现代控制理论基础1 线性系统的状态空间描述
自动控制原理状态空间法

目录
• 引言 • 状态空间法基础 • 线性系统的状态空间表示 • 状态反馈与极点配置 • 最优控制理论 • 离散系Biblioteka 的状态空间表示01引言
状态空间法的定义
状态空间法是一种基于状态变量描述线性时不变系统的方法,通过建立系 统的状态方程和输出方程来描述系统的动态行为。
状态变量是能够完全描述系统内部状态的变量,可以是系统的物理量或抽 象的数学变量。
最优控制问题
在满足一定约束条件下,寻找一个控制输入, 使得被控系统的某个性能指标达到最优。
性能指标
通常为系统状态或输出函数的积分,如时间加 权或能量加权等。
约束条件
包括系统动态方程、初始状态、控制输入和终端状态等。
线性二次调节器问题
线性二次调节器问题是最优控制问题的一个特例, 其性能指标为系统状态向量的二次范数。
THANKS
状态方程描述了系统内部状态变量之间的动态关系,而输出方程则描述了 系统输出与状态变量之间的关系。
状态空间法的重要性
1
状态空间法提供了系统分析和设计的统一框架, 可以用于线性时不变系统的各种分析和设计问题。
2
通过状态空间法,可以方便地实现系统的状态反 馈控制、最优控制、鲁棒控制等控制策略。
3
状态空间法具有直观性和易于实现的特点,能够 直接反映系统的动态行为,便于理解和分析。
02
状态空间法基础
状态与状态变量
状态
系统在某一时刻的状态是由系统 的所有内部变量共同决定的。
状态变量
描述系统状态的变量,通常选择 系统的输入、输出和内部变量作 为状态变量。
状态方程的建立
根据系统的物理或数学模型,通过适 当的方法建立状态方程。
线性系统的状态空间描述

第一章 线性系统的状态空间描述 1. 内容系统的状态空间描述化输入-输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换组合系统的状态空间方程与传递函数矩阵2. 基本概念系统的状态和状态变量状态:完全描述系统时域行为的一个最小变量组。
状态变量:构成系统状态的变量。
状态向量设系统状态变量为)(,),(),(21t x t x t x n 写成向量形式称为状态向量,记为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()(21t x t x t x t x n状态空间状态空间:以状态变量为坐标轴构成的n 维空间。
状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条轨迹。
3. 状态空间表达式设系统r 个输入变量:)(,),(),(21t u t u t u r m 个输出:)(,),(),(21t y t y t y m n 个状态变量:)(,),(),(21t x t x t x n例:图示RLC 电路,建立状态空间描述。
电容C 和电感L 两个独立储能元件,有两个状态变量,如图中所注,方程为)()()()()()(t i dtt du C t u t u t Ri dtt di LL c c L L ==++ )()(),()(21t u t x t i t x c L ==状态方程)(01)()(0/1/1/)()()()()()()()(212112211t u t x t x C L L R t xt x t x t xC t u t x t Rx t x L ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇔⎩⎨⎧==++⇔输出方程[]⎥⎦⎤⎢⎣⎡==)()(01)()(21t x t x t u t y c 一般定义状态方程:状态变量与输入变量之间的关系[][][]t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx t t u t u t u t x t x t x f t xdt t dx r n n n n r n r n );(,),(),();(,),(),()()();(,),(),();(,),(),()()();(,),(),();(,),(),()()(212121212222121111======用向量表示,得到一阶的向量微分方程[]t t u t x f t x),(),()(= 其中n n r r n n f f f f t u t u t u t u t x t x t x t x R R R ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∙∙∙=∙∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()(:)(,)()()(:)(,)()()(:)(212121输出方程:系统输出变量与状态变量、输入变量之间的关系,即[][][]t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y t t u t u t u t x t x t x g t y r n m m r n r n );(,),(),();(,),(),()();(,),(),();(,),(),()();(,),(),();(,),(),()(2121212122212111=== 用向量表示为[]t t u t x g t y ),(),()(=4系统分类:1) 非线性时变系统[][]⎩⎨⎧==t t u t x g t y t t u t x f t x ),(),()(),(),()(2) 非线性定常系统[][]⎩⎨⎧==)(),()()(),()(t u t x g t y t u t x f t x3) 线性时变系统⎪⎩⎪⎨⎧+++++=+++++=rnr n n nn n n r r n n u t b u t b x t a x t a xu t b u t b x t a x t a x)()()()()()()()(1111111111111写成向量形式即为⎩⎨⎧+=+=)()()()()()()()()()(t u t D t x t C t y t u t B t x t A t x其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t b t b t b t b t b t b t b t b t b t B t a t a t a t a t a t a t a t a t a t A nr n n r r nn n n n n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()()()()()()()(,)()()()()()()()()()(212222111211212222111211t d t d t d t d t d t d t d t d t d t D t c t c t c t c t c t c t c t c t c t C mr m m r r mn m m n n4) 线性定常系统⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x5 状态空间表达式的系统结构图状态和输出方程可以用结构图表示,形象地表明系统中信号传递关系。
现代控制理论状态空间法

根据系统微分方程建立状态空间表达式.
1.输入项中不含输入导数项的线性系统空间状态 表达式
• 系统描述为:
y (n ) a1 y (n1) an1 y an y u
(1)
讨论:状态如何选择
y(t) C (t)x(t) D(t)u(t)
2)线性时不变系统: x Ax Bu y Cx Du
在通常情况下,大多数还是研究线性时不变 系 统,即线性定常系统,因此本课程的主要研究对 象是线性定常系统。
4.状态空间描述的结构图(或称状态变量图)
• 例:根据上例画出结构图. • 解:先将例子写成下述形式
现代控制理论
第一章 状态空间法
控制系统的状态空间描述
一.问题的引出 1 --古典控制理论的局限性 1、仅适用于SISO的线性定常系统(外部描述,
时不变系统) 2、古典控制理论本质上是复频域的方法.(理论) 3、设计是建立在试探的基础上的.(应用) 4、系统在初始条件为零,或初始松驰条件下,才
能采用传递函数.
定义2.状态变量
状态变量是确定系统状态的最小一组变量,如果以最
少的n个变量 x1 (t ), x2 (t ), , xn (t ) 可以完全描述系
统的行为 (即当t≥ 时输入和
t0
在t= t0初始状态给定后,系统的状态完全可以确定),那 么
x1 (t ), x2 (t ), 是一, xn组(t )状态变量.
(2)状态变量选取不唯一,有时选取状态变量仅为数 学描述所需,而非明确的物理意义。
(3)状态变量是系统的内部变量,一般情况下输出是 状态的函数,但输出总是希望可量测的。
(4)仅讨论有限个状态变量的系统。 (5)有限个数的状态变量的集合,称为状态向量。 (6)状态向量的取值空间称为状态空间。
现代控制理论习题解答(第一章)

Ra
La
i f = 常数
ua
f ia D J
ω
ML
【解】: 设状态变量为:
题 1-2 图
⎡ x1
⎢ ⎣
x
2
⎤ ⎥ ⎦
=
⎡ia ⎢⎣ω
⎤ ⎥ ⎦
其中 ia 为流过电感上的电流, ω 电动机轴上的角速度。 电动机电枢回路的电压方程为:
eb 为电动机反电势。 电动机力矩平衡方程为
•
ua = La ia + Ra ⋅ ia + eb
(4) y (4) + 3y + 2y = −3u + u
【解】:
5
在零初始条件下,方程两边拉氏变换,得到传递函数,再根据传递函数求状态空间 表达式。 此题多解,一般写成能控标准型、能观标准型或对角标准型,以下解法供参考。 (1)传递函数为:
状态空间表达式为:
G(s) =
2
s3 + 2s2 + 4s + 6
1⎤
R 2 C1 −1
R2C2
⎥ ⎥ ⎥
⎡ ⎢ ⎣
x1 x2
⎥⎦
⎤ ⎥ ⎦
+
⎡ ⎢ ⎢ ⎣
1
R1C1 0
⎤ ⎥⎥u i ⎦
y = u0 = [0
1]⎢⎡
⎣
x1 x2
⎤ ⎥ ⎦
(2)
设状态变量: x1 = iL 、 x2 = uc 而
1
根据基尔霍夫定律得: 整理得
•
iL = C uc
•
ui = R ⋅ iL + LiL + uc
•
M D = J ω + fω + M L
线性控制系统-现代控制理论基础

第1章 现代控制理论基础
1.1 线性系统的状态空间描述 State Space Description
设系统动态方程为
x Ax Bu y Cx Du
u Rm yRp
状态解:x(t) eA(tt0 ) x(t0 )
t e A(t ) Bu( )d
t0
转移矩阵(定义):(t t0 ) e A(tt0 )
, rank0 n (矩阵及秩)
CAn1
(2)
rank
sI
C
A
n,
s
(复域)
输出能控:线性定常系统输出完全能控的充分必要 条件是:
rank[D CB CAB
CAn1B]m(nrr) m
1.4 标准形 Standard form, Canonical form
x(t
)
xc xc
(t) (t)
A11 0
A12 A22
xc xc
(t ) (t)
B1 0
u(t
)
y(t) C1
C2
xc xc
(t ) (t)
例1: x1 1 0 0 x1 1
P1
Pc1
P1 A
,
P1 0
0
P1
An1
1
U
1 c
0
0
1 b Ab
An1b1
x Pc x Ac Pc1 APc bc Pc1b cc cPc
第二章现代控制理论状态空间表达式

即
(2-11)
(3) 列出状态空间描述iL 1 − ( R + R )C 1 2 R1 L( R1 + R2 ) − R1 1 ( R1 + R2 )C uC ( R1 + R2 )C (2-12) + e(t ) R1 R2 iL R2 − L( R + R ) L( R1 + R2 ) 1 2
§2.1 状态空间描述的概念 2.1.2 控制系统的状态空间描述举例
例2-1 R-L-C系统,求其状态空间描述
R
u
L i
C
uC
解 (1) 确定状态变量 选择电容两端电压 uC (t )、电感通过的电流 i (t ) (2) 列写微分方程并化为一阶微分方程组 基尔霍夫(Kirchhoff)电压定律,
(2-13)
令
1 − ( R + R )C 1 2 A= R1 L( R + R ) 1 2
1 ( R + R )C 2 b= 1 R2 L( R + R ) 1 2
−
R1 ( R1 + R2 )C R1 R2 − L( R1 + R2 )
n 维列向量,状态向量
a12 a1n a22 a2 n an 2 ann
n×n方阵,系统矩阵(或状态矩阵), 反映系统状态的内在联系
§2.1 状态空间描述的概念
现代控制理论3-1线性系统的状态空间描述

x1 , x 2 , ⋯⋯, x n
x1 = y ɺ x2 = y x3 = ɺɺ y ⋮ xn = y ( n −1)
第二步:求各个状态一阶导数,并代入原微分方程,有
ɺ x1 = x2 x = x ɺ 3 2 ⋮ x = x ɺ n−1 n xn = −a0 x1 − a1 x2 − ⋯⋯ − an−1 xn + β 0u ɺ
di 1 + Ri(t ) + ∫ i (t )dt = u (t ) dt C 1 u c (t ) = ∫ i (t )dt C L
(1)取流过电感L的电流i(t)和电容C两端电压uc(t) 作为系统的两个状态变量,分别记作 x1=i1和x2=uc,则有
dx1 L dt + Rx1 + x 2 = u (t ) dx 2 = 1 x 1 dt C y = x2
电路如图1.1所示 系统的控制输入量为u(t),系统输出为u 例1.2 RLC电路如图 所示 系统的控制输入量为 电路如图 所示,系统的控制输入量为 ,系统输出为 c(t) ,建立 系统的状态空间表达式。 系统的状态空间表达式。
解:该RLC电路有两个独立的储能元件L和C, 设回路电流为i(t),根据基尔霍夫电压定律和R、 L、C元件的电压电流关系,可得下列方程
n
x1 = y − β 0 u ɺ xi = xi −1 − β i −1u, i = 2,3, ⋯ , n
其中 β 0 , β 1 , ⋯ , β n −1 是n个待定系数。
根据上述定义有
x1 = y − β 0 u ɺ x 2 = x1 − β1u ɺ xi = xi −1 − β i −1u ɺ x n −1 = x n − 2 − β n − 2 u ɺ x n = x n −1 − β n −1u
现代控制理论 第1章 状态空间描述

得动态方程组 1 x2 x k b 1 x 2 y y u y m m m k b 1 x1 x2 u m m m y x 1
问题:到底有 何区别?
13
状态空间表达式为
1 0 x k x 2 m
如果将储能元件的物理变量选为系统的状态变量,则状态变量的个数 等于系统中独立储能元件的个数
5
基本概念
状态方程:系统状态方程描述的结构图如下图所示
假设:causal system ——现在的输出只取决 于现在和过去的输入, 而与将来的输入无关。
输入引起状态的变化是一个动态过程,每个状态变量的一阶导数与所有 状态变量和输入变量的数学表达(常微分方程ODE)称为状态方程,一般形式 为:
1896192019872006状态变量和状态空间表达式状态变量和状态空间表达式化输入化输入输出方程为状态空间表达式输出方程为状态空间表达式系统的线性变换对角线标准型和约当标准型系统的线性变换对角线标准型和约当标准型由状态空间表达式导出传递函数阵由状态空间表达式导出传递函数阵离散时间系统的状态空间表达式离散时间系统的状态空间表达式时变系统的状态空间表达式时变系统的状态空间表达式从系统黑箱的输入输出因果关系中获悉系统特性传递函数描述属系统的外部描述系统的内部描述白箱系统完整地表征了系统的动力学特征状态空间表达式属系统的内部描述状态变量
x1 f1 ( x1 , x2 f 2 ( x1 , xn f n ( x1 , , xn , u1 , , xn , u1 , , xn , u1 , , um , t ) , um , t ) , um , t )
标量形式,繁琐!
6
矢量形式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 状态空间描述的基本定义及一般形式
一、基本定义与概念
1.状态 动力学系统的状态,较严格和完整的定义,是指能完全描述 或确定系统动态行为的个数最少的一组变量。
定义中的“完全描述或确定” 的含义是指,如果给出了这组变量的各
初值和 t 时0的系统输入量,那么,系统在
能被完全确定。
t时 的0 任何瞬间的行为都
第一章
控制系统的状态空间描述
状态空间描述是线性系统理论,乃至现代控制理 论中,最基本又最重要的内容之一。本章只重点介 绍和讨论建立单输入-单输出线性定常系统状态空间 描述的一些主要方法及相关问题,一是因为所讨论 的方法具有代表性,二是这类系统在工业中目前仍 占有很大比例。
1
本章主要内容
第一节 状态空间描述的基本定义及一般形式 第二节 根据系统机理建立状态空间表达式 第三节 由系统微分方程式转换为状态空间表达式 第四节 由系统传递函数转变为状态空间表达式 第五节 由系统的结构图建立状态空间表达式 第六节 由状态空间描述转换成传递函数描述 第七节 离散控制系统的状态空间描述
.. 状态方程
… 输出方程
8
(3)时变系统
x& A(t)x b(t)u
y c(t)x d(t)u
2、多输入--多输出线性系统
(1)线性定常系统
一多输入多输出线性定常系统,设有r个输入量 u1, u2 ,....., ur
m 个输出量 若有n个状态变量 , 则其状态方程的一般表达式为
x1 a11x1 a12 x2 a1n xn b11u1 b12u2 b1rur
4
6、输出方程 系统输出量与状态变量和输入量之间关系的代数方程。
输出量常用英文小写字母“ y ” 表示。
7、状态空间表达式 状态方程和输出方程一起,称为系统的状态空间表达式, 或称为动态方程式,它构成了对系统动态行为的完整描述。
8、状态变量图 反映系统中各状态变量之间传递关系的图形。
系统的状态空间描述,是通过“状态空间表达式” 或( 和)“状态变量图” 来表示的。
x2 a21x1 a22 x2 a2n xn b21u1 b22u2 b2rur
,
xn an1x1 an2 x2 ann xn bn1u1 bn2u2 bnrur
9
输出方程的一般表达式为 y1 c11x1 c12 x2 c1n xn d11u1 d12u2 d1rur y2 a21x1 a22 x2 c2n xn d21u1 d22u2 d2rur ym cm1x1 cm2 x2 cmn xn bm1u1 dm2u2 dmrur
(1-2)
式(1-1)和式(1-2)构成了描述系统的状态空间表达式。写成向量矩阵式为
+
7
简写成
式中;
x Ax bu
y cx du
x=
b=
C
(2)定常离散系统
线性定常离散系统的状态空间表达式与线性定常连续系统的类同,只是定常
离散系统由向量差分方程组成而巳,简写形式如下
x(k 1) Ax(k) bu(k) y(k) cx(k) du(k)
x
n
xT [x1, x2 ..., xn ]
4. 状态空间 以状态变量 x1, x2 ,..为., x坐n 标轴所构成的
n 维空间。
n 维空间是一个抽象的概念,但可以从《几何学》上的二维空间是一个
平面、三维空间是一个立方体地推广和联想。
5.状态方程 状态变量的导数与状态变量和输入量之间关系的一阶微分方程组 (连续系统)或一阶差分方程组(离散系统)。
5
二、状态空间表达式的一般形式
由定义可知,系统的状态空间表达式,应包含两个方程,一是状态方程, 二是输出方程。
1、单输入--单输出线性系统
(1)定常连续系统 一单输入单输出线性定常连续系统,设u为输入量,y为输出量。若系统有n个状态 变量 ,则根据状态方程的定义,它是由n个一阶微分方程式组成, 一般形式为
(2)线性时变系统
x A(t)x B(t)U Y C(t)x D(t)U
10
3、非线性系统
状态方程,是用n个一阶非线性微分方程式来表示
x&1 f1(x1, x2 ,...xn;u1, u2,..., nr ) x&2 f2 (x1, x2 ,...xn;u1,u2 ,...,ur ) . x&n fn (x1, x2,...;u1,u2,...,ur )
定义中 “个数最少”的含义是指,对于所选定的一组变量,若减少了其中的一个,
则无法确定系统的行为,若再增加一个又没有必要。因此,要选择线性无关的变量
作为状态。
2.状态变量 构成系统状态中的每一个变量。常用 x1, x2 , x3表.....示。 状态变量可以是物理量,或是一些物理量的组合;可以是能测量的,也
x1 a11x1 a12 x2 a1n xn b1u x2 a21x1 a22 x2 a2n xn b2u xn an1x1 an2 x2 ann xn bnu
6
输出方程表达式或一般形式为
(1-1)
y c1x1 c2 x2 cn xn du
可以是不能量测的。但是,从工程角度,状态变量应选择容易测量的物理 量为好,这对系统的分析和实施控制都会比较方便。
3
3、状态矢量 又称状态向量,把状态变量 x1, x2 ,.,..,视xn为向量 的 X (t)
x 分量,则称 X (t为) 状态矢量。常简写为 ,即
x1
xБайду номын сангаас
x
2
..
输出方程的一般表达式为
y1 g1(x1, x2 ,...xn;u1, u2,..., nr ) y2 g2 (x1, x2 ,...xn;u1,u2 ,..., ur ) . ym gm (x1, x2 ,...;u1,u2,...,ur )