第一章系统的状态空间表达式
控制系统的状态空间表达式

第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。
1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。
•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。
状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。
例1.1 设有一质量弹簧阻尼系统。
试确定其状态变量和状态方程。
解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。
现代控制理论(刘豹)第一章

状态变量
状态向量
状态空间
状态方程
状态:表征 系统运动的信 息和行为 状态变量: 能完全表示系 统运动状态的 最小个数的一 组变量
由状态变量 构成的向量 x1(t) x2(t) : xn(t)
以各状态变量 x1(t),x2(t),…… xn(t)为坐标轴 组成的几维空 间。
S nY ( s ) + an −1S n −1Y ( s ) + ... + a0Y ( s ) = bm S mu ( s ) + ... + b0Y ( s )
(bm S m + bm −1S m −1 + ... + b0 ) Y ( s ) Z ( s ) G ( s) = Y ( s) / U ( s) = = ⋅ n n −1 ( S + an −1S + ... + a0 ) Z ( s) U ( s)
& x3 x3
x2 x1
机电工程系
∫
∫
∫
习题2 习题
已知离散系统的差分方程为
y (k + 2) + 3 y (k + 1) + 2 y (k ) = 2u (k + 1) + 3u (k )
试求系统的状态空间表达式,并画出其模拟结构图。
解:假设初始条件为零,系统微分方程的 Z 变换为:
z 2Y ( z ) + 3 zY ( z ) + 2Y ( z ) = 2sU ( z ) + 3U ( z )
S n Z ( s ) + an −1S n −1Z ( s ) + ... + a0 Z ( s ) = U ( s ) Y ( s ) = bn −1S
现代控制理论知识点汇总

1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
2由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。
实现是非唯一的。
方法:微分方程→系统函数→模拟结构图→状态空间表达式。
第一章状态空间表达式第2讲

2021/2/22
2
1.状态变量及状态空间表达式
状态空间描述常用的基本概念:
1. 状态变量 足以完全表征运动状态的最小个数的一组变量。
2. 状态矢量 如果n个状态变量 x 1 (t)、 x2(t)、 ...、 xn(t)表示,并把这 些状态变量看作是矢量 x ( t )的分量,则 就称为状态矢量。
3
1.1 控制系统的状态空间表达式
状态变量应该是相互独立的,且其个数应等于微分方 程的阶数。 一般的,状态变量的个数等于系统储能元件的个数。
例题1-1,用图1-1所示的R-L-C网络电路,说明如何用
状态空间表达是来描述这一系统。
L
R
根据电路定律可列写如下方程:
u
i
C
uc
RiLddtiC 1idtu
y ( n ) a n 1 y ( n 1 ) . . . a 1 y a 0 y b m u ( m ) b m 1 u ( m 1 ) . . . b 1 u b 0 u 相应的传递函数为
W (s)U Y ((s s))b m y u (n ()m ) a n b m 1 y 1 u (n ( m 1 ) 1 ) .... .. a 1 b y 1 u a 0 b y 0 u 实现问题就是根据以上两个式子求出系统状态空间表达式。
y x2
x2C 1iR1C(x1x2)
其向量-矩阵形式为:
x1 x2
R1CRL 1
RC 2021/2/22
RR11C Cxx12RL0u
y 0
1
x1 x2
6
由上可见,系统的状态空间表达式不具有唯一性。 选取不同的状态变量,便会有不同的状态空间表达式, 但它们都描述了同一系统。可以推断,描述同一系统 的不同状态空间表达式之间一定存在着某种线性变换 关系。
现代控制理论_制系统的状态空间表达式

UC (s) U (s)
LCs2
1 RCs
1
传递函数
只反映外部情况,无法获知内部联系
定义状态变量
R +
u(t) i(t)
输入
_
x1(t) uc (t) x2 (t) i(t)
二阶微分方程,选择两个状态变量
状态向量
x(t) [x1(t), x2 (t)]T
定义输出变量
y(t) x1(t)
L +
如何选取内部信息?
•由控制任务决定: 不同的系统有 不同的控制任务。
•选取应全面,应覆盖所有的内部信息
•信息量恰到好处:“少一个不全,多一个多余”, 即线性无关。
1.1 状态变量及状态空间表达式 •状态:系统内部运动信息的集合
•系统状态为各元器 件的电压和电流 •状态变量:用变量来表示状态的话,能完全描述系统 运动状况的个数最小的一组变量即为状态变量。 •特性:线性无关、个数唯一、状态不唯一
第一章 控制系统的状态空间表达式
本章主要内容: • 状态变量及状态空间表达式 • 状态变量及状态空间表达式的系统结构图 • 状态变量及状态空间表达式的建立 • 状态矢量的线性变换 • 从状态空间表达式求传递函数阵
课程回顾
➢经典控制理论描述系统数学模型的方法: 外部描述:时域内为高阶微分方程、复频域内为输入-输 出关系的传递函数;
1 L
uc
(t)
R L
i(t)
1 L
u(t)
选 x1 uc , x2 uc,则得到一阶微分方程组:
即:
x1 x2
x2
1 LC
x1
R L
x2
1 LC
u
0 1 0
x
第一章 状态空间表达式(2013)

Y (s) bm s m bm1 s m1 b1 s b0 W ( s) n U ( s) s a n 1 s n 1 a1 s a 0
cm sm cm1sm1 c1s c0 W (s) ( s p1 )( s p2 ) ( s pn )
K1 T 1s 1
K2 T 2s 1
K3 T 3s 1
y
K4
3 状态空间表达式的建立 3.1 从系统方块图出发 变换成模拟结构图; 每个积分器的输出选作一个状态变量; 写出系统的状态方程和输出方程。
u +
K1 T 1s 1
+
K2 T 2s 1
K3 T 3s
y
K4
K1 T1 +
开环和闭环、反馈
控制的性能指标:稳定性、快速、精度。最优控制
控制理论概述
学控制理论做什么? 系统分析—分析系统的性能
系统设计—设计控制器
所谓系统分析就是在规定的条件下,对数学模型已 知系统的性能进行分析; 所谓系统设计,就是构造一个能够完成给定任务的系统, 这个系统具有希望的瞬态、稳态性能以及抗干扰性能。
f (s) f (t )e dt
0
f (s) sf (s) f (0)
传递函数:线性动态系统零初值条件下输出量的Laplace变 换像函数与输入量的Laplace变换像函数之比。 *线性系统:满足叠加和一致性, 如用线性方程或线性微分方程描述的系统 可以用于分解复杂系统 *定常系统:参数不随时间变化
J u i
x1 i
B
x2
R x1 L x K 2 a J
Kb 1 L x1 L u B x2 0 J
现代控制理论总结

现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。
以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。
随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。
2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。
3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。
即无零,极点对消的传函的实现。
三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。
控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。
将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。
传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。
系统的状态空间表达式

y(n)
a y(n1) n1
a y(n2) n2
a1 y
a0 y
0u
系统的状态空间表达式
1.2 状态空间表达式的建立
2. 根据系统微分方程建立
(2)系统输入量中含有导数项。此时系统微分方程的一般形式为
y(n)
a y(n1) n 1
a y(n2) n2
1.2 状态空间表达式的建立
2. 根据系统微分方程建立
展开后得 其中
x1 y 0u
x2
y
0u
1u
x3
y
0u
1u
2u
xn1
y(n2)
u(n2) 0
u(n3) 1
u n2
xn
y ( n 1)
u(n1) 0
u(n2) 1
u n1
0 bn
1
bn1
an10
2
bn2
an 1 1
因为矩阵 A,B,C,D 描述了状态空间表达式的全部内容,所以线性定常系统的状态
空间表达式也可表示为
(A,B ,C ,D)
此时系统的状态方程为
(A,B)
系统的状态空间表达式
1.2 状态空间表达式的建立
1. 根据系统机理建立
对于简单的线性定常系统,可根据系统的物理、化学机理,按照质量、能量和动量
系统的状态空间表达式
1.1 状态空间表达式的一般形式
状态变量 X 、输入变量 U、输出变量 Y 的维数分别为 n,r,m,则称n n 型矩阵 A 为
状态矩阵或系统矩阵,称 n r 型矩阵 B 为控制矩阵或输入矩阵,称 m n 型矩阵 C 为观测矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
状态空间分析法举例一
u(t) K m
b
例1求图示机械系统的状态空间表达式
m y by k yu(t)
令 x1y x2y 得动态方程组
y(t)
x1 x2
x2
y
k m
y
b m
y
1 m
u
k m
x1
b m
x2
1 m
u
y x1
状态空间表达式为
x1 x2
0
k m
1 b
m
xx12
✓ 系统输入-输出描述
✓ 从系统“黑箱”的输 入-输出因果关系中 获悉系统特性
✓ 传递函数描述属系统 的外部描述
系统的内部描述
✓ 系统的完全描述
✓ 完整地表征了系统的 动力学特征
✓ 状态空间表达式属系 统的内部描述
基本概念
✓ 状态变量:足以完全表征系统运动状态的最小个数的一组变量称 为状态变量
✓ 状态向量(矢量):如果n个状态变量用x1(t)、x2(t)、…、xn(t)表 示,并把这些状态变量看作是矢量的分量,则就称为状态向量 (简称状态)。记作: x [ x 1 ( t ) x 2 ( , t ) , , x n ( t ) T ,] t t 0
的导数等 ✓ 电系统:电压、电流、电荷、磁通及它们的导数等 ✓ 如果将储能元件的物理变量选为系统的状态变量,则状态变量的
个数等于系统中独立储能元件的个数
基本概念
状态方程:系统状态方程描述的结构图如下图所示
输入引起状态的变化是一个动态过程,每个状态变量的一阶导与 所有状态变量和输入变量的数学方程称为状态方程。非线性系统
线性系统输出方程为
y ( t ) C ( t ) x ( t ) D ( t ) u ( t )
状态空间表达式:状态方程和输出方程合在一起,构成对一个系 统完整的动态描述,称为系统的状态空间表达式。线性系统状态 空间表达式可写成
x (t) A (t)x (t) B (t)u (t) y ( t ) C ( t ) x ( t ) D ( t ) u ( t )
✓ 状态空间:状态向量取值的空间,即以状态变量 x1 、x2、…、xn 为坐标轴所构成的n维空间称为状态空间
状态变量的个数与选择
✓ n阶微分方程描述的系统,有n个独立的状态变量。 ✓ 同一个系统状态变量的选择不唯一,但状态变量的个数总是相等,
通常选择容易测量的量。 ✓ 例如: ✓ 机械和液压系统:流量、压力、速度、加速度、位移、力及它们
离散系统状态空间表达式
x(k1)G(k)x(k)H(k)u(k) y(k)C(k)x(k)D (k)u(k)
x(k1)G(xk)H(uk) y(k)C(xk)D(uk)
建立状态方程的步骤
①选择状态变量 ②根据物理或其它机理、定律列写运动微分方程 ③化为状态变量的一阶微分方程组 ④用向量矩阵形式表示
0 1 u m
y 1
0
x1 x2
状态空间分析法举例二
R +
u(t) i(t)
输入
_
L +
+ uc(t) _
y
输出
_
例2求图示RLC回路的状态空间表达式
di LdtRiuc u C duc i
dt
令 x1uc x2i
duc 1 i dt C
ddtiL 1uc
Ri1u LL
状态空间表达式为
第1章 控制系统的 状态空间表达式
本章内容
➢ 状态变量和状态空间表达式 ➢ 化输入-输出方程为状态空间表达式 ➢ 状态方程的对角线和约旦标准型(状态向量的
线性变换) ➢ 由状态空间表达式导出传递函数阵 ➢ 离散时间系统的状态空间表达式 ➢ 时变系统的状态空间表达式
状态变量和状态空间表达式
系统的外部描述
非线性系统状态空间表达式
x f ( x 1 ,x 2 , ,x n , u 1 , u 2 , , u m , t ) y g ( x 1 ,x 2 , ,x n , u 1 , u 2 , , u m , t )
时变系统和定常系统
时变系统状态空间表达式
x f ( x 1 ,x 2 , ,x n ,u 1 ,u 2 , ,u m ,t ) y g ( x 1 ,x 2 , ,x n , u 1 , u 2 , , u m , t ) x (t) A (t)x (t) B (t)u (t) y ( t ) C ( t ) x ( t ) D ( t ) u ( t )
系统的分类
➢ 线性系统和非线性系统 ➢ 时变系统和时不变系统(定常系统) ➢ 连续系统和离散系统 ➢ 确定性系统和随机系统
线性系统和非线性系统
线性系统状态空间表达式
x (t) A (t)x (t) B (t)u (t)
y ( t ) C ( t ) x ( t ) D ( t ) u ( t )
连续系统和离散系统
连续系统状态空间表达式
x f ( x 1 ,x 2 , ,x n ,u 1 ,u 2 , ,u m ) y g ( x 1 ,x 2 , ,x n ,u 1 ,u 2 , ,u m ) x (t)A x (t)B u (t) y ( t) C x ( t) D u ( t)
定常系统状态空间表达式
x f ( x 1 ,x 2 , ,x n ,u 1 ,u 2 , ,u m ) y g ( x 1 ,x 2 , ,x n ,u 1 ,u 2 , ,u m ) x (t)A x (t)B u (t) y ( t) C x ( t) D u ( t)
x1
x2
0
1
L
1
C R
x1 x2
0 1
L
u
L
yБайду номын сангаас 1
0
x1 x2
状态空间表达式状态变量图
D
u
•
x
x
y
B
∫
C
状态空间表达式
A
x (t)A x (t)B u (t) y ( t) C x ( t) D u ( t)
状态方程为x f ( x 1 ,x 2 , ,x n , u 1 ,u 2 , ,u m ,t )
线性系统状态方程为
x (t) A (t)x (t) B (t)u (t)
基本概念
输出方程:描述状态与输入一起引起输出的变化是一个代数方程
称为输出方y 程 。g ( 非x 1 , 线x 2 性, 系, 统x n 输, u 1 出, u 方2 , 程为, u m , t )