【精品】2015年浙江省杭州市拱墅区锦绣育才学校教育集团九年级上学期期中数学试卷带解析答案

合集下载

2015-2016学年浙江省杭州市萧山区四校联考九年级(上)数学期中试卷带解析答案

2015-2016学年浙江省杭州市萧山区四校联考九年级(上)数学期中试卷带解析答案

2015-2016学年浙江省杭州市萧山区四校联考九年级(上)期中数学试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)下列函数中属于二次函数的是()A.y=2x﹣1 B.y=ax2﹣1 C.y=2(x﹣1)2﹣2x2D.y=(x﹣1)()2.(3分)面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()A.B.C.D.3.(3分)在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.4.(3分)已知二次函数y=ax2+bx+c(a≠0)的最大值为0,则()A.a>0,b2﹣4ac=0 B.a<0,b2﹣4ac>0 C.a>0,b2﹣4ac<0 D.a<0,b2﹣4ac=05.(3分)下列命题中,假命题的个数为()(1)“a是任意实数,|a|﹣5>0”是必然事件;(2)抛物线y=(2x+1)2的对称轴是直线x=﹣1;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为;(4)某件事情发生的概率是1,则它一定发生;(5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;(6)函数y=﹣9(x+2014)2+与x轴必有两个交点.A.2 B.3 C.4 D.56.(3分)在同一坐标系中,函数y=ax2+b与y=bx2+ax的图象只可能是()A.B.C.D.7.(3分)如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.4 B.2 C.6 D.28.(3分)用列表法画二次函数y=x2+bx+c的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的值是()A.506 B.380 C.274 D.1829.(3分)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么当自变量x取m﹣1时,下列结论中正确的是()A.m﹣1的函数值小于0B.m﹣1的函数值大于0C.m﹣1的函数值等于0D.m﹣1的函数值与0的大小关系不确定10.(3分)关于x的方程2x2+ax+b=0有两个不相等的实数根,且较小的根为2,则下列结论:①2a+b<0;②ab<0;③关于x的方程2x2+ax+b+2=0有两个不相等的实数根;④抛物线y=2x2+ax+b﹣2的顶点在第四象限.其中正确的结论有()A.①②B.①②③C.①②④D.①②③④二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)把二次函数y=﹣x2+3x+3化成y=a(x+m)2+k的形式为.12.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是.13.(4分)已知函数y=x2﹣2mx+2015(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=m﹣,x2=m+,x3=m﹣1,则y1、y2、y3的大小关系是.14.(4分)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是.15.(4分)一条弦AB把圆的直径分成3和11两部分,弦和直径相交成30°角,则AB的长为.16.(4分)在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出如表:请你根据表格信息回答问题,当y1>y2时,自变量x的取值范围是.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.18.(8分)如图,在△ABC中,AB=BC,点D在AB的延长线上.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作∠CBD的平分线BM ②作边BC上的中线AE,并延长AE交BM于点F.(2)在(1)的基础上,连接CF,判断四边形ABFC的形状,并说明理由.19.(8分)甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y).(1)请用树状图或列表法表示点A的坐标的各种可能情况;(2)求点A落在y=x2+x﹣4的概率.20.(10分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.21.(10分)已知关于x的函数y=ax2+x+1﹣a(a为常数)(1)若函数的图象与坐标轴恰有两个交点,求a的值;(2)若函数的图象是抛物线,开口向上且顶点在x轴下方,求a的取值范围.22.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.23.(12分)抛物线y=mx2+(m﹣3)x﹣3(m>0)与x轴交于A,B两点,且点A在点B的左侧,与y轴交于点C.(1)当OB=OC时,求此时抛物线函数解析式;(2)当△ABC为等腰三角形时,求m的值;(3)若点P(x1,b)与点Q(x2,b)在(1)中抛物线上,且x1<x2,PQ=n,求4x12﹣2x2n+6n+3的值.2015-2016学年浙江省杭州市萧山区四校联考九年级(上)期中数学试卷参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)下列函数中属于二次函数的是()A.y=2x﹣1 B.y=ax2﹣1 C.y=2(x﹣1)2﹣2x2D.y=(x﹣1)()【解答】解:A、是一次函数,故此选项错误;B、当a=0时,不是二次函数,故此选项错误;C、整理后,二次项系数为0,不是二次函数,故此选项错误;D、符合二次函数定义,故此选项正确,故选:D.2.(3分)面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()A.B.C.D.【解答】解:∵xy=2∴y=(x>0,y>0)故选:C.3.(3分)在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.4.(3分)已知二次函数y=ax2+bx+c(a≠0)的最大值为0,则()A.a>0,b2﹣4ac=0 B.a<0,b2﹣4ac>0 C.a>0,b2﹣4ac<0 D.a<0,b2﹣4ac=0【解答】解:∵二次函数y=ax2+bx+c(a≠0)的最大值为0,∴a<0,=0即b2﹣4ac=0.故选:D.5.(3分)下列命题中,假命题的个数为()(1)“a是任意实数,|a|﹣5>0”是必然事件;(2)抛物线y=(2x+1)2的对称轴是直线x=﹣1;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为;(4)某件事情发生的概率是1,则它一定发生;(5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;(6)函数y=﹣9(x+2014)2+与x轴必有两个交点.A.2 B.3 C.4 D.5【解答】解:(1)“a是任意实数,|a|﹣5>0”是不确定事件,是假命题;(2)抛物线y=(2x+1)2的对称轴是直线x=﹣,是假命题;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为,是假命题;(4)某件事情发生的概率是1,则它一定发生,是真命题;(5)某彩票的中奖率为10%,则买100张彩票中奖的可能性很大,但不是一定中奖,是假命题;(6)函数y=﹣9(x+2014)2+与x轴必有两个交点,是真命题,则假命题的个数是4;故选:C.6.(3分)在同一坐标系中,函数y=ax2+b与y=bx2+ax的图象只可能是()A.B.C.D.【解答】解:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B、两个函数的开口方向都向下,那么a<0,b<0,可得第一个函数的对称轴是y轴,与y轴交于负半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;C、D、两个函数一个开口向上,一个开口向下,那么a,b同号,可得第二个函数的对称轴在y轴的右侧,故C错误,D正确,故选:D.7.(3分)如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.4 B.2 C.6 D.2【解答】解:∵PC是∠APB的角平分线,∴∠APC=∠CPB,∴弧AC=弧BC;∴AC=BC;∵AB是直径,∴∠ACB=90°.即△ABC是等腰直角三角形.连接OC,交EF于点D,则OC⊥AB;∵M、N是AC、BC的中点,∴MN∥AB;∴OC⊥EF,OD=OC=2.连接OE,根据勾股定理,得:DE=2,EF=2ED=4.故选:A.8.(3分)用列表法画二次函数y=x2+bx+c的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的值是()A.506 B.380 C.274 D.182【解答】解:设相邻的两个自变量的值为x1、x2,代入y=x2+bx+c,计算差值为:y1﹣y2=(﹣)+b(x1﹣x2)=(x1﹣x2)(x1+x2+b),因此函数值之间的差值间隔是相等的,即含有公因数x1﹣x2,计算各个差值为56﹣20=36;110﹣56=54;182﹣110=72;274﹣182=92;380﹣274=106;506﹣380=126;650﹣506=144,36、54、72都含有公因数9,即x1﹣x2=9,而92不含有因数9,∴可以断定是274错误了.故选:C.9.(3分)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么当自变量x取m﹣1时,下列结论中正确的是()A.m﹣1的函数值小于0B.m﹣1的函数值大于0C.m﹣1的函数值等于0D.m﹣1的函数值与0的大小关系不确定【解答】解:根据题意画出图形:∵当自变量x取m时,其相应的函数值y<0,∴可知m表示的点在A、B之间,m<1,∴m﹣1<0,∴当自变量x取m﹣1时,函数值y>0.故选:B.10.(3分)关于x的方程2x2+ax+b=0有两个不相等的实数根,且较小的根为2,则下列结论:①2a+b<0;②ab<0;③关于x的方程2x2+ax+b+2=0有两个不相等的实数根;④抛物线y=2x2+ax+b﹣2的顶点在第四象限.其中正确的结论有()A.①②B.①②③C.①②④D.①②③④【解答】解:∵x=2是方程2x2+ax+b=0的根,∴2×4+2a+b=0,∴2a+b=﹣8<0,故①正确;∵x=2是方程2x2+ax+b=0的两个根中较小的根,∴﹣>2+2,>2×2,∴a<﹣8,b>8,∴ab<0,故②正确;∵方程2x2+ax+b=0有两个不相等的实数根,且较小的根为2,∴二次函数y=2x2+ax+b与x轴有两个交点,且对称轴在直线x=2的右边,∴二次函数y=2x2+ax+b顶点坐标在第四象限,向上平移2个单位得到二次函数y=2x2+ax+b+2,与x轴不一定有交点,∴关于x的方程2x2+ax+b+2=0有两个不相等的实数根错误,故③错误;向下平移2个单位得到二次函数y=2x2+ax+b﹣2,顶点坐标一定在第四象限,故④正确;综上所述,正确的结论有①②④.故选:C.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)把二次函数y=﹣x2+3x+3化成y=a(x+m)2+k的形式为y=﹣(x ﹣6)2+12.【解答】解:y=﹣x2+3x+3=﹣(x2﹣12x+36)+9+3=﹣(x﹣6)2+12.故答案为y=﹣(x﹣6)2+12.12.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是35°.【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠B=35°.故答案为:35°.13.(4分)已知函数y=x2﹣2mx+2015(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=m﹣,x2=m+,x3=m﹣1,则y1、y2、y3的大小关系是y3<y1<y2.【解答】解:在二次函数y=x2﹣2mx+2015,对称轴x=m,在图象上的三点A(x1,y1),B(x2,y2),C(x3,y3),|m﹣1﹣m|<|m﹣﹣m|<|m+﹣m|,则y1、y2、y3的大小关系为y3<y1<y2.故答案为y3<y1<y2.14.(4分)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是.【解答】解:∵7月1日至7月3日3天优良;7月2日至7月4日2天优良;7月3日至7月5日1天优良;7月4日至7月6日0天优良;7月5日至7月7日1天优良;7月6日至7月8日1天优良;7月7日至7月9日1天优良;7月8日至7月10日0天优良;∴此人在该市停留期间有且仅有1天空气质量优良的概率是:=.故答案为:.15.(4分)一条弦AB把圆的直径分成3和11两部分,弦和直径相交成30°角,则AB的长为6.【解答】解:如图,过点O作OF⊥AB于点F,设弦AB与直径CD相交于点E,连接OB,∵分直径成3和11两部分,∴CD=14,∴OC=CD=7,∴OE=OC﹣CE=4,∵∠OEF=30°,∴OF=OE=2(cm),∴BF==3,∴AB=2BF=6.故答案为:6.16.(4分)在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出如表:请你根据表格信息回答问题,当y1>y2时,自变量x的取值范围是x<﹣1或x >5.【解答】解:∵由题意得,,解得,∴二次函数的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4.∵一次函数y2=kx+m的图象过点(﹣1,0),(0,2),∴,解得.∴一次函数的解析式为y=2x+2,如图所示,当x<﹣1或x>5时,二次函数的值大于一次函数的值.故答案为:x<﹣1或x>5.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【解答】解:原式=•=•=,又,由①解得:x>﹣4,由②解得:x<﹣1,故不等式组的解集为﹣4<x<﹣1,其整数解为﹣3,﹣2,当x=﹣3时,原式=4;当x=﹣2时,原式无意义.18.(8分)如图,在△ABC中,AB=BC,点D在AB的延长线上.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作∠CBD的平分线BM ②作边BC上的中线AE,并延长AE交BM于点F.(2)在(1)的基础上,连接CF,判断四边形ABFC的形状,并说明理由.【解答】解:(1)如图,BM、AF为所作;(2)四边形ABFC为平行四边形.理由如下:∵BM平分∠CBD,∴∠DBM=∠CBM,∵BA=BC,∴∠BAC=∠BCA,而∠CBD=∠BAC+∠BCA,∴∠CBD=∠BAC,在△ACE和△FEB中,,∴△ACE≌△FEB,∴AE=FE,∵CE=BE,∴四边形ABFC为平行四边形.19.(8分)甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y).(1)请用树状图或列表法表示点A的坐标的各种可能情况;(2)求点A落在y=x2+x﹣4的概率.【解答】解:(1)列表如下:总共有9种等可能的结果;(2)∵(﹣1,﹣4),(2,2)在函数y=x2+x﹣4上,∴点A落在y=x2+x﹣4的概率P=.20.(10分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴AC•BE=CB•AD,∴BE=4.8.21.(10分)已知关于x的函数y=ax2+x+1﹣a(a为常数)(1)若函数的图象与坐标轴恰有两个交点,求a的值;(2)若函数的图象是抛物线,开口向上且顶点在x轴下方,求a的取值范围.【解答】解:(1)当a=0时,y=x+1与x轴和y轴各有一个交点,当a≠0时该函数是二次函数,分两种情况:①△=0,即12﹣4a(1﹣a)=0,解得a=②1﹣a=0,解得,a=1所以a的取值是0、、1.(2)∵开口向上,顶点在x轴的下方,∴a>0,且△=12﹣4a(1﹣a)=1﹣4a+4a2=(1﹣2a)2>0.∴a>0,且a≠.22.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.【解答】解:(1)根据题意得解得k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)W=(x﹣60)•(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(1+45%),∴60≤x≤87,∴当x=87时,W=﹣(87﹣90)2+900=891.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由W≥500,得500≤﹣x2+180x﹣7200,整理得,x2﹣180x+7700≤0,而方程x2﹣180x+7700=0的解为x1=70,x2=110.即x1=70,x2=110时利润为500元,而函数y=﹣x2+180x﹣7200的开口向下,所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而60元/件≤x≤87元/件,所以,销售单价x的范围是70元/件≤x≤87元/件.23.(12分)抛物线y=mx2+(m﹣3)x﹣3(m>0)与x轴交于A,B两点,且点A在点B的左侧,与y轴交于点C.(1)当OB=OC时,求此时抛物线函数解析式;(2)当△ABC为等腰三角形时,求m的值;(3)若点P(x1,b)与点Q(x2,b)在(1)中抛物线上,且x1<x2,PQ=n,求4x12﹣2x2n+6n+3的值.【解答】解:(1)∵抛物线y=mx2+(m﹣3)x﹣3(m>0)与y轴交于点C,∴C(0,﹣3),∵抛物线与x轴交于A、B两点,OB=OC,∴B(3,0)或B(﹣3,0),∵点A在点B的左侧,m>0,∴抛物线经过点B(3,0),∴0=9m+3(m﹣3)﹣3,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3;(2)y=mx2+(m﹣3)x﹣3=(x+1)(mx﹣3),令y=0,得到(x+1)(mx﹣3)=0,解得:x=﹣1或x=,即A(﹣1,0),B(,0),∵C(0,﹣3),∴AB=﹣(﹣1),AC2=12+32=10,BC2=()2+32=+9.当△ABC为等腰三角形时,可分三种情况进行讨论:①若AB=AC=,则﹣(﹣1)=,解得:m=;②若BC=AC=,则+9=10,解得:m=3;③当AB=BC时,[﹣(﹣1)]2=+9,解得:m=;综上,m的值为或3或;(3)∵点P(x1,b)与点Q(x2,b)在抛物线y=x2﹣2x﹣3上,∴x1,x2即为方程x2﹣2x﹣3﹣b=0的两根,∴x12=b+3+2x1,x22=b+3+2x2,x1+x2=2,x1•x2=﹣3﹣b,∵x1<x2,PQ=n,∴n=x2﹣x1,∴4x12﹣2x2n+6n+3=4x12﹣2x2(x2﹣x1)+6(x2﹣x1)+3=4(b+3+2x1)﹣2(b+3+2x1)+2(﹣3﹣b)+6(x2﹣x1)+3 =8x1﹣4x2+6x2﹣6x1+3=2x1+2x2+3=7.。

2022-2023学年浙江省杭州市拱墅区锦绣育才中学九年级(上)期中数学试题及答案解析

2022-2023学年浙江省杭州市拱墅区锦绣育才中学九年级(上)期中数学试题及答案解析

2022-2023学年浙江省杭州市拱墅区锦绣育才中学九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若ba =34,则a+ba=( )A. 74B. 47C. 14D. 432. 下列事件中,属于不可能事件的是( )A. a是实致,则|a|≥0B. 一匹马奔跑的速度是每秒150米C. 任意一个三角形都有外接圆D. 抛投一枚骰子,则上面的点数是63. 如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为( )A. 70°B. 50°C. 40°D. 35°4. 如图,点G为△ABC的重心,连接CG、AG并延长分别交AB,BC于点E,F.连接EF,若AB= 4.4,AC=3.2,BC=3.6.则EF的长度为( )A. 1.6B. 1.8C. 2.2D. 2.45. △ABC的三边长分别为2,3,4,另有一个与它相似的三角形△DEF,其最长边为16,则△DEF的周长是( )A. 54B. 36C. 27D. 216. 如图,⊙O的直径CD=30,AB是⊙O的弦,AB⊥CD.垂足为M,OM:OC=3:5,则AB 的长为( )A. 8B. 24C. 16D. 2√917. 小凯在画一个开口向下的二次函数图象时,列出如下表格:x…−1012…y…3233…发现有一对对应值计算有误,则错误的那一对对应值所对的坐标是( )A. (−1,3)B. (0,2)C. (1,3)D. (2,3)8. 如图,将△ABC绕点A逆时针旋转70°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小是( )A. 45°B. 55°C. 60°D. 100°9. 抛物线y=ax2+b(a、b为常效,且(a≠0)上有两点A(x1,y1),B(x2,y2).若y1<y2,则下列结论正确的是( )A. 当b>0时,|x1|<|x2|B. 当b<0时,|x1|<|x2|C. 当a>0时,|x1|<|x2|D. 当a<0时,|x1|<|x2|10. 如图,四边形ABCD中,对角线AC,BD交于点E,若∠BAC=∠BDC,则下列结论中正确的是( )①AEDE =BECE;②△ABE与△DCE的周长比BECE;③∠ADE=∠ABC;④S△ABE⋅S△DCE=S△ADE⋅S△BCE.A. ③④B. ①②③C. ①②④D. ①②③④二、填空题(本大题共6小题,共24.0分)11. 抛物线y=(x−2)2−5的顶点坐标是______.12. 半径为3,圆心角120度的扇形面积为______.13. 有三辆车按1、2、3编号,两位老师可任意选坐一辆车,则两位老师同坐1号车的概率是______.14. 已知点C是线段AB的黄金分割点,且AC>BC,若AB=4,则BC=______.15. 如图,已知抛物线y=ax2+c与直线y=kx+m交于A(−4,y1),B(1,y2)两点,则关于x 的不等式ax2+c≥kx+m的解集是______.16. 如图,点A,C分别是y轴、x轴正半轴上的动点,AC=2,将线段AC绕点A逆时针旋转60°得到线段AB,则OB的最小值为______.三、解答题(本大题共7小题,共66.0分。

杭州市锦绣中学九年级数学上册第二十一章《一元二次方程》经典测试题(培优专题)

杭州市锦绣中学九年级数学上册第二十一章《一元二次方程》经典测试题(培优专题)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-lD .m >-1且m≠13.下列方程中,没有实数根的是( ) A .2670x x ++= B .25260x x --= C .22270x x -= D .2220x x -+-= 4.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4C .-1或4D .1或-45.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x =D .10x =,22x =6.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( ) A .a ≠2B .a=2C .a=-3D .a=-3或a=27.方程()55x x x +=+的根为( ) A .15=x ,25x =- B .11x =,25x =- C .0x =D .125x x ==-8.用配方法解方程23620x x -+=时,方程可变形为( ) A .21(3)3x -= B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=9.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( ) A .15% B .40%C .25%D .20%10.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人B .7人C .8人D .9人11.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 12.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( )A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 13.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4 B .1 C .﹣1 D .﹣4 14.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019 15.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定二、填空题16.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.17.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.18.一元二次方程-+=(5)(2)0x x 的解是______________. 19.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 20.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 21.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.22.一元二次方程x 2=2x 的解为__________23.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.24.当m =___________时,方程()21350m m xmx -+-+=是一元二次方程.25.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 26.当x=______时,−4x 2−4x+1有最大值.三、解答题27.(1)用配方法解:221470x x --=; (2)用因式分解法解:()()222332x x -=-.28.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?29.解方程:y(y-1)+2y-2=0.30.某文具商从荷花池小商品批发市场购进一批书包,每个进价50元.调查发现,当销售价为80元时,每季度可售出500个;如果售价每降低1元,那么平均每季度可多售出40个.(1)当降价2元时,平均每季度销售书包_____个.(2)某文具商要想平均每季度赢利18000元,且尽可能让利与顾客,应该如何定价?。

杭州市育才中学九年级上册期中试卷检测题

杭州市育才中学九年级上册期中试卷检测题

杭州市育才中学九年级上册期中试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的79,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.【答案】(1)t1=2,t2=4;(2)t 47758.【解析】【分析】(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD的面积和是△ABC的面积的79,列出方程、解方程即可解答;(2)根据不同时间段分三种情况进行解答即可.【详解】(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=12×6×6=18,∵AP=t,CP=6﹣t,∴△PBC与△PAD的面积和=12t2+12×6×(6﹣t),∵△PBC与△PAD的面积和是△ABC的面积的79,∴12t2+12×6×(6﹣t)=18×79,解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,①如图1,当0≤t≤2时,S=(2t)2﹣12t2=72t2=8,解得:t1=477,t2=﹣477(不合题意,舍去),②如图2,当2≤t≤3时,S=12×6×6﹣12t2﹣12(6﹣2t)2=12t﹣25t2=8,解得:t1=4(不合题意,舍去),t2=45(不合题意,舍去),③如图3,当3≤t≤6时,S=126×6﹣12t2=8,解得:t1=25,t2=﹣25(不合题意,舍去),综上,t的值为477或25时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.2.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a元/千克, b元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.3.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题4.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0.(1)求证:对任意实数m ,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0,∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2,∵m 2≥0,∴△>0,∴对任意实数m ,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.5.如图,在矩形ABCD 中,6AB = ,10BC = ,将矩形沿直线EF 折叠.使得点A 恰好落在BC 边上的点G 处,且点E 、F 分别在边AB 、AD 上(含端点),连接CF .(1)当32BG = 时,求AE 的长;(2)当AF 取得最小值时,求折痕EF 的长;(3)连接CF ,当△FCG 是以CG 为底的等腰三角形时,直接写出BG 的长.【答案】(1)92AE =;(2)62EF =3)185BG =. 【解析】【分析】 (1)根据折叠得出AE=EG ,据此设AE=EG=x ,则有BE=6-x ,由勾股定理求解可得;(2)由FG ⊥BC 时FG 的值最小,即此时AF 能取得最小值,显然四边形AEGF 是正方形,从而根据勾股定理可得答案;(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①FG=FC ;②FG=GC ;分别求解可得.【详解】(1)由折叠易知,AE EG =,设AE EG x ==,则有6BE x =-, 由勾股定理,得()()222632x x =-+,解得92x =,即92AE = (2)由折叠易知,AF FG =,而当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,点E 与点B 重合,此时四边形AEGF 是正方形,∴折痕226662EF =+=.(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①当FG=FC 时,如图2,过F 作FH ⊥CG 于H ,则有:AF=FG=FC ,CH=DF=GH设AF=FG=FC=x ,则DF=10-x=CH=GH在Rt △CFH 中∵CF 2=CH 2+FH 2∴x 2=62+(10-x )2解得:x=345, ∴DF=CH=GH=10-165, 即BG=10-165×2=185, ②当FG=GC 时,则有:AF=FG=GC=x ,CH=DF=10-x ;∴GH=x-(10-x )=2x-10,在Rt △FGH 中,由勾股定理易得:x 2=62+(2x-10)2,化简得:3x 2-40x+136=0,∵△=(-40)2-4×3×136=-32<0,∴此方程没有实数根.综上可知:BG=185.【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、勾股定理、一元二次方程根与系数的关系等知识点,也考查了分类讨论的数学思想.二、初三数学二次函数易错题压轴题(难)6.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF 92;(3)M点坐标为可以为(2,355+355-3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y =a (x ﹣b )(x ﹣c ),∵y =ax 2+bx+与x 轴r 的两个交点A 、B 的坐标分别为(1,0)和(3,0),∴二次函数解析式:y =a (x ﹣1)(x ﹣3).又∵点D (4,3)在二次函数上,∴(4﹣3)×(4﹣1)a =3,∴解得:a =1.∴二次函数的解析式:y =(x ﹣1)(x ﹣3),即y =x 2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3).∵y =x 2﹣4x+3与y 轴相交于点C ,∴点C 的坐标为(0,3).又∵点B 的坐标为B (3,0),∴OB =OC∴△COB 为等腰直角三角形.又∵PF//y 轴,PE//x 轴,∴△PEF 为等腰直角三角形.∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b ,又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为y =﹣x+3.∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p .∴EF 2p 22.∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E ,BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3),∵C 、D 两点的坐标为(0,3)和(4,3),∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°,∴△CNE ∽△NBF .∴CE NE =NF BF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m m m-+=2343m m m --+-, 化简得:m 2﹣5m+5=0.解得:m 1=552+,m 2=552-. ∴M 点坐标为(55+,3)或(55-,3) ②如图3所示:当∠CBN=90°时,过B作BG⊥CD,∵∠NBF=∠CBG,∠NFB=∠BGC=90°,∴△BFN∽△CGB.∵△BFN为等腰直角三角形,∴BF=FN,∴0﹣(m2﹣4m+3)=3﹣m.∴化简得,m2﹣5m+6=0.解得,m=2或m=3(舍去)∴M点坐标为,(2,3).综上所述,满足题意的M点坐标为可以为(2,3),(552+,3),(552-,3).【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.7.如图,在平面直角坐标系x O y中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A (-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.【答案】(1)y=-x2-2x+3;(2)点(-32,154),△PDE的周长最大;(3)点M(-2,3)或(-2,3【解析】【分析】(1)将A、B、C三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB是等腰直角三角形,故只需使得PD越大,则△PDE的周长越大.联立直线AB与抛物线的解析式可得交点P坐标;(3)作点A关于直线x=-2的对称点D,利用∠MAC = 2∠MCA可推导得MD=CD,进而求得ME 的长度,从而得出M坐标【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴93030a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x 2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°,∵PF ⊥x 轴,∴∠AEF=90°-45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴3∴点M (-23)或(-2,3【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析8.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0k y x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时. ①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥; 【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k x ),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b a-≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1),①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,k x ),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<, ∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n ,设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n n y x --=+, 设点P 为(x ,k x ),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意;当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >; 当204n -<时,有 ∴20410524n n n -⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n ≤<, ∴综合上述,n 的取值范围为:109n ≥. 【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.9.如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l .(1)P 的坐标 ,C 的坐标 ;(2)直线1上是否存在点Q ,使△PBQ 的面积等于△PAC 面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.10.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO ≌△BQ 2E ,∴BE =OC =2,Q 2E =OB =1,∴OE =OB+BE =1+2=3,∴Q 2(3,1),同理,Q 3(﹣1,﹣1),∴存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.三、初三数学 旋转易错题压轴题(难)11.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒.∵90AQB BAQ ∠+∠=︒.∴BAQ CQE ∠=∠.∴()APQ QCE ASA ∆≌.(2)由(1)知APQ QCE ∆∆≌.∴QA QE =.∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形,∴45QAE ∠=︒.∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,其中点D 与点B 重合,且点F '在直线BQ 上,则45F AQ '∠=︒,F A FA '=,AQ AQ =,∴()F AQ FAQ SAS '∆∆≌.∴QF QF BQ DF '==+.(3)连结AC ,若QF CE ,则45FQC ECM ∠=∠=︒.∴QCF ∆是等腰直角三角形,∴2CF CQ x ==-,∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒,∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒,∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =,∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得1222x =-+, 2222x =--(舍去).当222x =-+时,QF CE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦ 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.12.请阅读下列材料:问题:如图1,在等边三角形ABC 内有一点P ,且PA=2,PB=3,PC=1、求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(17;(25【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP2,BE=BP’=1,勾股定理可求得正方形边长.(17(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′2;连接PP′,在Rt△BP′P中,∵BP=BP′2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP5∵222+,即AP′2+PP′2=AP2;125∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB5∴∠BPC=135°5点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.13.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC 和等边三角形GEB 纸片,DA DC =,让两个三角形如图①放置,点C 和点G 重合,点D ,点E 在AB 的同侧,AC 和GB 在同一条直线上,点F 为AB 的中点,连接DF ,EF ,则DF 和EF 的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由;类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明; ②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DF EF ,理由见解析;(3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴. MF NC NB ∴==,CF CN FN AM +==.设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 333MF NE b==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽.MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DF EF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.18060O ADC∴∠=︒-∠=︒.又CPO BPE∠=∠,60O CEB∠=∠=︒,OCP OBE∴∠=∠.DCE NBE∴∠=∠.又GEB是等边三角形,GE BE∴=,又AD BN CD==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD交于点O,EB与CD相交于点J,在ADF和BNF中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=.又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan E E F DF FD ∴∠=⋅=.②旋转过程中EF =,DF EF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.14.如图,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B 的坐标为(4,m )(5≤m ≤7),反比例函数y =16x (x >0)的图象交边AB 于点D . (1)用m 的代数式表示BD 的长;(2)设点P 在该函数图象上,且它的横坐标为m ,连结PB ,PD①记矩形OABC 面积与△PBD 面积之差为S ,求当m 为何值时,S 取到最大值; ②将点D 绕点P 逆时针旋转90°得到点E ,当点E 恰好落在x 轴上时,求m 的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.15.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.四、初三数学圆易错题压轴题(难)16.已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α。

浙江省杭州锦绣区、育才教育集团中考数学二模试题

浙江省杭州锦绣区、育才教育集团中考数学二模试题

浙江省杭州锦绣区、育才教育集团2015届中考数学二模试题一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项,注意可以用多种不同的方法来选取正确答案 1.实数﹣的相反数是( )A.-2B.21C. 2D.﹣|﹣0.5| 2.下列计算正确的是( )A .2)2(2-=- B.752a a a =+ C .1052)(a a = D.5125256=⨯3.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )4.一组数据:76,90,64,100,84,64,73这组数据的众数和中位数分别是( ) A .64,100 B .64,76 C .76,64 D . 64,84 5.下列说法正确的是( )(1)整式y x y x xy 32882+-因式分解的结果是)441(22x x xy +- (2)要使xxy -=3有意义,则x 应该满足0<x≤3 (3) “x 的2倍与5的和”用代数式表示是一次式.(4)地球上的陆地面积约为149000000平方千米,用科学记数法表示为81049.1⨯平方千米. A.(1)(4) B.(1)(2) C.(2)(3) D.(3)(4)6.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB =∠CED =90°,∠A =45°,∠D =30°.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图②,连接D 1B ,则∠E 1D 1B 的度数为( ) A .10°B .20°C .7.5°D . 15°7.对于一次函数y=kx+k ﹣1(k≠0),下列叙述正确的是( ) A . 当0<k <1时,函数图象经过第一、二、三象限 B . 当k >0时,y 随x 的增大而减小C . 当k <1时,函数图象一定交于y 轴的负半轴D . 函数图象一定经过点(﹣1,﹣2) 8.已知210<≤x ,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A. ﹣6 B. ﹣2.5 C.2 D.不能确定 9.下列命题正确的个数是( )① 一组对角相等,一组对边平行的四边形是平行四边形. ②有两条边和第三条边上的中线对应相等的两个三角形全等③对角线垂直相等的四边形是正方形 ④圆的切线垂直于圆的半径 A .1个B .2个C .3个D .4个10.如图,在ABC △中,6,12,56===BC AC AB ,经过点C 且与边AB 相切的动圆与CA CB ,分别相交于点P Q ,,则线段PQ 长度的最小值是( )A .6B . 12C .5512 D . 56 二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案11.计算:﹣25+()﹣1﹣|﹣8|+2cos60°=12.已知二次函数263y kx x =-+,若k 在数组{3211234}---,,,,,,中随机取一个,则所得抛物线的对称轴在直线1x =的左方时的概率为13.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是14.等腰三角形有一个外角是100°,这个等腰三角形的底角是 15.如图,平行四边形AOBC 中,对角线交于点E,双曲线)0(>=k xky 经过A 、E 两点,若平行四边形AOBC 的面积为30,则k =______.16. 如图,PA ,PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA ,PB 于C ,D .若⊙O 的半径为r ,△PCD 的周长等于3r ,则ta n∠APB 的值是 。

浙江省杭州市拱墅区杭州锦绣育才中学附属学校2023-2024学年九年级上学期期中数学试题

浙江省杭州市拱墅区杭州锦绣育才中学附属学校2023-2024学年九年级上学期期中数学试题

浙江省杭州市拱墅区杭州锦绣�育才中学附属学校2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .65︒5.学校组织春游,安排给九年级四辆车,小胡、小王都可以从这四辆车中任选一辆搭乘,小胡、小王同车的概率是(A .146.若二次函数2y ax =-A .(4,3)-7.在O 中,直径AB A .188.某函数关系为P at =A . 3.5t =B .9.如图,AB 是O 的直径,点结CD 交AB 于点E ,若DE A .1003︒B .10.已知二次函数2y x =-+20x bx t -++=(,b t 为实数)在A .40t -<<B .二、填空题11.已知扇形所在圆半径为12.对一批衬衫进行抽检,统计合格衬衫的件数,得到合格衬衣的频数表如下:抽取件数(件)50100合格频数4288合格频率0.84估计任抽一件衬衫是合格品的概率是13.已知二次函数(y =14.已知正方形AHDG FM =.15.已知二次函数22y ax =+12y y <,则m 的取值范围是16.如图,AB 是F 的直径,点于点E ,若FE BD ⊥,则BC 三、解答题17.如图,在⊙O 中,弦AD =BC ,连接AB 、CD .求证:AB =CD .18.已知某多项选择题的四个选项(,,,)A B C D 中有两个正确答案,该题满分为4分,得分规则是:选出两个正确答案且没有选错误答案得4分;只选出一个正确答案没有选错误答案得2分;不选或所选答案中有错误答案的0分.(1)任选一个答案,得到2分的概率是______.(2)请利用树状图或表格求任选两个答案,得到4分的概率.19.已知抛物线2y ax bx c =++(0,,,a a b c ≠是常数)过点(1,0),(0,2)-,对称轴为直线1x =.(1)求抛物线的解析式;(2)直接写出不等式20ax bx c ++<的解集.20.作图题:O 上有三个点,,,50A B C ABC ∠=︒,请只用无刻度的直尺作出符合要求的角,并写出你的结论.(1)在下图中作一个100︒的角;(2)在下图中作一个130︒的角;(3)在下图中作一个40︒的角.21.如图,在ABC 中,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作DF BC ∥,交O 于点F ,连接,,AF EF AF EF =.(1)求证:四边形DBCF 是平行四边形;(2)若D 是AB 中点,证明AC 是O 的直径.22.已知二次函数:2(2)3(1)y x k x k =-+-++(k 是实数).(1)若1k =,求抛物线与x 轴的交点坐标.(2)抛物线与直线2y x k =-经过x 轴上同一点,求k 的值.(1)求大孔对应抛物线的解析式.(2)当大孔水面宽度为20米时,大孔孔顶离水面多少米?(3)当大孔水面宽度为16米时,单个小孔水面宽度多少米?24.如图,AB 是O 的直径,弦CD AB ⊥与点E ,已知10,AB AE =上任意一点,(点P 不与A 、E 重合),连接CP 并延长与O 交于点AD .(1)求CD 的长;(2)ADP Ð与ADQ ∠满足什么关系?并说明理由;(3)若45PCE ∠=︒,求2CP。

精品浙江省杭州市锦绣中学2015届九年级数学上学期期末综合练习试题(无答案) 浙教版

精品浙江省杭州市锦绣中学2015届九年级数学上学期期末综合练习试题(无答案) 浙教版

【最新】2019年浙江省杭州市锦绣中学2015届九年级数学上学期期末综合练习试题(无答案)浙教版(九上全册,九下第1-2章,本卷满分120分)一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.以下事件中,必然发生的是(▲)A.打开电视机,正在播放体育节目B.正五边形的外角和为180ºC.在标准大气压时,水加热到100℃沸腾D.掷一次骰子,向上一面是5点2A.B.C.D3.已知Rt△ABC中,∠C=90º,tanA=,BC=8,则ACA.6 B.C.10 D.4.如图,已知D、E分别是△ABC的AB、AC边上的点,且.那么AE:ACA.1:8 B.1:4 C.1:3 D.1:9第4题图第5题图5.如图,AB为半圆O的直径,C、D、E P是AB 上的任意一点.若AB=4A.B.C.6A.第一象限B.第二象限C.第三象限D.第四象限7.如图,已知⊙O的直径AB与弦AC的夹角为35º,过点C的切线PC 与AB的延长线交于点P,那么∠P等于(▲)A.15ºB.20ºC.25ºD.30º九年级数学期末综合练习试题卷(一)(第1页,共4页)8.已知二次函数中,其函数与自变量之间的部分对应值如下表所示:点A(,)、B(,)在函数的图象上,则当时,与的大小关系正确的A.B.C.D.9.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度等于(▲)A.4.5米B.6米C.7.5米D.8米第9题图第10题图10.半圆O的直径AB=9,两弦AB、CD相交于点E,弦CD=,且BD=7,则DEA.3 B.4 C.5 D二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在比例尺为1:5000的军事地图上,甲、乙两地相距30cm,则它们的实际距离为▲ m.12.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,摸到一红一白两球的概率是▲ .13.抛物线过三点A(-2,4)、B(4,4)、C(0,1),此抛物线的对称轴为▲ .14.△ABC中,AB=4,BC=3,∠BAC=30º,则△ABC的面积为▲ .15.如图,⊙O为△ABC的内切圆,∠C=90º,BO的延长线交AC于点D,若BC=3,CD=1,则⊙O的半径等于▲.第15题图第16题图九年级数学期末综合练习试题卷(一)(第2页,共4页)16.在矩形ABCD中,AB=2AD,线段EF=10,在边EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN与矩形ABCD 相似,令MN=,当为▲ 时,矩形EMNH的面积S有最大值,最大值是三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本题满分6分)(1)作图:用直尺与圆规作△ABC的内切圆(作垂线可直接利用三角板的直角),圆心为O;(2)若(1)中所作的图中的∠BOC=130º,求∠A的度数.18.(本题满分8分)如图所示,△ABC是直角三角形,∠ABC=90º,以AB为直径的⊙O 交AC于点E,点D是BC边的中点,连结DE.(1)求证:DE与⊙O相切;(2)若⊙O的半径为,DE=3,求AE19.(本题满分8分)如图,在湖滨公园内,有一个游船码头O.已知游船A在码头O的北偏东30º方向,游船B在游船A的正南方向,OA=60米,OB=20(1)请计算说明:游船B在游船码头O的什么方向?(2)求两游船A、B之间的距离.20.(本题满分10分)三张卡片的正面分别写有数字2、5、5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为▲ ;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小钢和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.。

浙教版九年级数学上学期期中数学试卷

浙教版九年级数学上学期期中数学试卷

2015学年第一学期九年级期中学业水平检测数学参考答案和评分标准一、选择题(本题有10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案AADACDCBDD二、填空题(本题有6小题,每小题5分,共30分) 11.(2)a a - 12.直线5x = 13.1314.50 15.9 16.43 三、解答题(本题有8小题,共80分)17.(本题10分)(1)08(21)2015+-+22211=+-+ (3分)32=. (2分)(2)2(3)2(13)a a +-+26926a a a =++-- (3分) 27a =+. (2分)18.(本题8分) (1)340158⨯=(个).(3分) (2)设白球有x 个,则黄球有(2x +1)个,根据题意得:x +2x +1=40-15.解得x =8. (3分)∴81==405P (白).(2分) 答:(1)袋中红球有15个.(2)从袋中摸出一个球是白球的概率是15. 19.(本题8分)(1)略. (4分)(2)提示:先求出∠AOB =120°, (1分)再求出半径为43. (3分)20.(本题8分)(1)∵点C 的坐标为(0,2),∴2c =. (2分)∵点B 的坐标为(2,2),∴542228b -⨯++=,解得54b =. (2分)∴该二次函数的表达式是255284y x x =-++. (2)∵22555212(1)8488y x x x =-++=--+,∴该抛物线的顶点纵坐标是218.(1分)又∵215288-=,(1分)∴m 的取值范围是52188m <<. (2分)21.(本题10分)(1)证明:如图,过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F .(1分)∵OA 平分∠BAC , ∴OE =OF , (2分)∴AB AC =.(2分)(2)连结OD .∵点D 与点O 关于直线AB 对称, ∴AB 是OD 的中垂线, ∴AD =AO ,BD =BO .(2分) ∵OA =OB ,∴OA =OB =BD =AD ,(1分) ∴四边形ADBO 是菱形.(2分) (本题方法多样,请按步骤相应给分)22.(本题10分)解:(1)∵AB =x m ,则BC =(32﹣2x )m . (2分)∴S =x (32﹣2x )=﹣2x 2+32x . (3分) (2)由(1)得S =﹣2(x ﹣8)2+128.∵在P 处有一棵树与墙CD ,AD 的距离分别是10m 和6m , ∴6≤x ≤11. (2分)∴当x =11时,22118128110S =--+=最小值(). (3分)答:矩形饲养室ABEF ,CDFE 的面积和S 的最小值为110平方米.23.(本题12分)(1)∵224(2)4y x x x =-+=--+,∴点M 的坐标是(2,4) .(2分)∵该抛物线经过原点,且对称轴为直线2x =,∴点A 的坐标是(4,0) .(2分) (2)∵点A 的坐标是(4,0) ,AB=1.∴点P 的横坐标为3.∵该抛物线对称轴为直线2x =, ∵点D 的横坐标为1.EFBC OADBCOA(第21题)图2 图1把1x =代入24y x x =-+得143y =-+=. ∴点D 的坐标是(1,3) .(3分)设直线AD 的表达式为y kx b =+,由题意得403k b k b +=⎧⎨+=⎩,解得14k b =-⎧⎨=⎩,∴直线AD 的表达式为4y x =-+.(2分)(3)2:5:5.(3分)24.(本题14分)(1)提示:易得CE=OD ,则42m m -=,解得43m =.(3分) (2)①2()(442)13(83)42222OC CE AD m m m s m m m m +-+-===-=-+.(4分) ②当2s >时,解得223m <<. ∵抛物线2y x ax =-+经过动点D , ∴2a m =,∴443a <<.(3分) (3)①当点D 在点A 的左侧时, Ⅰ.如图1,当A ′落在边CE 上时, 易证AD =AE ,则422m m -=,解得422m =-;(1分)Ⅱ.如图2,当A ′落在边CD 上时, 易证CE =CD ,则45m m -=,解得51m =-;(1分)②当点D 与点A 重合时,显然满足条件,此时2m =;(1分)③当点D 在点A 的右侧时,如图3,点A ′落在边EC 的延长线上时,易证A ′D = A ′E ,则242m m -=,解得422m =+.(1分) 综上所述,422512422m =--+或或或.(第24题图1)xy A'E D ABOC (第24题图2)xyA'E DABOC xy A'EDAB OC (第24题图3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年浙江省杭州市拱墅区锦绣育才学校教育集团九年级(上)期中数学试卷一、仔细选一选1.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx﹣ac与反比例函数在同一坐标系内的图象大致为()A.B.C.D.2.(3分)同学们的衣服各式各样,假设你的衣橱里有一件夹克,一件中山装,一件校服上衣,有一条黑色牛仔裤,一条蓝色牛仔裤,一条校服裤子,那么你随手拿出一件上衣和一条裤子时,恰好是一身校服的机会是()A.B.C.D.3.(3分)△ABC为⊙O的内接三角形,若∠AOC=150°,是∠ABC的度数是()A.75°B.150°或30°C.30°D.75°或105°4.(3分)已知线段AB的长为6 cm,点P是线段AB的黄金分割点,则PA的长为(单位:cm)()A.B.或C.或 D.5.(3分)下列命题中,正确的是()A.圆内接四边形的对角相等B.长度相等的两条弧叫做等弧C.平分弦的直径垂直于这条弦D.弦所对的两条弧的中点连线垂直平分弦,且过圆心6.(3分)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.AD•AB=AC•BD7.(3分)如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.4 B.2 C.6 D.28.(3分)如图,水平地面上有一面积为的扇形AOB,半径OA=3cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至与三角块BDE接触为止,此时,扇形与地面的接触点为C,已知∠BCD=30°,则O点移动的距离为()A.3πcm B.4πcm C.D.5πcm9.(3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.10.(3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣ B.或﹣C.2或﹣D.2或﹣或﹣二、认真填一填11.(3分)在比例尺为1:20000的地图上,测得A,B两地间的图上距离为5.5 cm,则A,B两地间的实际距离为km.12.(3分)把抛物线y=(x﹣4)2+2的图象绕原点旋转180°后得到的图象的解析式为.13.(3分)在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组只有一个整数解的概率为.14.(3分)如图,△ABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,则S梯形DFGE:S梯形FBCG=.15.(3分)如图,已知矩形ABCD中,AB=1 cm,BC=2 cm,以B为圆心,BC为半径作圆弧交AD于点F,交BA的延长线于点E,则扇形BCE被矩形所截剩余部分的面积为.16.(3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为个.三、全面答一答17.如图:格点△ABC(顶点在每个小正方形的顶点处的三角形,称为格点三角形)在图(1)、(2)、(3)的网格中各画出一个格点三角形使它们都与△ABC相似.要求:①至少有一个相似比为无理数;②有一个面积是最大的.18.已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.(1)求从中随机取出一个黑球的概率.(2)若往口袋中再放入x个黑球,且从口袋中随机取出一个白球的概率是,求代数式的值.19.一座拱桥的轮廓是抛物线型(如图(1)所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图(2)所示),请根据所给的数据求出抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.20.(如图)AB是⊙O的直径,弦CD⊥AB于点G,E是线段AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P,设⊙O的半径为r,求证:OE•OP=r2.21.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B 重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,若这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题.(1)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(2)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E 恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.22.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.23.如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x ﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.2014-2015学年浙江省杭州市拱墅区锦绣育才学校教育集团九年级(上)期中数学试卷参考答案与试题解析一、仔细选一选1.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx﹣ac与反比例函数在同一坐标系内的图象大致为()A.B.C.D.【解答】解:由二次函数y=ax2+bx+c的图象开口向上可知,a>0,因为图象与y轴的交点在y轴的负半轴,所以c<0,根据函数图象的对称轴x=﹣>0,可知b<0,∵a>0,b<0,c<0,ac<0,∴一次函数y=bx﹣ac的图象过一、二、四象限,故可排除A、C;由函数图象可知,当x=﹣1时,y>0,即y=a﹣b+c>0,∴反比例函数的图象在一、三象限,可排除D选项,故选:B.2.(3分)同学们的衣服各式各样,假设你的衣橱里有一件夹克,一件中山装,一件校服上衣,有一条黑色牛仔裤,一条蓝色牛仔裤,一条校服裤子,那么你随手拿出一件上衣和一条裤子时,恰好是一身校服的机会是()A .B .C .D .【解答】解:设一件夹克,一件中山装,一件校服上衣为1,2,3;一条黑色牛仔裤,一条蓝色牛仔裤,一条校服裤子为4,5,6.列表得:∴共有9种可能,恰好是一身校服的是(3,6),∴恰好是一身校服的机会是.故选:C .3.(3分)△ABC 为⊙O 的内接三角形,若∠AOC=150°,是∠ABC 的度数是( )A .75°B .150°或30°C .30°D .75°或105°【解答】解:如图,∵∠AOC=150°,∴∠ABC=∠AOC=×150°=75°,∵∠ABC +∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣75°=105°.∴∠ABC 的度数是:75°或105°.故选:D .4.(3分)已知线段AB 的长为6 cm ,点P 是线段AB 的黄金分割点,则PA 的长为(单位:cm )( )A.B.或C.或 D.【解答】解:由于P为线段AB=6的黄金分割点,当AP是较长线段时,PA=6×=3﹣3;当AP是较短线段时,PA=6×=9﹣3;故选:C.5.(3分)下列命题中,正确的是()A.圆内接四边形的对角相等B.长度相等的两条弧叫做等弧C.平分弦的直径垂直于这条弦D.弦所对的两条弧的中点连线垂直平分弦,且过圆心【解答】解:A、圆内接四边形的对角互补,所以A错误;B、在同圆或等圆中长度相等的两条弧叫做等弧,所以B错误;C、平分弦(非直径)的直径垂直于这条弦,所以C选项错误;D、弦所对的两条弧的中点的连线垂直平分弦,且过圆心,正确;故选:D.6.(3分)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.AD•AB=AC•BD【解答】解:A、因为∠ADC=∠BDA,∠ACD=∠DAB,所以△DAC∽△DBA,所以A选项添加的条件正确;B、由AD=DE得∠DAC=∠E,而∠B=∠E,所以∠DAC=∠B,加上∠ADC=∠BDA,所以△DAC∽△DBA,所以B选项添加的条件正确;C、由AD2=DB•CD,即AD:DB=DC:DA,加上∠ADC=∠BDA,所以△DAC∽△DBA,所以C选项添加的条件正确;D、由AD•AB=AC•BD得=,而不能确定∠ABD=∠DAC,即不能确定点D为弧AE的中点,所以不能判定△DAC∽△DBA,所以D选项添加的条件错误.故选:D.7.(3分)如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.4 B.2 C.6 D.2【解答】解:∵PC是∠APB的角平分线,∴∠APC=∠CPB,∴弧AC=弧BC;∴AC=BC;∵AB是直径,∴∠ACB=90°.即△ABC是等腰直角三角形.连接OC,交EF于点D,则OC⊥AB;∵M、N是AC、BC的中点,∴MN∥AB;∴OC⊥EF,OD=OC=2.连接OE,根据勾股定理,得:DE=2,EF=2ED=4.故选:A.8.(3分)如图,水平地面上有一面积为的扇形AOB,半径OA=3cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至与三角块BDE接触为止,此时,扇形与地面的接触点为C,已知∠BCD=30°,则O点移动的距离为()A.3πcm B.4πcm C.D.5πcm【解答】解:∵扇形AOB的面积为,∴圆心角==300°,连接OC、BC,∵∠BCD=30°,∴∠BOC=60°,∴优弧AC==4πcm.故选:B.9.(3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S=(2x﹣2)2=2(x﹣1)2,△ENM∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.10.(3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣ B.或﹣C.2或﹣D.2或﹣或﹣【解答】解:二次函数对称轴为直线x=m,①m<﹣2时,x=﹣2取得最大值,﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,不合题意,舍去;②﹣2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±,∵m=不满足﹣2≤m≤1的范围,∴m=﹣;③m>1时,x=1取得最大值,﹣(1﹣m)2+m2+1=4,解得m=2.综上所述,m=2或﹣时,二次函数有最大值4.故选:C.二、认真填一填11.(3分)在比例尺为1:20000的地图上,测得A,B两地间的图上距离为5.5 cm,则A,B两地间的实际距离为 1.1km.【解答】解:设A,B两地间的实际距离为xcm,根据题意列方程得,1:20000=5.5:x,解得x=110000,∵110000cm=1100m=1.1km,∴A、B的实际距离为1.1km.故答案为1.1.12.(3分)把抛物线y=(x﹣4)2+2的图象绕原点旋转180°后得到的图象的解析式为y=﹣(x+4)2﹣2.【解答】解:由题意可知(4,2)关于原点对称的坐标为(﹣4,﹣2)故绕原点旋转180°后得到的图象为:y=﹣(x+4)2﹣2,故答案为:y=﹣(x+4)2﹣213.(3分)在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组只有一个整数解的概率为.【解答】解:∵不等式组在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组即:只有一个整数解,∴(a+2)﹣(2a﹣1)=1,解得a=2,∴P=.故答案为:.14.(3分)如图,△ABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,则S梯形DFGE:S梯形FBCG=8:27.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,又∵AD:DF:FB=1:2:3,∴AD:AF:AB=1:3:6,∴面积比是:1:9:36,设△ADE的面积是a,∴△AFG和△ABC的面积分别是9a,36a,∴S四边形DFGE 和S四边形FBCG分别是8a,27a,∴S梯形DFGE :S梯形FBCG=8:27.15.(3分)如图,已知矩形ABCD中,AB=1 cm,BC=2 cm,以B为圆心,BC为半径作圆弧交AD于点F,交BA的延长线于点E,则扇形BCE被矩形所截剩余部分的面积为π﹣.【解答】解:连接BF,∵BF=BC=2,AB=1,AD⊥AB,∴cos∠ABF==;∴∠ABF=60°,AF=ABtan60°=;∴S AEF=S扇形BFE﹣S△ABF=π×22﹣×1×=π﹣(cm2).故答案为π﹣.16.(3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为3个.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.综上所述,共有3个正确结论,故答案为:3.三、全面答一答17.如图:格点△ABC(顶点在每个小正方形的顶点处的三角形,称为格点三角形)在图(1)、(2)、(3)的网格中各画出一个格点三角形使它们都与△ABC相似.要求:①至少有一个相似比为无理数;②有一个面积是最大的.【解答】解:如图1,相似比为2,如图2,相似比为:,如图3面积最大,相似比为:.18.已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.(1)求从中随机取出一个黑球的概率.(2)若往口袋中再放入x个黑球,且从口袋中随机取出一个白球的概率是,求代数式的值.【解答】解:(1)P(取出一个黑球)==.(2)设往口袋中再放入x个黑球,从口袋中随机取出一个白球的概率是,即P(取出一个白球)==.由此解得x=5.经检验x=5是原方程的解.∵原式=÷=×=,∴当x=5时,原式=.19.一座拱桥的轮廓是抛物线型(如图(1)所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图(2)所示),请根据所给的数据求出抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.【解答】解:(1)根据题目条件A,B,C的坐标分别是(﹣10,0),(10,0),(0,6),设抛物线的解析式为y=ax2+c,将B,C的坐标代入y=ax2+c,得,解得.所以抛物线的表达式y=﹣x2+6;(2)可设F(5,y F),于是y F=﹣×52+6=4.5,从而支柱EF的长度是10﹣4.5=5.5米;(3)根据题意,三辆汽车最右边到原点的距离为:1+3×2=7,当x=7时,y=﹣×49+6=3.06>3,故可以并排行驶宽2m,高3m的三辆汽车.20.(如图)AB是⊙O的直径,弦CD⊥AB于点G,E是线段AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P,设⊙O的半径为r,求证:OE•OP=r2.【解答】证明:如图,连接FO并延长交⊙O于Q,连接DQ.∵FQ是⊙O直径,∴∠FDQ=90°.∴∠QFD+∠Q=90°.∵CD⊥AB,∴∠P+∠C=90°.∵∠Q=∠C,∴∠QFD=∠P.∵∠FOE=∠POF,∴△FOE∽△POF.∴.∴OE•OP=OF2=r2.21.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B 重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,若这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题.(1)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(2)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E 恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.【解答】(2)如图所示:点E是四边形ABCD的边AB上的强相似点,(3)结论:BC=AB.理由:如图③中,∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,BE=CE=AB.∴点E是AB的中点时,点E恰好是四边形ABCM的边AB上的一个强相似点,设AE=BE=a,则EC=2a,在Rt△EBC中,BC==a,∴AB:BC=2a:a=2:,∴BC=AB.22.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.【解答】解:(1)设y1与x的关系式y1=kx+b,由表知,解得k=﹣20,b=1500,即y1=﹣20x+1500(0<x≤20,x为整数),(2)根据题意可得,解得11≤x≤15,∵x为整数,∴x可取的值为:11,12,13,14,15,∴该商家共有5种进货方案;(3)解法一:y2=﹣10(20﹣x)+1300=10x+1100,令总利润为W,则W=(1760﹣y1)x+(20﹣x)×[1700﹣(10x+1100)]=30x2﹣540x+12000,=30(x﹣9)2+9570,∵a=30>0,∴当x≥9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W=10650;最大解法二:根据题意可得B产品的采购单价可表示为:y2=﹣10(20﹣x)+1300=10x+1100,则A、B两种产品的每件利润可分别表示为:1760﹣y1=20x+260,1700﹣y2=﹣10x+600,则当20x+260>﹣10x+600时,A产品的利润高于B产品的利润,即x>=11时,A产品越多,总利润越高,∵11≤x≤15,∴当x=15时,总利润最高,此时的总利润为(20×15+260)×15+(﹣10×15+600)×5=10650.答:采购A种产品15件时总利润最大,最大利润为10650元.23.如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x ﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档