控制理论(状态空间表达式)讲解
控制系统状态空间法

控制系统状态空间法控制系统状态空间法是现代控制理论中常用的一种方法,它描述了控制系统的动态行为,并通过状态变量来表示系统的内部状态。
在这篇文章中,我们将详细介绍控制系统状态空间法的基本概念、理论原理以及应用。
一、控制系统状态空间法的基本概念状态空间法是一种描述动态系统的方法,通过一组一阶微分方程来表示系统的动态行为。
在这个方法中,我们将控制系统看作是一个黑盒子,输入和输出之间的关系可以用状态方程和输出方程来描述。
1. 状态方程状态方程描述了系统的内部状态随时间的演化规律。
它是一个一阶微分方程组,通常用向量形式表示:ẋ(t) = Ax(t) + Bu(t)其中,x(t)表示系统的状态向量,A是状态转移矩阵,B是输入矩阵,u(t)是输入向量。
2. 输出方程输出方程描述了系统的输出与内部状态之间的关系。
它通常用线性方程表示:y(t) = Cx(t) + Du(t)其中,y(t)表示系统的输出向量,C是输出矩阵,D是直接传递矩阵。
3. 状态空间表示将状态方程和输出方程合并,可以得到系统的状态空间表示:ẋ(t) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)在状态空间表示中,状态向量x(t)包含了系统的所有内部状态信息,它决定了系统的行为和性能。
二、控制系统状态空间法的理论原理控制系统状态空间法基于线性时不变系统理论,通过分析系统的状态方程和输出方程,可以得到系统的稳定性、可控性和可观测性等性质。
1. 系统稳定性系统稳定性是判断系统是否能够在有限时间内达到稳定状态的重要指标。
对于线性时不变系统,当且仅当系统的所有状态变量都是稳定的,系统才是稳定的。
通过分析状态方程的特征值,可以判断系统的稳定性。
2. 系统可控性系统可控性表示是否可以通过选择合适的输入来控制系统的状态。
一个系统是可控的,当且仅当存在一组输入矩阵B的列向量线性组合可以使得系统的状态从任意初始条件变为目标状态。
通过分析状态转移矩阵的秩,可以判断系统的可控性。
现代控制理论状态空间法

根据系统微分方程建立状态空间表达式.
1.输入项中不含输入导数项的线性系统空间状态 表达式
• 系统描述为:
y (n ) a1 y (n1) an1 y an y u
(1)
讨论:状态如何选择
y(t) C (t)x(t) D(t)u(t)
2)线性时不变系统: x Ax Bu y Cx Du
在通常情况下,大多数还是研究线性时不变 系 统,即线性定常系统,因此本课程的主要研究对 象是线性定常系统。
4.状态空间描述的结构图(或称状态变量图)
• 例:根据上例画出结构图. • 解:先将例子写成下述形式
现代控制理论
第一章 状态空间法
控制系统的状态空间描述
一.问题的引出 1 --古典控制理论的局限性 1、仅适用于SISO的线性定常系统(外部描述,
时不变系统) 2、古典控制理论本质上是复频域的方法.(理论) 3、设计是建立在试探的基础上的.(应用) 4、系统在初始条件为零,或初始松驰条件下,才
能采用传递函数.
定义2.状态变量
状态变量是确定系统状态的最小一组变量,如果以最
少的n个变量 x1 (t ), x2 (t ), , xn (t ) 可以完全描述系
统的行为 (即当t≥ 时输入和
t0
在t= t0初始状态给定后,系统的状态完全可以确定),那 么
x1 (t ), x2 (t ), 是一, xn组(t )状态变量.
(2)状态变量选取不唯一,有时选取状态变量仅为数 学描述所需,而非明确的物理意义。
(3)状态变量是系统的内部变量,一般情况下输出是 状态的函数,但输出总是希望可量测的。
(4)仅讨论有限个状态变量的系统。 (5)有限个数的状态变量的集合,称为状态向量。 (6)状态向量的取值空间称为状态空间。
控制系统的状态空间表达式

式中:x
x2
xn
CT c1 c2 cn
a11
a12
a1n
A
C
若矩对阵caac122n于形1111 一式个 为ccaa多12n22222输入多 输出系ccaa12统n2nnnn, 其m状n态nn空维维间输系表出统 达矩式矩阵的阵
非线性状态方程不可能写成(1-1)的形式,只能一般地表示为:
x f (x, u, t),
其中 f 是 n 维函数列向量。上式也可展开写成
x
1
f1 (x1, x2 ,, xn
;
u1, u2 ,, ul ; t)
x 2
f 2 (x1, x2 ,, xn
;
u1, u2 ,, ul ; t)
出方程
输出量:系统需要着重研究的受控量。
输出量的数目不限,而且可以选择某些受控量的线性组 合作为输出量,或是输出量与受控量的线性组合。
在例1-1中,若指定Uc为输出量,即:u=Uc=X1,
则有输出方程:
y 1
x1
0
x2
或 y CT x ; CT 1 0
x n f n (x1, x2 ,, xn ; u1, u2 ,, ul ; t)
三、状态空间表达式的系统方块图 参见课本P14
四、状态空间表达式的模拟结构图
与状态空间系统方块图不同,模拟结构图反映的是系统各状态变量 之间的信息传递,而方块图表示的是系统整体信号传递的关系。状 态空间的模拟结构图有助于系统的状态空间表达式的建立。
控制理论lesson4§1- 2.微分方程转换成状态空间表达式

bn z y b0 z ( n) b1z ( n1) bn1z
这种形式的状态空间表达式中A,B,所具 有的特殊形式,称为能控标准型。
若b0 0
即输入函数阶次低于输出阶次
y bn bn1 b1 x
即输出矩阵各元可由方程系数直接写出
例
将以下高阶微分方程:
其中:A为一种规范形称为友矩阵,D=0无直联 通道.
例:
6 y 6u y 6 y 11y
解:直接按能控标准写出: a1 6, a2 11, a3 6, b 6
0 A 0 6 C 1 0 1 0 0 0 0 1 , b 11 6 6 0 , D0
1
an 1
0 x1 0 x 2 u 0 1 xn 1 a1
这种A,B,的特殊形式,称为能控标准型。
而输出方程为 :
y bn a n b0 bn 1 a n 1b0
0 an 1
Y 1 0 0 X
y a1 y
n
n1
an y b0u bu 1
n
n1
bnu bn1u
uz
( n)
a1z
( n1)
an z an1z
若选状态变量为
x1 z x z 2 x z n 1 n
二.输入项中包含有导数项:
y a1 y
n n1
an y b0u bu 1
n
n1
bnu bn1u
若按相变量法选状态, 则出现解的不唯一性
x1 y x y 2 x y n 1 n
控制理论lesson5§1.3由传递函数求状态空间表达式

0 1 0 1
0
A a2
a1
6
5
, B 1
C b2 a2b0 b1 a0b0 5 3 , D b0 1
若将传递函数化成严格真有理分式,则 G(s) 1 3s 5 s2 5s 6
按简化公式可得:
A
0 6
1 5
B
0 1
,
C b1 b2 5 3
• 10、你要做多大的事情,就该承受多大的压力。12/12/
2020 2:15:53 PM14:15:532020/12/12
• 11、自己要先看得起自己,别人才会看得起你。12/12/
谢 谢 大 家 2020 2:15 PM12/12/2020 2:15 PM20.12.1220.12.12
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1214:1 5:5314: 15:53D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 2时15 分53秒1 4:15:53 20.12.1 2
中间变量z及z的各阶导数为一组变量时,得到的
状态方程是能控标准形实现。即式中的A和B阵。 显然这是与系统结构相对应的一种规范形实现。
分解式第二部分表示状态变量与输出的关系, 输出y等于各状态变量与输入的线性组合,即式中 的C和D阵。
若传递函数等效为:
G(s)
b0
b1s n1 b2 s n1 bn1s s n a1s n1 an1s
此时,输出仅是状态变量的线性组合,与输入 无直接关系。
例:已知系统的传递函数
现代控制理论知识点汇总

1.状态空间表达式n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯:r n B ⨯:n m C ⨯:rm D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3.模拟结构图(积分器加法器比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4.状态空间表达式的建立1由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
2由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。
实现是非唯一的。
方法:微分方程→系统函数→模拟结构图→状态空间表达式。
状态空间表达式名词解释

状态空间表达式名词解释
状态空间表达式是一种描述系统动态行为的数学模型,通常是用微分方程的形式表达出来。
状态空间模型包括了系统的全部动态信息,即它描述了系统的所有状态如何随时间变化。
状态空间模型是现代控制理论的基础,也是许多先进控制策略设计的重要工具。
状态空间表达式的构成主要包括状态变量、控制输入变量与输出变量。
状态变量是描述系统状态的最少数量的变量,决定了系统的运动状态,反映了系统过去
发展到现在的历史,在任何给定时刻,状态变量集合的值可以确定系统的全部行为。
控制输入变量是由外部控制系统的量,它影响系统的状态变量的变化。
输出变量是系统对外输出的量,它受系统的状态变量和控制输入变量的共同影响。
一般来说,状态空间模型的建立需要通过确定状态变量、控制输入变量和输出变量,然后根据它们之间的功能关系,以微分方程的形式给出状态空间表达式。
这种模型描述了系统内部的动态行为,不仅能够反映系统在任何状态下的动态响应,还可以预测系统未来的运动状态。
总体上,状态空间表达式主要用于系统分析和设计,包括稳定性分析、可控性和可观测性分析以及控制器设计等。
在实际工程中,状态空间表达式也被广泛应用于各类系统的建模和仿真,例如机械系统、电子系统、环境系统和经济系统等。
通过状态空间建模,工程师能全面了解系统的特性和行为,从而实现有效的系统分析和设计。
现代控制理论(第二章)讲解

sI
A 1
s 2
s3
1 1 s 3
(s
1)(s 2
2)
(s 1)(s 2)
1
(s
1)(s s
2)
(s 1)(s 2)
s3
e At
L1
(s
1)( s 2
2)
(s 1)(s 2)
EAST CHINA INSTITUTE OF TECHNOLOgy
第二章 控制系统状态空间表达式的解
2.1 线性定常齐次状态方程的解(自由解) 2.2 矩阵指数函数——状态转移矩阵 2.3 线性定常系统非齐次方程的解 2.4 * 线性时变系统的解 2.5 * 离散时间系统状态方程的解 2.6* 连续时间状态空间表达式的离散化
(s
1)( s 2
2)
(s 1)(s 2)
1
(s
1)( s s
2)
(s 1)(s 2)
eAt L1
sI A 1
2et e2t 2et 2e2t
et e2t
et
2e2t
et
2e2t
例2-6,利用凯莱-哈密顿定理— -----------------自学! 例2-3与例2-7也请注意自学!
EAST CHINA INSTITUTE OF TECHNOLOgy
2.3 线性定常系统非齐次方程的解
现在讨论线性定常系统在控制作用 方程为非齐次矩阵微分方程:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1-0 概 述
§1-1 状态变量及状态空间表达式
§1-2 状态空间表达式的建立 §1-3 状态变量的线性变换 §1-4 从状态空间表达式求系统传递函数 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
x1 a11 x1 a12 x2 x2 a21 x1 a22 x2 xn an1 x1 an 2 x2
输出方程:
a1n xn b1u a2 n xn b2u ann xn bnu
y c1 x1 c2 x2
cn xn
用向量矩阵表示状态空间表达式则为:
一.从系统方块图出发建立状态空间表达式 三个步骤: 第一步:在系统方块图的基础上,将各环节通 过等效变换分解,使得整个系统只有标准积分器 (1/s)、比例器(k)及其综合器(加法器)组 成,这三种基本器件通过串联、并联和反馈三种形
式组成整个控制系统。
第二步:将上述变换过的方块图中的每个标准积
分器(1/s)的输出作为一个独立的状态变量xi,积分
§1-2状态空间表达式的建立
用状态空间法分析系统时,首先要建立给定系 统的状态空间表达式.这个表达式一般可以从三 个途径求得:一是由系统方块图 来建立,即根据 系统各个环节的实际连接,写出相应的状态空间 表达式;二是从系统的物理或化学的机理 出发进 行推导;三是由描述系统运动过程的高阶微分方 程或传递函数 予以演化而得.
二.状态矢量
如果n个状态变量用X1(t),X2(t), …,Xn(t)表示,并
把这些状态变量看作是矢量X(t)的分量,则X(t)就称 为状态矢量.
x1 (t ) x ( t ) 2 x (t ) xn (t )
x(t ) x1 (t )
x2 (t )
§1-1状态变量及状态空间表达式
一.状 态 变 量
足以完全表征系统运动状态的最小个数的一组变 量为状态变量.一个用n阶微分方程描述的系统,就有n 个独立变量,当n个独立变量的时间响应都求得时,系 统的运动状态就被揭示无疑了.因此可以说该系统的
状态变量就是n阶系统的n个独立变量.
同一系统中,究竟选取哪些变量作为独立变量,这 不是唯一的,重要的是这些变量应该是相互独立的,且 其个数应等于微分方程的阶数;又由于微分方程的阶 数唯一的取决于系统中独立储能元件的个数,因此状 态变量的个数就应等于系统独立储能元件的个数.
众所周知,n阶微分方程式要有唯一的解,必须 知道n个独立的初始条件,很明显,这个独立的初始 条件就是一组状态变量在初始时刻的值. 状态变量是既足以完全确定系统运动状态而个 数又是最小的一组变量,当其在t=to时刻的值已知, 则在给定t≥to时间的输入作用下,便能完全确定系
统在任何t≥to时间的行为.
和经典控制理论类似,可以用方块图表示系统信 号的传递关系. 将状态方程表示的系统动态方程用方块图表示为 如图所示。系统有两个前向通道和一个状态反馈回路 组成,其中D通道表示控制输入U到系统输出Y的直接 转移。
§1-0 概 述 §1-1 状态变量及状态空间表达式
§1-2 状态空间表达式的建立
§1-3 状态变量的线性变换 §1-4 从状态空间表达式求系统传递函数 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
根据函数向量的不同情况,一般控制系统可以分 为如下四种:
线性定常(时不变)系统
线性时变系统; 非线性定常系统;
非线性时变系统。
在本课程中,我们主要考虑线性定常系统(LTI)。 这时,系统的动态方程可以表示如下:
单输入-单输出定常系统,其状态变量为 x1 , x2 , 则状态方程的一般形式为:
xn
§1 – 0
概
述
在经典控制理论中,对一个线形定常系统,可用 常微分方程或传递函数加以描述,可将某个单变量作 为输出,直接和输入联系起来.实际上系统除了输出 量这个变量之外,还包含有其他独立变量,而微分方
程或传递函数对这些内部的中间变量是不便描述的,
因而不能包含系统的所有信息.
在用状态空间法分析系统时,系统的动态特性是
x Ax bu y C x
T
对于一个复杂系统,具有r个输入,m个输出, 此时状态方程和输出方程变为:
写成矢量矩阵形式:
上式中,Anxn称为系统矩阵,Bnxr称为 输入(或控制)矩阵。A由系统内部结构及其 参数决定,体现了系统内部的特性,而B则 主要体现了系统输入的施加情况。 • Cmxn矩阵称为输出矩阵,它表达了输 出变量与状态变量之间的关系,Dmxr矩阵称 为直接传递矩阵,表示了控制向量U直接转 移到输出变量Y的转移关系。 •
xn (t )
T
三.状态空n 为坐标轴所构成的n维
状态方程
由系统的状态变量构成的一阶微分方程组称为
系统的状态方程.
五. 输出方程
在指定系统输出的情况下,该输出与状态变量间
的函数关系式,称为系统的输出方程.
六. 状态空间表达式
状态方程和输出方程总和起来,构成对一个系统 完整的动态描述,称为系统的状态空间表达式.
第
一
章
控制系统状态空间表达式
§1-0 概述 §1-1 状态变量及状态空间表达式 §1-2 状态空间表达式的建立 §1-3 状态向量的线性变换 §1-4 从状态空间表达式求系统传递函数阵 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
§1-0 概 述
§1-1 状态变量及状态空间表达式 §1-2 状态空间表达式的建立 §1-3 状态变量的线性变换 §1-4 从状态空间表达式求系统传递函数 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式