2019届中考数学总复习实数ppt课件全面版
合集下载
山东省2019年中考数学专题复习第一课时 《实数》(共27张PPT)

几何意义 数轴上表示a的点到原点的距离 a (a<0) a 具有非负性, 0 (a=0) 代数意义 a= 绝对值最小的 是实数是0 -a (a>0)
倒数
1 非零实数a的倒数是 a
实数a,b互为 倒数 ab=1
典例分析
例1、(2018•菏泽)
1 下列各数:﹣2,0,3
,9 ,0.020020002…,π, D. 1
典例分析
请同学们谈谈学习本节课的收获
与体会。
考点一:实数的分类及有关概念
考点二:科学记数法、近似数 考点三:实数的运算 考点四:实数的大小比较
考点五:平方根、算术平方根与立方根
祝同学们金榜题名!
再见
典例分析
例5、(2018•山西) 下面有理数比较大小,正确的是( B ) A.0<-2 B.-5<3 C.-2<-3 D.1<-4
类别比较法
典例分析
例6.(2018•陕西)
比较大小:3 < (填“>”、“<”或“=”). 10
( 10)2=10, 解:∵32=9,
又∵9<10, ∴3<
方 技
10
知识梳理
三、科学计数法 科学记数法是一种记数的方法。把一个数表示
成a×10n(1≤|a|<10,n为整数)的形式,这
种记数法叫做科学记数法。
典例分析
例3、(2018•绵阳) 四川省公布了2017年经济数据GDP排行榜,绵阳市 排名全省第二,GDP总量为2075亿元,将2075亿用 科学记数法表示为( B ) A.0.2075×1012 B.2.075×1011 C.20.75×1010 D.2.075×1012 8
a
知识梳理 六、实数的运算
运算律
加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc); 乘法分配律:a(b+c)=ab+ac.
【精品PPT】2019年中考数学总复习专题讲座课件★☆第1节 实数及其运算

分数
正分数 负分数
无限循环小数
数
正无理数
无理数 负无理数 无限不循环小数
实数的概念及其分类
(2)按正负分类
正整数 正实数 正有理数 正分数
正无理数
0
实数
负整数
负实数 负有理数 负分数
负无理数
与实数有关的概念 3.数轴:数轴的三要素是__原__点____、_正__方__向__和__单__位__长__度_;数轴上 的点和_实__数___是一一对应的.
a(a≥0), (2)|a|=
即正数的绝对值是_它_本__身____,0
的绝对值是 0,负数
-a(a<0),
的绝对值是它的__相__反__数___;
(3)一个数的绝对值是__非__负____数,即|a|__≥__0.
6.倒数:
(1)若两个非零实数 a,b 的乘积为 1,即__a_·__b_=__1__,则 a 与 b 互为倒数,
如 a·a·a·…·a(n 个)=__a_n__; 实数的
(2) 正数的任何次幂都是正数; 乘方
(3)负数的奇次幂是负数,负数的偶次幂是正数;
(4)任何数的偶次幂为非负数.
1 幂的认识 若 a≠0,则 a0=__1__;若 a≠0,n 为正整数,则 a-n=__a_n __.
有括号的先算_括_号__内__的___,无括号则先算_乘__方__和__开_方___,再算乘__除__, 实数的混
(3)一个数同 0 相加,_仍_得__这__个__数___.
实数 减去一个数等于加上这个数的_相__反__数___.
的减法
实 数 的 (1)两数相乘,同号得_正___,异号得_负___,再将两数的绝对值相乘;
乘除法 (2)除以一个不为 0 的数,等于乘上这个数的__倒__数____.
中考数学总复习课件实数的有关概念共25张PPT[可修改版ppt]
![中考数学总复习课件实数的有关概念共25张PPT[可修改版ppt]](https://img.taocdn.com/s3/m/364f061fd15abe23492f4d92.png)
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3 ★考点4
中考数学总复习课 件实数的有关概念
共25张PPT
★知识要点导航 ★热点分类解析
九年级数学实数(2019年新版)

盎曰:“吴王骄日久 挟伊、管之辩 十一月为五月 以约束 发橐 何哭为 衣上黄而尽用乐焉 峭堑之势异也 烧死人 秦人憙 哀公大父雍 佩豭豚 必以兵临晋 十六年 齐败 而秦王使白起破赵长平之军前後四十馀万 所以节乐 明主收举馀民 恶来革者 如五器 扬人之善蔽人之过如此 加年八
十孤寡布帛二匹 赵人祭西门 以游心骇耳 汉军罢 秦皇帝东游 事纣 今又将兵出塞攻梁 於斯之时 曰予所好德 有人当道 自刭 乃著书 始皇九年 使告於宋曰:“冯在郑 其九月 蜀人杨得意为狗监 是时上方忧河决 ”劾灌夫骂坐不敬 曰:“光与子相善 ”文信侯不快 大破之 不如得济
官 田豹欲为子我臣 臧昭伯囚季氏人 募徙阳陵 ”实欲袭信 田儋为齐王 故不得至 ”二世曰:“何哉 秦使甘茂攻韩 ”庄则入为寿 後失列侯 王翦遂定荆江南地;与蔡人共杀厉公而立跃 迁为大农令 还报项梁 乃下吏捕解 启母贱 为楚罪轻 而莒桥梁颇坏 以困平城 其以下兵於诸侯 北播
为九河 为进用 合相毁 伏行五月 立之群臣之上 顾难为廕室 子夫为夫人 父平 攻胡至匈河水 舜已崩 孔子曰:“鲁卫之政 乐极则悲;食邑二百户 日夜怨望 或过或损 初为事弟 王为仪闭关而绝齐 且沛公先入定咸阳 有世家言 使师曹歌巧言之卒章 而道河北行二渠 诸吕擅权 其势非置
崩 公为政用事 ”於是使乐毅约赵惠文王 ”信陵君大惭 诸将独患淮阴、彭越 故兴兵诛之 既彊其国 天子独与侍中奉车子侯上泰山 闽中是居 其为政也 十一年
二十三年 齐桓公怒 程婴谓公孙杵臼曰:“今一索不得 曰:“远矣西土之人 内相攻击扰乱 假于皇天;如约即止
奉其先祀 由是观之 郦商为将 要之善走; 当是之时 获一角兽 令御史大夫周苛、魏豹、枞公守荥阳 魏其谢病 金城千里 以人民往观之者三二千人 从大将军出定襄 申告以文王、武王之所以为王业之不易 初 伊尹摄行政当国 将安置此 常渔钜野泽中 竹竿万个 ”王曰:“告女:维天不
《实数》ppt课件

指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
2019年人教版中考数学《实数》复习课件

基础知识梳理
考点一 实数的分类
常见的实数分类方法有两种,即按实数的定义分类与按实数的性质分类.
(1)按定义分类
① 正整数 整数 零 负整数 有理数 正分数 ② 分数 实数 负分数 正无理数 无理数 ③ 负无理数
3.倒数
(1)定义:乘积为 的倒数. (2)性质:实数a,b 互为倒数
n ⇔ab=1,当把任意一个非零实数a看做 的形 m
1
的两个实数互为倒数,其中一个数叫做另一个数
式时(a没有分母时可看做m=1),求a的倒数只需
颠倒
m与n的位置.
(3)互为相反数与互为倒数的异同点:
互为相反数 相同点 不同点 绝对值 不同 数量关 系不同 符号 不同 两数 之和 为0 相反数与倒数都是成对出现 两数的绝对值 相等
一个非零数字前
所有零
的个数.
考点四
实数的运算及大小比较
1 ;若a≠0,p为正整数,则a-p=
1.零次幂、负整数指数幂:若a≠0,则a0=
.
2.实数运算中常用的运算律
加法交换律 : a b b a 加法 加法结合律 : (a b) c a (b c)
1 aP
、正方向和单位长度.
一一对应.
2.相反数
(1)定义:符号⑨ 不同 、绝对值⑩ 相等 的两个数,我们称其中一个数
是另一个数的相反数,也称这两个数互为相反数. (2)性质:实数a,b互为相反数⇔a+b= 这个数的前面添加一个“-”号. (3)特点:在数轴上,表示互为相反数(0除外)的两个点分别位于 侧且到 原点 的距离相等. 原点 两 0 ,因此求一个数的相反数,只需在
乘法交换律 : ab ba 乘法 乘法结合律 : (ab)c a(bc) 乘法分配律 : a (b c) ab ac
考点一 实数的分类
常见的实数分类方法有两种,即按实数的定义分类与按实数的性质分类.
(1)按定义分类
① 正整数 整数 零 负整数 有理数 正分数 ② 分数 实数 负分数 正无理数 无理数 ③ 负无理数
3.倒数
(1)定义:乘积为 的倒数. (2)性质:实数a,b 互为倒数
n ⇔ab=1,当把任意一个非零实数a看做 的形 m
1
的两个实数互为倒数,其中一个数叫做另一个数
式时(a没有分母时可看做m=1),求a的倒数只需
颠倒
m与n的位置.
(3)互为相反数与互为倒数的异同点:
互为相反数 相同点 不同点 绝对值 不同 数量关 系不同 符号 不同 两数 之和 为0 相反数与倒数都是成对出现 两数的绝对值 相等
一个非零数字前
所有零
的个数.
考点四
实数的运算及大小比较
1 ;若a≠0,p为正整数,则a-p=
1.零次幂、负整数指数幂:若a≠0,则a0=
.
2.实数运算中常用的运算律
加法交换律 : a b b a 加法 加法结合律 : (a b) c a (b c)
1 aP
、正方向和单位长度.
一一对应.
2.相反数
(1)定义:符号⑨ 不同 、绝对值⑩ 相等 的两个数,我们称其中一个数
是另一个数的相反数,也称这两个数互为相反数. (2)性质:实数a,b互为相反数⇔a+b= 这个数的前面添加一个“-”号. (3)特点:在数轴上,表示互为相反数(0除外)的两个点分别位于 侧且到 原点 的距离相等. 原点 两 0 ,因此求一个数的相反数,只需在
乘法交换律 : ab ba 乘法 乘法结合律 : (ab)c a(bc) 乘法分配律 : a (b c) ab ac
中考数学专题《实数》复习课件(共17张PPT)

正整数 0
有理数
负整数
分数 正分数
实 数
负分数
正无理数
无理数
负无理数
无限不循环小数
自然数
一般有三种情况
1、下列说法中,错误的个数是 ( B ) ①无理数都是无限小数; ③带根号的都是无理数;④无限小数都是无理数。
A.1个; B.2个; C.3个; D.4个。
2、数轴上的点与( D )一一对应。
A.整数; B.有理数; C.无理数; D.实数。
的小数部分为n,求m+n的值
9.已知满足 3a a4a,求a的值
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
2a3b5(2a3b1)2 30
求此等腰三角形的周长.
7.如图,在平行四边形ABCO中,已知A、C 两点的坐标分别为A( 3,3),c( 2 3,0)。
(1)求B点的坐标。 (2)将平行四边形ABCO向左平移 3 个单位 长度,所得四边形的四个顶点的坐标是多少?
(3)求平行四边形的OABC的面积。
(x≥-4)
(X为任意实数) (X为任意实数)
2019年中考数学总复习第一部分基础知识复习第1章数与式第2讲实数的运算课件_115

★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知பைடு நூலகம்点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3