13或x >12,所以不等式cx2+bx +a <0的解集为⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞. 方法二 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,所以ax 2+bx +c =a (x -2)(x -3)=ax 2-5ax +6a ⇒b =-5a ,c =6a ,故不等式cx 2+bx +a <0,即6ax 2-5ax +a <0⇒6a ⎝ ⎛⎭⎪⎫x -13⎝ ⎛⎭⎪⎫x -12<0,故原不等式的解集为⎝⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞. 状元随笔由给定不等式的解集形式→确定a<0及关于a ,b ,c 的方程组→ 用a 表示b ,c →代入所求不等式→求解cx 2+bx +a<0的解集 方法归纳一元二次不等式与其对应的函数与方程之间存在着密切的联系,在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∅,则问题可转化为恒成立问题,此时可以根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的X 围.跟踪训练2 已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.解析:因为x2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16.所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}. 状元随笔观察给定不等式的解集形式→由根与系数的关系得p ,q 的方程组→确定p ,q 的值→求不等式qx 2+px +1>0的解集题型三 含参数的一元二次不等式的解法[经典例题] 例3 解关于x 的不等式2x 2+ax +2>0.【解析】 对于方程2x 2+ax +2=0,其判别式Δ=a 2-16=(a +4)(a -4).①当a >4或a <-4时,Δ>0,方程2x 2+ax +2=0的两根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14(-a -a 2-16)或x >14(-a +a 2-16). ②当a =4时,Δ=0,方程有两个相等实根,x 1=x 2=-1, ∴原不等式的解集为{x |x ≠-1}.③当a =-4时,Δ=0,方程有两个相等实根,x 1=x 2=1, ∴原不等式的解集为{x |x ≠1}.④当-4<a <4时,Δ<0,方程无实根,∴原不等式的解集为R .状元随笔 二次项系数为2,Δ=a 2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.方法归纳含参数一元二次不等式求解步骤(1)讨论二次项系数的符号,即相应二次函数图像的开口方向; (2)讨论判别式的符号,即相应二次函数图像与x 轴交点的个数; (3)当Δ>0时,讨论相应一元二次方程两根的大小;(4)最后按照系数中的参数取值X 围,写出一元二次不等式的解集. 跟踪训练3 解关于x 的不等式x 2-(a +a 2)x +a 3>0.解析:原不等式可变形为(x -a )·(x -a 2)>0,则方程(x -a )(x -a 2)=0的两个根为x 1=a ,x 2=a 2,(1)当a <0时,有a <a 2,∴x <a 或x >a 2,此时原不等式的解集为{x |x <a 或x >a 2}; (2)当0<a <1时,有a >a 2,即x <a 2或x >a ,此时原不等式的解集为{x |x <a 2或x >a }; (3)当a >1时,有a 2>a ,即x <a 或x >a 2,此时原不等式的解集为{x |x <a 或x >a 2}; (4)当a =0时,有x ≠0;∴原不等式的解集为{x |x ∈R 且x ≠0}; (5)当a =1时,有x ≠1,此时原不等式的解集为{x |x ∈R 且x ≠1}; 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ∈R 且x ≠0}; 当a =1时,原不等式的解集为{x |x ∈R 且x ≠1}.状元随笔不等式左边分解因式→讨论a 的X 围→ 比较a 与a 2的大小→写出不等式的解集题型四 一元二次不等式的实际应用[经典例题]例4 某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x (百台),其总成本为g (x )万元(总成本=固定成本+生产成本),并且销售收入r (x )满足r (x )=⎩⎪⎨⎪⎧-0.5x 2+7x -10.5,0≤x ≤7,13.5,x >7.假定该产品产销平衡,根据上述统计规律求: (1)要使工厂有盈利,产品数量x 应控制在什么X 围?(2)工厂生产多少台产品时盈利最大?【解析】 (1)依题意得g (x )=x +3,设利润函数为f (x ),则f (x )=r (x )-g (x ),所以f (x )=⎩⎪⎨⎪⎧-0.5x 2+6x -13.5,0≤x ≤7,10.5-x ,x >7,要使工厂有盈利,则有f (x )>0,因为f (x )>0⇒⎩⎪⎨⎪⎧0≤x ≤7,-0.5x 2+6x -13.5>0或⎩⎪⎨⎪⎧x >7,10.5-x >0⇒⎩⎪⎨⎪⎧0≤x ≤7,x 2-12x +27<0或⎩⎪⎨⎪⎧x >7,10.5-x >0⇒⎩⎪⎨⎪⎧0≤x ≤7,3<x <9或⎩⎪⎨⎪⎧x >7,x <10.5.则3<x ≤7或7<x <10.5,即3<x <10.5,所以要使工厂盈利,产品数量应控制在大于300台小于1 050台的X 围内.(2)当3<x ≤7时,f (x )=-0.5(x -6)2+4.5,故当x =6时,f (x )有最大值4.5,而当x >7时,f (x )<10.5-7=3.5,所以当工厂生产600台产品时盈利最大.(1)求利润函数f(x)⇒解不等式f(x)>0⇒回答实际问题. (2)根据第(1)题所求X 围,分类讨论求函数最值⇒回答实际问题. 方法归纳解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系. (2)设:引进数学符号,用不等式表示不等关系. (3)求:解不等式. (4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.跟踪训练4 某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x ≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值X 围. 解析:(1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)依题意得,y =200a (1+2x %)(10-x )% =150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ·10%=20a (万元). 依题意得,150a (100+2x )(10-x )≥20a ×83.2%,化简得x 2+40x -84≤0, ∴-42≤x ≤2.又∵0<x <10,∴0<x ≤2. ∴x 的取值X 围是{x |0<x ≤2}.状元随笔 根据题意,列出各数量之间的关系表,如下:原计划 降税后 价格(元/担)200 200税率 10% (10-x)%(0<x<10)收购量(万担) a a(1+2x%) 收购总金额(万元) 200a 200·a(1+2x%) 税收y(万元)200a·10%200·a(1+2x%)(10-x)%课时作业 12一、选择题1.不等式3x 2-2x +1>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <1C .∅D .R解析:因为Δ=(-2)2-4×3×1=-8<0,所以抛物线y =3x 2-2x +1开口向上,与x 轴无交点,故3x 2-2x +1>0恒成立,即不等式3x 2-2x +1>0的解集为R .答案:D2.设m +n >0,则关于x 的不等式(m -x )(n +x )>0的解集是( ) A .{x |x <-n 或x >m } B .{x |-n <x <m } C .{x |x <-m 或x >n } D .{x |-m <x <n }解析:不等式(m -x )(n +x )>0可化为(x -m )(x +n )<0,方程(x -m )(x +n )=0的两根为x 1=m ,x 2=-n .由m +n >0,得m >-n ,则不等式(x -m )(x +n )<0的解集是{x |-n <x <m },故选B.答案:B 3.不等式ax2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12,则a ,c 的值分别为( ) A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6解析:由题意知,方程ax 2+5x +c =0的两根为x 1=13,x 2=12,由根与系数的关系得x 1+x 2=13+12=-5a ,x 1·x 2=13×12=ca.解得a =-6,c =-1.答案:B4.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值X 围是( )A .(2,+∞) B.(-∞,2) C .(-∞,0)∪(2,+∞) D.(0,2)解析:由题意知原不等式对应方程的Δ<0,即m 2-4×1×m2<0,即m 2-2m <0,解得0<m <2,故答案为D.答案:D 二、填空题5.不等式(2x -5)(x +3)<0的解集为________.解析:方程(2x -5)(x +3)=0的两根为x 1=52,x 2=-3,函数y =(2x -5)(x +3)的图像与x 轴的交点坐标为(-3,0)和⎝ ⎛⎭⎪⎫52,0,所以不等式(2x -5)(x +3)<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <52.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -3<x <52 6.不等式2x -12x +1<0的解集为________. 解析:原不等式可以化为(2x -1)(2x +1)<0,即⎝ ⎛⎭⎪⎫x -12⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-12<0, 故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <12. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <12 7.用一根长为100 m 的绳子能围成一个面积大于600 m 2的矩形吗?若“能”,当长=________ m ,宽=________ m 时,所围成的矩形的面积最大.解析:设矩形一边的长为x m ,则另一边的长为(50-x )m,0<x <50.由题意,得x (50-x )>600,即x 2-50x +600<0,解得20<x <30.所以,当矩形一边的长在(20,30)的X 围内取值时,能围成一个面积大于600 m 2的矩形.用S 表示矩形的面积,则S =x (50-x )=-(x -25)2+625(0<x <50).当x =25时,S 取得最大值,此时50-x =25.即当矩形的长、宽都为25 m 时,所围成的矩形的面积最大.答案:25 25三、解答题8.解下列不等式:(1)x 2+2x -15>0;(2)x 2-3x +5>0;(3)4(2x 2-2x +1)>x (4-x ).解析:(1)x 2+2x -15>0⇔(x +5)(x -3)>0⇔x <-5或x >3,所以不等式的解集是{x |x <-5或x >3}.(2)因为Δ=(-3)2-4×1×5=-11<0,再根据函数y =x 2-3x +5图像的开口方向,所以原不等式的解集为R .(3)由原不等式得8x 2-8x +4>4x -x 2.∴原不等式等价于9x 2-12x +4>0.解方程9x 2-12x +4=0,得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠23. 9.若关于x的一元二次不等式ax 2+bx +c <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <13或x >12,求关于x 的不等式cx 2-bx +a >0的解集.解析:由题意知⎩⎪⎨⎪⎧a <0,13+12=-b a ,13×12=c a ,所以⎩⎪⎨⎪⎧ a <0,b =-56a >0,c =16a <0, 代入不等式cx 2-bx +a >0中得16ax 2+56ax +a >0(a <0). 即16x 2+56x +1<0,化简得x 2+5x +6<0, 所以所求不等式的解集为{x |-3<x <-2}. [尖子生题库] 10.解关于x 的不等式x 2-ax -2a 2<0.解析:方程x 2-ax -2a 2=0的判断式Δ=a 2+8a 2=9a 2≥0,得方程两根x 1=2a ,x 2=-a .(1)若a >0,则-a <x <2a ,此时不等式的解集为{x |-a <x <2a };(2)若a <0,则2a <x <-a ,此时不等式的解集为{x |2a <x <-a };(3)若a =0,则原不等式即为x 2<0,此时解集为∅.综上所述,原不等式的解集为:当a >0时,{x |-a <x <2a };当a <0时,{x |2a <x <-a };当a =0时,∅.。

一元二次不等式及解法作业(含答案)精选全文

一元二次不等式及解法作业(含答案)精选全文

可编辑修改精选全文完整版 一元二次不等式及其解法 一、选择题 1.不等式(x +5)(3-2x )≥6的解集是 ( )A.{x |x ≤-1或x ≥92}B.{x|-1≤x ≤92}C.{x |x ≤-92或x ≥1}D.{x |-92≤x ≤1}解析:因为不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,而2x 2+7x -9=0的两根为x 1=-92,x 2=1,所以函数f (x )=2x 2+7x -9与x 轴的交点为(-92,0),(1,0),又函数f (x )=2x 2+7x -9的图象开口向上,所以不等式(x +5)·(3-2x )≥6的解集是{x |-92≤x ≤1}.答案:D 2.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于 ( )A.7B.-1C.1D.-7解析:A =(-∞,-1)∪(3,+∞),∵A ∪B =R ,A ∩B =(3,4],则B =[-1,4],∴a =-(-1+4)=-3,b =-1×4=-4,∴a +b =-7.答案:D3.若ax 2+x +a <0的解集为∅,则实数a 取值范围 ( )A.a ≥12B.a <12C.-12≤a ≤12D.a ≤-12或a ≥12解析:∵ax 2+x +a <0的解集为∅,01,.02a a >⎧∴∴⎨⎩≤≤答案:A 4.不等式12+-x x ≤0的解集是( ) A.(-∞,-1)∪(-1,2] B.[-1,2] C.(-∞,-1)∪[2,+∞)D.(-1,2]解析:由,012≤+-x x 得⎩⎨⎧≠+≤+-.01,0)1)(2(x x x 所以不等式的解集为(-1,2].答案:D5.不等式|x 2-x|<2的解集为 ( )A.(-1,2)B.(-1,1)C.(-2,1)D.(-2,2)解析:∵|x 2-x|<2,∴-2<x 2-x <2,即⎪⎩⎪⎨⎧<-->+-2.02,022x x x x 解得⎩⎨⎧<<-∈,21,x R x ∴x ∈(-1,2),故选A. 答案:A6.已知集合A ={x|3x-2-x 2<0},B ={x|x-a <0},且BA ,则实数a 的取值范围是( )A.a ≤1B.1<a ≤2C.a >2D.a ≤2解析:不等式3x-2-x 2<0化为x 2-3x+2>0⇒x >2或x <1,由不等式x-a <0,得x <a.要使B A,则a ≤1.答案:A二、填空题7.若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为 .解析:令f (x )=x 2+ax +a 2-1,∴二次函数开口向上,若方程有一正一负根,则只需f (0)<0,即a 2-1<0,∴-1<a <1.答案:-1<a <18.不等式21213≤+-x x 的解集为__________________. 解析: x x x x x x x x x x x x x ⇔≤-+⇔≤-+⇔-≤+-⇔≤⇔≤-+-+-0)1)(3(03211322212221313∈(-∞,-3]∪(0,1].答案:(-∞,-3]∪(0,1]三、解答题1. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1) 2、已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; (2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩, 解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-. 3.已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立?解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ① 又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立,∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ② 由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-, 由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立, ∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R ,∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立。

课时作业14:第1课时 一元二次不等式及其解法

课时作业14:第1课时 一元二次不等式及其解法

§3.3 一元二次不等式及其解法第1课时 一元二次不等式及其解法一、选择题1.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A.{x |x <-1或x >2}B.{x |x ≤-1或x ≥2}C.{x |-1<x <2}D.{x |-1≤x ≤2} 答案 D解析 由题意知,-b a =1,c a=-2, ∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.2.若0<t <1,则关于x 的不等式(t -x )⎝⎛⎭⎫x -1t >0的解集是( ) A.⎩⎨⎧⎭⎬⎫x |1t <x <t B.⎩⎨⎧⎭⎬⎫x |x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x |x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x |t <x <1t 答案 D解析 ∵0<t <1,∴1t >1,∴1t>t . ∴(t -x )⎝⎛⎭⎫x -1t >0⇔(x -t )⎝⎛⎭⎫x -1t <0⇔t <x <1t. 3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( )A.1B.2C.3D.4答案 C解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根.∴-7×(-1)=21a,故a =3. 4.已知f (x )=(x -a )(x -b )+2(a <b ),且α,β(α<β)是方程f (x )=0的两根,则α,β,a ,b 的大小关系是( )A.a <α<β<bB.a <α<b <βC.α<a <b <βD.α<a <β<b答案 A解析 设g (x )=(x -a )(x -b ),则g (x )向上平移2个单位长度得到f (x )的图象,如图易知a <α<β<b .5.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( )A.(-2,2)B.(-2,2]C.(-∞,-2)∪[2,+∞)D.(-∞,2) 答案 B解析 ∵mx 2+2mx -4<2x 2+4x ,∴(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,不等式的解集为R ,满足题意;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,不等式的解集为R ,满足题意.综上所述,-2<m ≤2.6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)答案 A解析 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0.所以f (x )>f (1)的解集是(-3,1)∪(3,+∞).7.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,34B.⎣⎡⎭⎫34,43C.⎣⎡⎭⎫34,+∞ D.()1,+∞答案 B解析 A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1的对称轴为x =a >0.f (-3)=6a +8>0.根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧ 4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧ a ≥34,a <43,即34≤a <43. 二、填空题8.不等式-1<x 2+2x -1≤2的解集是 .答案 {x |-3≤x <-2或0<x ≤1}解析 ∵⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0, ∴-3≤x <-2或0<x ≤1.9.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是 .答案 (-2,2)解析 由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=m 2-4×1×1<0,所以-2<m <2.10.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是 . 答案 (-∞,2]∪[4,+∞)解析 x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.11.不等式x 2-3|x |+2≤0的解集为 .答案 {x |-2≤x ≤-1或1≤x ≤2}解析 原不等式等价于|x |2-3|x |+2≤0,即1≤|x |≤2.当x ≥0时,1≤x ≤2;当x <0时,-2≤x ≤-1.所以原不等式的解集为{x |-2≤x ≤-1或1≤x ≤2}.12.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,则关于x 的不等式cx 2-bx +a <0的解集为 .答案 ⎩⎨⎧⎭⎬⎫x |-12<x <3 解析 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2, 知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,∴⎩⎨⎧ -13+2=-b a ,-13×2=c a ,∴b =-53a ,c =-23a , ∴不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又∵a <0,∴2x 2-5x -3<0,解得-12<x <3, ∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3. 三、解答题13.解关于x 的不等式:x 2+(1-a )x -a <0.解 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .因为函数y =x 2+(1-a )x -a 的图象开口向上,所以①当a <-1时,原不等式的解集为{x |a <x <-1};②当a =-1时,原不等式的解集为∅;③当a >-1时,原不等式的解集为{x |-1<x <a }.四、探究与拓展14.对于实数x ,当且仅当n ≤x <n +1(n ∈N +)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为 .答案 [2,8)解析 由4[x ]2-36[x ]+45<0,得32<[x ]<152, 又当且仅当n ≤x <n +1(n ∈N +)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).15.已知M 是关于x 的不等式2x 2+(3a -7)x +3+a -2a 2<0的解集,且M 中的一个元素是0,则实数a 的取值范围是 .答案 (-∞,-1)∪⎝⎛⎭⎫32,+∞ 解析 原不等式可化为(2x -a -1)(x +2a -3)<0,由x =0适合不等式,得(a +1)(2a -3)>0,所以a <-1或a >32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业36 一元二次不等式及其解法一、选择题1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( D )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.不等式1-x2+x ≥1的解集为( B )A.⎣⎢⎡⎦⎥⎤-2,-12B.⎝ ⎛⎦⎥⎤-2,-12 C .(-∞,-2)∪⎝⎛⎭⎪⎫-12,+∞D .(-∞,-2]∪⎝ ⎛⎭⎪⎫-12,+∞ 解析:1-x 2+x ≥1⇔1-x 2+x -1≥0⇔1-x -2-x 2+x ≥0⇔-2x -12+x ≥0⇔2x +1x +2≤0⇔⎩⎪⎨⎪⎧(2x +1)(x +2)≤0,x +2≠0 ⇔-2<x ≤-12.故选B.3.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( C ) A .x ≥0 B .x <0或x >2 C .x ∈{-1,3,5}D .x ≤-12或x ≥3解析:不等式2x 2-5x -3≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥3或x ≤-12,由题意,选项中x 的范围应该是上述解集的真子集,只有C 满足.故选C.4.关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( C )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3).5.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( C )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.(安徽阜阳质检)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( B )A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)解析:由32x -(k +1)3x +2>0恒成立,得k +1<3x+23x .∵3x +23x ≥22,当且仅当3x =23x ,即x =12log 32时,等号成立,∴k +1<22,即k <22-1,故选B.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为{x |x >1}.解析:由题意知⎩⎪⎨⎪⎧ x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}.8.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a <x <1a .解析:原不等式为(x -a )⎝⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a . 9.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x-a >0的解集为(-2,3).解析:依题意知,⎩⎪⎨⎪⎧-13+12=-2a ,-13×12=ca ,∴解得a =-12,c =2,∴不等式-cx 2+2x -a >0, 即为-2x 2+2x +12>0,即x 2-x -6<0, 解得-2<x <3.所以不等式的解集为(-2,3).10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0,bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为(-∞,4).解析:若x >0,则-x <0,则f (-x )=bx 2+3x .因为f (x )为奇函数,所以f (-x )=-f (x ),即bx 2+3x =-x 2-ax ,可得a =-3,b =-1,所以f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥0,-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x <4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4).三、解答题11.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围.解:(1)∵f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c2=0,∴b =-10,c =0,f (x )=2x 2-10x .(2)f (x )+t ≤2恒成立等价于2x 2-10x +t -2≤0恒成立, ∴2x 2-10x +t -2的最大值小于或等于0. 设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t , ∴10+t ≤0,即t ≤-10. ∴t 的取值范围为(-∞,-10].12.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0.解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立.当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0, 解得0<a ≤1,综上可知,a 的取值范围是[0,1].(2)f (x )=ax 2+2ax +1=a (x +1)2+1-a , 由题意及(1)可知0<a ≤1, ∴当x =-1时,f (x )min =1-a , 由题意得,1-a =22,∴a =12,∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝ ⎛⎭⎪⎫-12,32.13.若不存在整数x 满足不等式(kx -k 2-4)(x -4)<0,则实数k 的取值范围是[1,4].解析:容易判断k =0或k <0时,均不符合题意,所以k >0.所以原不等式即为kx-k 2+4k (x -4)<0,等价于⎝ ⎛⎭⎪⎫x -k 2+4k (x -4)<0,依题意应有4≤k 2+4k ≤5且k >0,所以1≤k ≤4.14.(江西八校联考)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x (x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. 解:(1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4. 因为x >0,所以x +1x ≥2.当且仅当x =1x 时,即x =1时,等号成立. 所以y ≥-2.所以当x =1时,y =f (x )x 的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”, 只要“x 2-2ax -1≤0在[0,2]恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞. 尖子生小题库——供重点班学生使用,普通班学生慎用15.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( D )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:∵关于x 的不等式x 2-(a +1)x +a <0,∴不等式可化为(x -1)(x -a )<0. ①当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5; ②当a <1时,得a <x <1, 则-3≤a <-2;③当a =1时,(x -1)(x -1)<0,无解.综上可得,a 的取值范围是[-3,-2)∪(4,5].故选D.16.(山东潍坊质检)若关于x 的不等式x 2+12x -⎝ ⎛⎭⎪⎫12n≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,则实数λ的取值范围是(-∞,-1].解析:原不等式可化为x 2+12x ≥⎝ ⎛⎭⎪⎫12n ,y =⎝ ⎛⎭⎪⎫12x 为减函数,即⎝ ⎛⎭⎪⎫12n ≤12,故x 2+12x ≥12在区间(-∞,λ]上恒成立,即x 2+12x -12≥0在区间(-∞,λ]上恒成立,画出二次函数y =x 2+12x -12的图象如图所示,由图可知λ≤-1.。

相关文档
最新文档