第二章_状态空间表达式的解

合集下载

第2章(4)-控制系统的状态空间表达式

第2章(4)-控制系统的状态空间表达式

2-5 系统状态方程的线性变换2-5-1 系统状态空间表达式的非唯一性系统动态方程建立,无论是从实际物理系统出发,还是从系统方块图出发,还是从系统微分方程或传递函数出发,在状态变量的选取方面都带有很大的人为的随意性,因而求得的系统的状态方程也有很大的人为因素,很大的随意性,因此会得出不同的系统状态方程。

实际物理系统虽然结构不可能变化,但不同的状态变量取法就产生不同的动态方程;系统方块图在取状态变量之前需要进行等效变换,而等效变换过程就有很大程度上的随意性,因此会产生一定程度上的结构差异,这也会导致动态方程差异的产生;从系统微分方程或传递函数出发的系统实现问题,更是会导致迥然不同的系统内部结构的产生,因而也肯定产生不同的动态方程。

所以说系统动态方程是非唯一的。

虽然同一实际物理系统,或者同一方块图,或同一传递函数所产生的动态方程各种各样,其独立的状态变量的个数是相同的,而且各种不同动态方程间也是有一定联系的,这种联系就是变量间的线性变换关系。

设给定的系统为:作线性变换:Tz x = 即x T z 1-=T --为非奇异矩阵(变换矩阵)则:Bu T ATz T z11--+= , ()()01100x T x T z --== 因为T 为任意非奇异矩阵,所以状态空间表达式为非唯一的。

2-5-2系统特征值的不变性及系统的不变量 1. 系统特征值 特征方程:0=-A I λ系统特征值即为特征方程的根。

2. 系统的不变量与特征值的不变性 系统经非奇异变换后,其特征值是不变的。

证明:系统经非奇异变换后,得 其特征方程为:()AI A I T T T A I TTA I T AT T T T AT T T T AT T I -=-=-=-=-=-=---------λλλλλλλ11111111所以,特征值是不变的。

因为 00111=++++=---a a a A I n n n λλλλ所以,1210,,,--n n a a a a 是不变的,为系统的不变量。

现代控制理论知识点汇总

现代控制理论知识点汇总

现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

第二章 状态空间表达式

第二章 状态空间表达式
y (t ) = Cx(t ) + Du(t )
⎧ y1 = x = x1 ⎪ & = x2 ⎨ y2 = x ⎪ y = && ⎩ 3 x
⎛ ⎛ y1 ⎞ ⎜ 1 ⎜ ⎟ ⎜ y = 0 ⎜ 2 ⎜ ⎟ ⎜y ⎟ ⎜ k ⎝ 3 ⎠ ⎜− ⎝ m
⎞ ⎛ ⎜ 0 0 ⎟ ⎟ ⎛ x1 ⎞ ⎜ 1 ⎟⎜ ⎟ + ⎜ 0 x 2⎠ ⎜ ⎝ ⎟ f 1 − ⎟ ⎜− m⎠ ⎝ m
外部描述:微分方程、传递函数 数学模型
{
u
R(s) ( )
G (s )
C(s) ( )
内部描述:状态空间表达式

x(t ) = Ax(t ) + Bu(t ) y (t ) = Cx(t ) + Du(t )
y

动力学部件
输入引起内部状态 的变化,用一阶微 分方程组表示----状 态方程
x
输出部件
内部状态和输入引 起输出的变化,用 代数方程表示----输 出方程
统的输入量,质量的位移y(t)为输出量,试列写该系统的状 态方程和输出方程。
k u(t) m f y (t )
1.选择状态变量: x1 (t ) = y (t ) 、 x 2 (t ) = y(t )
2.列写状态方程

x1 (t ) = x 2 (t )
1 x 2 (t ) = − m
• • ⎤ ⎡ 1 u (t ) ⎢ ky (t ) + f y (t )⎥ + ⎣ ⎦ m k f 1 =− x 1 (t ) − x 2 (t ) + u (t ) m m m
⎞ 0⎟ ⎟⎛ F ⎞ 0 ⎟⎜ ⎟ V ⎝ ⎠ ⎟ f ⎟ m⎠

状态空间表达式的解

状态空间表达式的解

2020/6/4
***状态转移矩阵的基本性质**** 性质1:组合性质
e A e A t e A ( t ) ( t) () ( t )
性质2: e A ( t t) e 0 I ( t t ) ( t ) ( t ) I
性质3: 转移矩阵的逆意味着时间的逆转
e A 1 t e A t ( t) 1 ( t)
【例2-8】求下列状态方程在单位阶跃函数作用下的输出:
解:根据上面的式子
其中
, K=1
2020/6/4
在例2-6中已求的:
2020/6/4
其状态轨迹图可以MABLAB方便地绘出,如图所示: %Example Example 2-8 grid; xlabel('时间轴'); ylabel('x代表x1,----*代表x2'); t=0:0.1:10; x1=0.5-exp(-t)+0.5*exp(-2*t); x2=exp(-t)-exp(-2*t); plot(t,x1,'x',t,x2,'*') end
两边同时在
区间积分,得:
两边同时左乘 即:
并整理得:
2020/6/4
当初始时刻为t0=0时,初始状态x(t0)=x(0)时,其解为:
x (t) (t)x (0 ) 0 t (t )B() u d ,
当初始时刻为t0时,初始状态x(t0)时,其解为:
t
x (t) (t t0)x (t0 )t0 (t)B ()u d
1 t
1 t 2 ... 2!
(n
1 - 1)!
t
n1
0
1
t
...
(n
1 - 2)!

线性控制理论 第2章 状态空间表达式的求解

线性控制理论 第2章 状态空间表达式的求解
Φ(t1 t2 ) e A(t1 t2 ) 1 2 1 k 2 I A(t1 t2 ) A (t1 t2 ) A (t1 t2 ) k 2! k! 1 2 2 1 2 2 ( I At1 A t1 )(I At2 A t2 ) 2! 2! Φ(t1 )Φ(t2 )
12t 2 0 2 2 2 t 1 2! 0 2 2 n t
1 2 2 1 t t 0 1 1 2! 1 2 2 1 2 t 2 t 2! 1 2 2 0 1 n t n t 2!
1
1 2 1 m 1 t t 2! (m 1)! t (2-21) 1 2 1 t 2! t 1 mm
证明 因
12 1 1 0 1 2 ,A A 0 1 1 1 mm 21
x(t ) Φ(t ) x(0),t 0
上式表明齐次状态方程的解,在初始状 态确定情况下,由状态转移矩阵惟一确定,
即状态转移矩阵包含了系统自由运动的全部
信息,完全表征了系统的动态特性。
定义2.1
线性定常系统状态转移矩阵 Φ(t t0 ) 是
满足矩阵微分方程和初始条件
(t t ) AΦ (t t ), t t Φ 0 0 0 Φ (t0 t0 ) I
(2-3)
(t ) b1 2b2t kbk t x
( k 1)

k
Ax (t ) A(b0 b1t b2t bk t )
2ቤተ መጻሕፍቲ ባይዱ
比较上式两边t的同次幂可得

现代控制系统课件第2章

现代控制系统课件第2章

2021/1/4
5
2.2 矩阵指数函数——状态转移矩阵 2.2.1 状态转移矩阵
齐次微分方程的自由解为: x(t) eAt x0

x(t) e A(tt0 ) x0
从这个解的表达式可知,初始时刻的状态矢量x0, 到任意t>0或t>t0时刻的状态矢量x(t)的一种矢量变换 关系,变换矩阵就是矩阵指数函数 eAt 。
2021/1/4
27

x1 x2
0 2
1 3
x1 x2
0 1u
求 u(t) 为单位阶跃函数时,系统状态方程的解 (设
初始状态为零).
解:
(t)
e At
2et 2et
e2t 2e2t
et e2t
et
2e2t
x(t) e At x(0) 0te A(t ) Bu( )d
0 1
例:已知 A 2 3 ,求eAt
解: s 1
sI A 2 s 3
2021/1/4
19
(sI A) 1
1 sI A
adj (sI
A)
(s
1 1)(s
2)
s 3
2
1 s
s3
(
s
1)( s 2
2)
(s 1)( s 2)
1
(s
1)( s s
2)
(s 1)( s 2)
x(t) eAt x0 , t 0
2021/1/4
2
证明: 和标量微分方程求解类似,先假设式齐次状 态方程的解x(t)为t的矢量幂级数形式,即:
x(t) 0 1t 2t 2 iti
**
代入齐次状态方程中, 得
1 22t iit i1

现代控制理论基础第二章习题答案

现代控制理论基础第二章习题答案

第二章 状态空间表达式的解3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。

(1) ⎥⎦⎤⎢⎣⎡-=2010A (2) ⎥⎦⎤⎢⎣⎡-=0410A (3) ⎥⎦⎤⎢⎣⎡--=2110A (4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=452100010A (5)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000010A (6)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλ000100010000A 【解】:(1) (2) (3) (4)特征值为:2,1321===λλλ。

由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=421211101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1211321201P线性变换后的系统矩阵为:(5)为结构四重根的约旦标准型。

(6)虽然特征值相同,但对应着两个约当块。

或}0100010000{])[()(1111----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。

【解】:(1) (2)特征方程为: 特征值为:2,1321===λλλ。

由于112==n n ,所以1λ对应的广义特征向量的阶数为1。

求满足0)(11=-P A I λ的解1P ,得:0110000000312111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得:对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==110010001321P P P P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1100100011P 线性变换后的系统矩阵为:(3)特征值为:2,1321===λλλ。

状态空间表达式的解

状态空间表达式的解

第2章 状态空间表达式的解第1节 线性定常齐次状态方程的解线性定常齐次状态方程0(0)x Ax x x ==& 的解为0()Atx t e x = (0)t >式中,22()2!!kAt k t At e I At A k ∞∆==+++=∑L 证明:用拉普拉斯变换法。

对 x A x =& 作拉氏变换,得0()()sX s x AX s -=10()()X s sI A x -=-110()[()]x t L sI A x --=-因为 223111()()sI A I A A I s s s -+++=L故 1223111()sI A I A A s s s --=+++L12023111()[]x t L I A A x s s s -=+++L 2201()2!I At A t x =+++L 0Ate x =顺便可知])[(11---=A sI L eAt第2节 矩阵指数函数Ate1、Ate 的定义和性质(1)定义22()2!!kAtk t At e I At A k ∞==+++=∑L 式中 A —线性定常系统系统矩阵,n n ⨯阶;Ate —矩阵指数函数,n n ⨯阶时变矩阵。

若A 中各元素均小于某定值,Ate 必收敛;若A 为实矩阵,Ate 绝对收敛。

(2)基本性质:◆组合性质:)(2121t t A At At ee e += 其中21,t t 为相衔接的两时间段。

推论1:I eeee A t t A t A At ===--0)()(推论2:)(1][t A At ee --=◆微分性质:A e Ae e tAt At At ==d d ◆当A 、B 两阵可交换,即 BA AB =,则tB A BtAt ee e )(+=◆若1-P 存在,则P e P eAAPP 11-=-2、Ate 的计算 (1)级数计算法()!kAtk At e k ∞==∑ (2)拉氏变换法])[(11---=A sI L eAt当A 阵维数较高时,预解矩阵可采用递推法计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(t) eAt x(0) A1 (eAt I )BK
(3)斜坡 u(t) K t 1(t) 输入下的解为:(使用条件A的逆存在)
x(t) eAt x(0) [A2 (eAt I ) A1t]BK
注意:线性系统的输出输入特性。
返回
四.线性时变系统状态方程的解
,则


(t)

e At

et
cost sin t
sin t cos t
ቤተ መጻሕፍቲ ባይዱ 1 0 0
[举例1]: 若
A


0 0

0
1 0 0
0 3 0
0

0

4
e te 1t
1t
0
0

e At


0
0
e 1t
0
其中:
1 1 0 0
0
初始状态引起的解: x(t) (t)x(0)
输入作用引起的解:
t
x(t) (t )Bu( )d
0
由输出方程可以求出系统的输出解。
Laplae变换求解
状态方程两边同时求拉氏变换得:
X (s) (sI A)1 x(0) (sI A)1 BU (s)
x(t) L1[(sI A)1 x(0) (sI A)1 BU (s)] L1[(sI A)1 x(0)] L1[(sI A)1 BU (s)]
2!
i!
返回
2. 齐次方程解的物理意义
由初始条件引起的运动规律为齐次方程的
解 x(t) eAt x(0) 确定的,状态向量在任意时
刻t1的取值可由
x(t ) eAt1 x(0) 1
获得。并可以
在以x(t)向量为坐标系的n维状态空间里绘
制系统状态随时间运动的轨迹,称为状态轨迹。
返回
3. 状态转移矩阵的引出 系统由初始条件引起的运动的规律及特性主
y[kT] Cx(kT) Du (kT)
[例8]:P89 例2-12。
例题
(3) 近似离散化
连续系统状态方程:
x(t) A(t)x(t) B(t)u(t)
当T足够小时,有
x(t) x[(k 1)T ] x(kT ) T
代入连续系统状态方程中得:
x(t) x[(k 1)T ] x(kT) T
(4) (t t ) (t )(t )
1
2
1
2
(5) 1 (t) (t) 状态转移矩阵的逆为时间的逆转。
(6)
(t t )(t t ) (t t )
2
1
1
0
2
0
(7) (t)k (kt)
e e e (8) 若 A B B A ,则有 ( AB)t
e4t
返回
3.一般状态转移矩阵的求法
(1) 利用定义计算
eAt (I At 1 A2t 2 1 Aiti )
2!
i!
(2) 利用Laplace变换计算 eAt L1 (sI A)1
推导
(3) 化A阵为对角型或约旦标准型计算 (利用状态转移矩阵的性质计算)
系统的状态与输出的形式取决与系统结构 初始条件和输入信号的形式,所以在系统为 典型输入信号作用时的状态解和输出解的形 式可以依据上述通式导出。
返回
2. 典型输入下非齐次方程的解
(1) 脉冲 u(t) K (t) 输入下的解为:
x(t) eAt x(0) eAt BK
(2) 阶跃 u(t) K 1(t) 输入下的解为:(使用条件A的逆存在)

1k
0
0
2 k
0
0

0 0 3

0
0
3k

G为约旦型
(k) Gk


0
1 k k



0
kk 1
k

G可化对角型(变换阵为P)
(k)

Gk

k
P
1
0
0
k 2
0 0
G可化约旦型(变换阵为P)
(k)
nn nn
nn nn
At Bt
注:上述性质由定义导出。 p59
返回
x(t) (I At 1 A2t 2 1 Aiti )x(0) eAt x(0)
2!
i!
2. 几个典型形式的状态转移矩阵
(1)若 1
为对角阵,则
e 1t

A
2



得系统状态的迭代计算式为:x(k ) Gk x(0) Gk j1Hu ( j) j0 注:计算结果为逐点形式,便于计算机运算,但有累积误差。
与连续状态方程的求解公式在形式上类似
(2) z 变换法
x(k 1) Gx(k) Hu(k) zx(z) zx(0) Gx(z) Hu(z) (zI G)x(z) zx(0) Hu(z) x(z) [(zI G)1 z]x(0) (zI G)1 Hu(z) x(k) Z 1[(zI G)1 z]x(0) Z 1[(zI G)1 Hu(z)]
要取决与eAt,eAt是由系统矩阵A唯一确定的。系
统由输入引起的运动规律除了和输入信号的大小
形式有关与系统的结构及eAt的形式也密切相关,
定义 (t) [eAt ] 为系统状态转移矩阵。显然, nn
状态空间表达式的求解关键在于求取系统的状态 转移矩阵。 x(t) Ax(t) x(t) eAt x(0)

n

(t) eAt

e2t


e
n
t

(2)若 T-1AT=
1



2


为对角阵,则


n

e 1t (t) eAt T
e2t



T 1
e
nt

(3)A=


求特征值和特征向量
由变换阵P化A为对角阵或约旦标准型
求对角阵或约旦标准型所对应的状态转移矩阵
求原矩阵A的状态转移矩阵。
返回
三.线性定常非齐次状态方程的解
1、非齐次方程解的通式
直接求解
Laplace变换求解
2、典型输入下非齐次方程解 脉冲输入 阶跃输入 斜坡输入
返回主页
请参考书上内容自 学,本课程对此不做要 求。返回主页
五.离散系统状态方程的解
1、差分方程组的求解方法
迭代法 Z变换法
2、引入状态转移矩阵,简化离散 系统状态方程的求解
返回主页
1. 差分方程组的求解方法(1)
x(k 1) Gx(k) Hu(k)
(1) 迭代法
k 0, x(1) Gx(0) Hu(0) k 1, x(2) Gx(1) Hu(1)
3. 线性定常系统状态方程的离散化方法
(1) 化连续状态方程为离散状态方程
连续系统状态方程: x(t) Ax(t) Bu(t)
理论推导可得:取
G(T ) e AT ,
T
H (T ) e At Bdt
为采样周期,
0
时,T
则离散化以后的状态空间表达式为:
x[(k 1)T ] G(T )x(kT) H (T )u(kT)

Gk

k
P 0
0
0

P
1
3
k

kk k
1

P
1
(3)状态转移矩阵的性质
(k 1) Gk1 (k)G
(0) G0 I
返回
六. 连续系统的离散化
1. 连续系统离散化的意义 意义 2. 连续系统离散化的假设条件
(1) 离散化按等采样周期处理; (2) 采样脉冲为理想脉冲信号; (3) 输入向量u(t)只在采样点变化,两相邻采样点 之间的输入由零阶保持器保持不变; (4) 采样周期的选择满足香农定理。
G2 x(0) GHu(0) Hu(1) k k 1, x(k) Gx(k 1) Hu(k 1)
Gk x(0) Gk1Hu(0) GHu(k 2) Hu(k 1)
k 1
Gk x(0) Gk j1Hu( j) j0
k 1
返回
二. 状态转移矩阵
(t) [eAt ] nn
1、状态转移矩阵的性质 2、几个典型形式的状态转移矩阵 3、 一般状态转移矩阵的求法
返回主页
1. 状态转移矩阵的性质
(1) (0) I
(2) (t) A(t) AeAt
(t) [eAt ] nn
(3) (0) A(0) A
x[(k 1)T ] G(T )x(kT ) H (T )u(kT )
y[kT ] Cx(kT ) Du(kT )
(注:近似计算方法的采样周期越小系统近似的精度越高)
[例11]:P92 例2-14(2)。
返回主页
4、线性时变系统状态方程的离散化
(自学)
返回主页
单元练习2
1. 设系统状态空间表达式为 x(t) Ax(t) 。Bu(t) y(t) Cx(t)
0
0

0
1 0 0
0 1 0
0 0

为约旦阵,则
1
相关文档
最新文档