On subgroups of free Burnside groups of large odd exponent

合集下载

高考英语一轮选择性必修第二册Unit4Breakingboundaries外研版

高考英语一轮选择性必修第二册Unit4Breakingboundaries外研版
(influence) when we're making decisions. 能力提升——微写作 ④尽可能多地在你周围交中国朋友会对你的汉语口语产生巨大的影
响。
Making as many Chinese friends around you as possible can _h_a_v_e_a_g_r_ea_t_i_nf_lu_e_n_c_e_o_n_y_o_u_r _sp_o_k_e_n_C_h_in_e_s_e__.
基础练习——单句语法填空 ①[2022·浙江6月卷]To my ___r_el_ie_f__ (relieve), they smiled politely
back at me when they saw my smile, and I could see their exhaustion in
their eyes. ②When I was in trouble, she did everything in her power to relieve me
vt.影
基础练习——单句语法填空 ①__U__nd_e_r__ the influence of my physics teacher , I have become
increasingly interested in physics. ②The bad weather influenced them __to__fi_ni_s_h_ (finish)the task in a hurry. ③The tests show that the social environment is extremely _i_nf_lu_e_n_ti_a_l
coming-of-age ceremony to you.

(完整版)药学英语第五版原文翻译

(完整版)药学英语第五版原文翻译

Introduction to PhysiologyIntroductionPhysiology is the study of the functions of living matter. It is concerned with how an organism performs its varied activities: how it feeds, how it moves, how it adapts to changing circumstances, how it spawns new generations. The subject is vast and embraces the whole of life. The success of physiology in explaining how organisms perform their daily tasks is based on the notion that they are intricate and exquisite machines whose operation is governed by the laws of physics and chemistry.Although some processes are similar across the whole spectrum of biology—the replication of the genetic code for or example—many are specific to particular groups of organisms. For this reason it is necessary to divide the subject into various parts such as bacterial physiology, plant physiology, and animal physiology.To study how an animal works it is first necessary to know how it is built. A full appreciation of the physiology of an organism must therefore be based on a sound knowledge of its anatomy. Experiments can then be carried out to establish how particular parts perform their functions. Although there have been many important physiological investigations on human volunteers, the need for precise control over the experimental conditions has meant that much of our present physiological knowledge has been derived from studies on other animals such as frogs, rabbits, cats, and dogs. When it is clear that a specific physiological process has a common basis in a wide variety of animal species, it is reasonable to assume that the same principles will apply to humans. The knowledge gained from this approach has given us a great insight into human physiology and endowed us with a solid foundation for the effective treatment of many diseases.The building blocks of the body are the cells, which are grouped together to form tissues. The principal types of tissue are epithelial, connective, nervous, and muscular, each with its own characteristics. Many connective tissues have relatively few cells but have an extensive extracellular matrix. In contrast, smooth muscle consists of densely packed layers of muscle cells linked together via specific cell junctions. Organs such as the brain, the heart, the lungs, the intestines, and the liver are formed by the aggregation of different kinds of tissues. The organs are themselves parts of distinct physiological systems. The heart and blood vessels form the cardiovascular system; the lungs, trachea, and bronchi together with the chest wall and diaphragm form the respiratory system; the skeleton and skeletal muscles form the musculoskeletal system; the brain, spinal cord, autonomic nerves and ganglia, and peripheral somatic nerves form the nervous system, and so on.Cells differ widely in form and function but they all have certain common characteristics. Firstly, they are bounded by a limiting membrane, the plasma membrane. Secondly, they have the ability to break down large molecules to smaller ones to liberate energy for their activities.生理学简介介绍生理学是研究生物体功能的科学。

英译汉理论与实践教程程永生Translationa15

英译汉理论与实践教程程永生Translationa15
前言(续)
我们认为,这些都是正确的译文。第一种译文,可能就是鲁迅先生所说的“容忍多少的不顺”的那种。这样的译文,有时不太妨碍理解,有时如果你学过外文,通过嘴嚼,也能领略作者的意图;第二种译文基本上是文从字顺的,但在行文和意义表达的地道性上尚欠火候;第三种译文实际上就是写作,但我们不主张抛开原文太远,因为毕竟是英语专业本科生的课堂教学。
The selection consists of an unusually long simple sentence, whose backbone structure could be reduced to…human rights matters have been discussed with … as well as with … .
In the selection, parallel structures are frequently used, for example, with …, as well as with…; the Group of 7 major industrialized countries and the Non-Allied Movement; the Organization of American States, the Organization of African Unity, the Association of South-East Asian Nations, European Union, the Commonwealth of Independent States, the Rio Group; and regional and subregional.
(2) Structural complication:
The selection is structurally complicated with the two coordinate prepositional phrases at the end of the sentence.

关于Beyond的英语演讲

关于Beyond的英语演讲

01
Introducing Beyond Band
Introduction of band members
• Drummer: Beyond's drummer is a professional drummer who has extended experience in the music industry He has participated in many Albums and Concepts, and has a unique style of playing
Background and early experiences of the bank's
estimation
要点一
要点二
要点三
Format
Influences
Early Successes
Beyond was formed in the early 1980s when the members were still in high school They started out as a cover band and gradually developed their own style of music
Beyond
Summary
This song is a powerful closing track that sums up the band's journal and legacy It shows cases Beyond's musical growth and evolution over the years
• Singer: The lead singer of Beyond is a professional singer who has a unique voice and style He has written and performed many songs for the band and has a large fan base

Society-and-culture-of-English-Speaking-countries

Society-and-culture-of-English-Speaking-countries
the one nation-state: the island of Great Britain is made up of England, Scotland and Wales, and Northern Ireland, a province on the neighbouring island of Ireland, completes the set. It is a complicated name for what is in many ways a complicated country. Most people know something about it because its huge overseas empire gave it an important international role which only came to an end in the years following the Second World War..
• It has been already pointed out that the UK is now a multiracial society, Also
Britain is divided economically: it is a society with a class-structure. It is possible to exaggerate the importance of this classstructure, because of course most countries have some kind of class-system, but it is true to say that the class structure of UK society is relatively obvious. The culture of a factory worker whose father was a factory worker may be quite different from that of a stockbroker whose father was a stockbroker: they will tend to read different newspapers, watch different television programmes, speak with a different accent, do different things in their free-time, and have different expectations for their children.

关于有限群的循环子群的注记

关于有限群的循环子群的注记
如果存在 G的循环真子群 H使得 H不正规于 G,说明存在 g∈G使得 Hg≠H,则 Hg∩H<Hg。取 x∈Hg\(Hg∩H)=Hg\HG\H,这里 o(x)||Hg|= |H|,与题设条件矛盾,故 G的每个循环真子群都 正规于 G。
若 G恰有一个极大子群,则显然有 G是循环 群,与假设矛盾。
下设 G至少有 2个极大子群,令 H1和 H2是 G 的任 2个极大子群且 H1≠H2。如果 |H1|=|H2|,因 为 H1≠H2,有 H1∩H2 <H1 和 H1∩H2 <H2。取x∈ H1\(H1∩ H2)=H1\H2 G\H2,显 然 有 o(x)| |H1|=|H2|,与题设条件矛盾。
第 34卷
心化子和正规化子给出了循环群的一个等价刻画: 设 G为 Sylow子群皆循环的有限群,则 G循环当且 仅当对每个极小子群 X均有 CG(X)=NG(X)。在 文献[6]定理 13中我们证明了:设 G是有限群,p 为 |G|的 最 小 素 因 子,若 对 G 的 每 个 非 循 环 p-子群 A均有 A=NG(A)或 A正规于 G,则 G可解。 下面给出文献[5]定理 26的一个改进,证明见第 4部分。
1 概 述
循环子群是有限群中一类非常重要的子群,它 是可以由 一 个 元 素 生 成 的 特 殊 的 交 换 子 群。文 献 [1]定理 68指出:设 G是 n阶群,如果(n,(n)) =1,则 G循环,这里 (n)是正整数 n的欧拉函 数。文献[2]习题 143有下述结论:设 G是有限 群,假设 |{x∈G|xn=1}|≤n,n∈瓔,那么 G是 循环群。作为此结论的推广,在本文中我们证明了 下述定理 1成立,证明见第 2部分。
Abstract:Wegiveacharacterizationofcyclicgroupbyusingtherelationbetweentheorderoftheelemntsoutside thecyclicsubgroupandtheorderofthecyclicsubgroup.WealsocharacterizethefinitegroupG,inwhichevery minimalsubgroupofitsderivedsubgroupG′isnormalorhascyclicnormalizer,andprovethatsuchagroupGis solvable.

非平凡循环子群共轭类类数较小的有限非可解群

非平凡循环子群共轭类类数较小的有限非可解群

非平凡循环子群共轭类类数较小的有限非可解群史江涛;张翠【摘要】本文完全刻画非平凡循环子群共轭类类数不大于2的有限群的结构,证明了非平凡循环子群共轭类类数不大于4的有限非可解群仅有 PSL2(r ),其中 r =5,7,8,9.%The structures of finite groups having at most two conjugacy classes of non-trivial cyclic sub-groups are completely characterized.It is proven that a finite non-solvable group G having at most four conjugacy classes of non-trivial cyclic subgroups must be isomorphic to PSL2(r ),where r =5,7,8,9.【期刊名称】《广西师范大学学报(自然科学版)》【年(卷),期】2014(000)003【总页数】5页(P52-56)【关键词】有限群;循环子群;非可解群【作者】史江涛;张翠【作者单位】烟台大学数学与信息科学学院,山东烟台 264005;烟台大学数学与信息科学学院,山东烟台 264005【正文语种】中文【中图分类】O152.1分类某些特殊子群具有较小共轭类类数的有限群是现代群论研究的一个重要课题。

比较早期和经典的结果是研究极大子群具有较小共轭类类数对有限群可解性的影响,见文献[1-2]。

之后,一些群论学者开始转向研究其他特殊子群的共轭类类数对有限群结构的影响。

非循环子群即生成元个数大于等于2的子群。

作为子群共轭类类数的进一步研究,李世荣等在文献[3]中分类了非循环真子群的共轭类类数等于1的有限群。

孟伟等在文献[4]中分类了非循环真子群的共轭类类数等于2的有限群。

设G为有限群,以v(G)表示G的非循环真子群的共轭类类数。

有限群子群的正规化子与群的p-幂零性

有限群子群的正规化子与群的p-幂零性

有限群子群的正规化子与群的p-幂零性张新建【摘要】设G是有限群,p是素数.利用群G的Sylow正规化子和子群的弱s-半置换性质确定群G的p-幂零性.【期刊名称】《淮阴师范学院学报(自然科学版)》【年(卷),期】2017(016)004【总页数】5页(P288-291,297)【关键词】弱s-半置换子群;p-幂零性;有限群【作者】张新建【作者单位】淮阴师范学院数学科学学院,江苏淮安 223300【正文语种】中文【中图分类】O152.10 引言本文中所有的群皆为有限群,G代表有限群,其他符号和术语是标准的[1].设G是群,H是G的子群,H称为在G中s-置换,如果H与G的每个Sylow 子群置换; H称为在G中c-正规,如果G有正规子群T满足G=HT且H∩T≤HG,其中HG 为H在G中的柱心;H称为在G中弱s-置换,如果G有次正规子群T满足G=HT 且H∩T≤HsG,其中HsG为包含在H中的G的极大s-置换子群;H称为在G中s-半置换,如果H与G的每个Sylow p-子群置换,其中(|H|,p)=1.Yang[2]等介绍了子群的弱s-半置换性质,其覆盖了上面的所有概念,并得到了定理1.定义1[2] 子群H称为在G中弱s-半置换,如果G有次正规子群T和包含在H中的G的s-半置换子群HssG满足G=HT且H∩T≤HssG.定理1[2] 设G为群,P为G的一个Sylowp-子群,其中p是G的阶的极小素因子.假设P有子群D满足1<|D|<|P|且P的每个阶为|D|的子群或者4阶循环群(当P非循环且|D|=2时)在G中弱s-半置换,则G是p-幂零群.令p是一个素数,P为G的一个Sylow p-子群,NG(P)的性质对群的结构有重要影响,比如,著名的Burnside定理断言如果NG(P)=CG(P),则G是p-幂零群;Frobenius 定理断言群G是p-幂零群如果对于G的所有p-子群H都有NG(H)是p-幂零群.将Frobenius 定理与弱s-半置换性质结合,得到了群G p-幂零的两个准则:定理2和定理3,这两个定理可以看成是定理1的补充.1 基本引理接下来,给出证明主要结果所需的引理.引理1[3] 设G为群,则1) 如果H≤K≤G,且H在G中s-置换,那么H在K中s-置换;2) 如果K是G的正规子群且H在G中s-置换,那么在s-置换;3) 如果P是群G的s-置换p-子群,那么NG(P)≤Op(G).引理2[2] 设G为群,H为G的s-半置换子群,则1) 如果H≤K≤G,那么H在K中s-半置换;2) 如果K是G的正规子群,H是p-子群,对某个p∈π(G),那么在中s-置换;3) 如果H≤Op(H),那么H在G中s-置换.引理3[2] 设G为群,H为G的弱s-半置换子群,K是G的正规子群,则1) 如果H≤T≤G,那么H在T中弱s-半置换;2) 设H是p-子群,对某个p∈π(G), 如果K≤H,那么在弱s-半置换;3) 设H是p-子群,对某个p∈π(G), K是p′-群,那么在弱s-半置换;引理4[4] 设P是群G的一个幂零正规子群且P∩Φ(G)=1,那么P是群G的某些极小正规子群的直积.引理5[2] 设N是群G的初等交换正规子群. 如果N有子群D满足1<|D|<|N|且N的所有阶为|D|的子群在G中弱s-半置换,则N的某个极大子群在G中正规.引理6[5] 设G为群,P为G的一个Sylow p-子群,其中p是素数. 如果P交换且NG(P)p-幂零,那么G是p-幂零群.引理7[5] 设G=PQ,P为G的一个Sylow p-子群, Q为G的一个Sylow q-子群, 其中p是奇素数,q≠p是素数. 假设NG(P)是p-幂零的. 如果Op(G)是P的极大子群且Op(G)的每个p阶循环子群在G中s-置换,那么G是p-幂零的.2 主要结论定理2 设p是整除群G的阶的奇素数,P为G的一个Sylow p-子群, 假设P有子群D满足1<|D|<|P|且P的每个阶为|D|的子群在G中弱s-半置换. 如果NG(P)是p-幂零的,那么G是p-幂零群.证明假设结论错误,G是一个极小阶反例. 现在分以下步骤进行证明.第1步: Op′(G)=1.事实上,如果Op′(G)≠1,考虑商群.由引理3的3),较容易看出满足定理的假设.由G 的极小性可知是p-幂零群,从而G是p-幂零群,矛盾.第2步: 如果M是G的包含P的真子群,则M是p-幂零群.显然,NM(P)≤NG(P),因此NM(P)是p-幂零的,由引理3 的1)可知M满足定理的假设,于是由G的极小选择可知M是p-幂零群.第3步: G=PQ,其中Q为G的一个Sylow q-子群, q≠p是素数,且CG(Op(G))≤Op(G).由假设,p是奇素数,G非p-幂零,由Glauberman-Thomposon定理,NG(Z(J(P)))是非p-幂零群,其中J(P)是P的Thomposon子群. 显然,Z(J(P))是P的特征子群,于是NG(P)≤NG(Z(J(P)))≤G. 若NG(Z(J(P)))<G, 则由第2步, NG(Z(J(P)))是p-幂零群,矛盾. 因此可以假设NG(Z(J(P)))=G,这意味着Op(G)≠1,再由 Glauberman-Thomposon 定理可知, 是p-幂零群,从而G p-可解. 现在由第1步和定理[6]可得CG(Op(G))≤Op(G).另一方面,因为G p-可解,由定理[7],对于任意的q∈π(G)且q≠p,G有Sylow q-子群Q,满足PQ=QP是G的子群. 如果PQ<G,那么由第2步,PQ是p-幂零群,因此,Q≤CG(Op(G))≤Op(G),矛盾. 因此,有G=PQ.第4步: 如果|P:D|>p,那么对于G的每个正规极大子群M有|G:M|=p且M的Sylow子群P∩M=Op(G)是P的极大子群,1<|D|<|Op(G)|且Op(G)的每个阶为|D|的子群在G中s-置换.设M为G的任一正规极大子群. 由第3步有,或者|G:M|=p或者|G:M|=q. 如果|G:M|=q,则由第2步知,M是p-幂零群,从而G是p-幂零群,矛盾. 所以|G:M|=p. 令P1=P∩M. 显然NG(P)≤NG(P1)≤G. 如果NG(P1)<G,又由第2步可得NG(P1)是p-幂零群. 如果|P:D|>p,则M满足定理的假设,于是M是p-幂零群,从而G是p-幂零群,矛盾. 因此,可以假设NG(P1)=G. 于是,P1在G中正规. 因为NG(P)是p-幂零的,而G是非p-幂零的,Op(G)<P,从而Op(G)=P∩M=P1.因为|P:D|>p,有1<|D|<|Op(G)|. 令H为Op(G)的阶是|D|的子群. 由假设,G有次正规子群K和包含在H中的群G的s-半置换子群HssG满足G=HK且H∩K≤HssG. 如果HssG≠H,则K<G. 设T是G的包含K的正规子群且|G:T|=p,类似于上一段的证明,T的Sylow p-子群P2=Op(G). 注意到G=HT,P=P∩HT=H(P∩T)=Op(G)P2=Op(G),从而G=NG(P)是p-幂零,矛盾. 因此HssG=H,这意味着Op(G)的所有阶为|D|的子群在G中的s-半置换.现在由引理2的3)有Op(G)的每个阶为|D|的子群在G中s-置换.第5步: |D|>p.如果|D|=p且|P:D|>p,则由第3步,第4步和引理7可知G是p-幂零群,矛盾. 如果|D|=p且|P:D|=p,则|P|=p2,则由引理6同样可得G是p-幂零群. 因此|D|>p.第6步:设N为G的极小正规子群,则N≤Op(G)且|N|≤|D|.由第1步和第3步知,N≤Op(G)是显然的. 假设|N|>|D|. 因为N是初等交换群,由引理5,N有极大子群在G中正规,矛盾于N的极小性. 因此|N|≤|D|.第7步: 是p-幂零群,N为G的唯一极小正规子群,更进一步的,Φ(G)=1且N=F(G)=Op(G).如果|N|<|D|,那么由引理3的2)得满足定理的假设,由G的极小选择,是p-幂零群.由第6步知,可以假设|N|=|D|.显然,是p-幂零群.如果|P:D|=p且|N|=|D|,那么||=p,由引理6得是p-幂零群. 假设|P:D|>p,可以断言的每个极小子群在中s-置换. 显然取Op(G)得子群K满足p. 由第5步,N非循环,因此所有包含N的子群非循环. 因此,K有一个极大子群L≠N满足K=NL. 显然,|N|=|D|=|L|. 由第4步,L在G中s-置换. 于是由引理1 的2)有,=在中s-置换. 因此,的每个极小子群在中s-置换. 由第4步,是的极大子群. 现在,由引理7,得到了是p-幂零群. N的唯一性和Φ(G)=1是显然的,进一步有,N=F(G)=Op(G).第8步: 最后的矛盾.如果|P:D|>p,则由第4步,有|P:N|=p,于是|N|>|D|,和第6步矛盾. 因此 |P:D|=p,即P的每个极大子群在G中弱s-半置换. 由第7步, G有极大子群M满足G=NM且N∩M=1. 因为Mp<P, 其中Mp 是M的Sylow p-子群, 可以选择P的极大子群P1包含Mp. 则由假设,G有次正规子群T满足G=P1T且P1∩T≤(P1)ssG. 由T的次正规性, 有TG≠1,于是由N的唯一极小性可知N≤TG.因为(P1)ssG与T的Sylow q-子群Tq可换,其中q≠p是素数,有(P1)ssGTq=Tq(P1)ssG,于是N∩P1=N∩P1∩T=N∩(P1)ssGTq正规于(P1)ssGTq,所以对于任意的q≠p,有Tq≤NG(N∩P1). 显然P≤NG(N∩P1),因此N∩P1正规于G.于是由N的唯一极小性可知N∩P1=1或者N∩P1=N. 如果N∩P1=1,那么N≤P1,从而P=NMp=P1,矛盾. 因此N∩P1=1,|N|=p,Aut(N)是阶为p-1的循环群. 如果p<q,显然NQ是p-幂零群,从而Q≤CG(N)=CG(Op(G)),矛盾于第3步. 如果q<p,因为CG(L)=CG(Op(G))=Op(G)=N,有=同构于Aut(N)的一个子群. 从而Q 是循环群,由Burnside定理,G是q-幂零群,即P正规于G,因此G=NG(P)是p-幂零的,最后的矛盾.推论1[8] 设p是整除群G的阶的奇素数,P为G的一个Sylow p-子群, 如果NG(P)是p-幂零群且P的每个极大子群在G中c-正规,那么G是p-幂零群.推论2[9] 设p是整除群G的阶的奇素数,P为G的一个Sylow p-子群, 如果NG(P)是p-幂零群且P的每个极大子群在G中c-正规,那么G是p-幂零群.定理3 设p是群G的阶的素因子,P为G的一个Sylow p-子群, 假设P有子群D 满足1<|D|<|P|,P的每个阶为|D|的子群H在G中弱s-半置换且NG(H)是p-幂零的,那么G是p-幂零群.证明假设结论错误,G为极小阶反例.首先断言p是奇素数. 如果p=2且|D|>2,则由定理1可知G是p-幂零的. 假设p=2, P的每个阶为2的子群H在G中弱s-半置换且NG(H)是p-幂零的. 容易看出G的每个真子群满足定理的假设,于是由归纳G是极小非p-幂零群,由文[1]有, G 是极小非幂零群,于是由定理[2]得,是的极小正规子群且Φ(P)⊂Z∞(G). 如果Φ(P)≠1,那么Φ(P)的每个阶为2的子群H在G正规,于是由假设G=NG(H)是p-幂零群,矛盾. 因此Φ(P)=1. 这意味着P是G的极小正规子群.假设H是P的阶为2的子群, 由假设,G有次正规子群K和包含在H中的群G的s-半置换子群HssG满足G=HK且H∩K≤HssG. 于是G=PK且P∩K在G中正规. 由P的极小性,或者P∩K=1或者P∩K=P. 如果前者是正确的,那么P=P∩HK=H(P∩K)=H,矛盾. 于是P∩K=P,即P≤K,于是H=H∩K=HssG. 由引理5的3)和引理1有,G=Op(G)≤NG(H)是p-幂零群,又一矛盾. 因此p是奇素数.如果NG(P)<G,由引理3 的1)可知,NG(P)满足定理的假设,由归纳,NG(P)是p-幂零群,从而由定理2可得G是p-幂零群,矛盾. 所以NG(P)=G,即P在G中正规.设N是G的包含在P中的极小正规子群. 如果|N|>|D|,则由引理5有,N的某个极大子群在G中正规,矛盾. 因此|N|≤|D|. 如果|N|=|D|,则由假设G=NG(N)是p-幂零群,矛盾. 所以|N|<|D|. 显然满足定理假设,由归纳是p-幂零群. 进一步,由引理4有P=Op(G)=N是初等交换p-群,矛盾于|N|<|D|和1<|D|<|P|. 反例不存在,结论得证. 参考文献:[1] Huppert B. Endliche Gruppen I[M].New York-Berlin: Springer,1967.[2] Yang M L, Qiao S H, Su N , et al. On weakly s-semipermtable subgroups of finite groups[J].Journal of Algebra,2012,371:250-261.[3] Kegel O H. Sylow-Gruppen and Subnoramlteiler endlicherGruppen[J].Math Z,1962(78):205-221.[4] Skiba A N. A note on c-normal subgroups of finite groups[J].Algebra Discrete Math,2005(3):85-95.[5] Zhang X J, Li X H, Miao L. Sylow normalizers and p-nilpotence of finite groups[J].Comm Algebra,2015(43):1354-1363.[6] Robinson D. A Course in the Theory of Groups[M].New York-Berlin: Springer-Verlag,1993.[7] Gorensein D. Finite Groups[M].New York: Chelsea,1968.[8] Guo X Y, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups[J].Arch Math,2003,80:561-569.[9] Wang L F, Wang Y M. On s-semipermutable maximal and minimalsubgroups of Sylow p-subgroups of finite groups[J].Comm Algebra,2006,34:143-149.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rX iv:mat h /21191v1[mat h.GR]13O ct22ON SUBGROUPS OF FREE BURNSIDE GROUPS OF LARGE ODD EXPONENT S.V.IVANOV Abstract.We prove that every noncyclic subgroup of a free m -generator Burnside group B (m,n )of odd exponent n ≫1contains a subgroup H iso-morphic to a free Burnside group B (∞,n )of exponent n and countably in-finite rank such that for every normal subgroup K of H the normal closure K B (m,n )of K in B (m,n )meets H in K .This implies that every noncyclic subgroup of B (m,n )is SQ-universal in the class of groups of exponent n .A group G is called SQ -universal if every countable group is isomorphic to a sub-group of a quotient of G .One of classical embedding theorems proved by Higman,B.Neumann,H.Neumann in [HNN49]states that every countable group G embeds in a 2-generator group or,equivalently,a free group F 2of rank 2is SQ-universal.Recall that the proof of this theorem makes use of the following natural definition.A subgroup H of a group G is called a Q -subgroup if for every normal subgroup K of H the normal closure K G of K in G meets H in K ,i.e., K G ∩H =K .For example,factors G 1,G 2of the free product G 1∗G 2or the direct product G 1×G 2are Q -subgroups of G 1∗G 2or G 1×G 2,respectively.In particular,a free group F m of rank m >1,where m =∞means countably infinite rank,contains a Q -subgroup isomorphic to F k for every k ≤m .On the other hand,it is proved in [HNN49]that the subgroup a −1b −1ab −i ab −1a −1b i a −1bab −i aba −1b i |i =1,2,... of F 2=F 2(a,b )is a Q -subgroup of F 2isomorphic to F ∞and freely generated by indicated elements.In [NN59]B.Neumann and H.Neumann found simpler gener-ators and proved that [b −2i +1ab 2i −1,a ]|i =1,2,... ,where [x,y ]=xyx −1y −1is the commutator of x and y ,is a Q -subgroup of F 2isomorphic to F ∞and freely gen-erated by indicated elements.It is obvious that the property of being a Q -subgroup is transitive.Therefore,a group G contains a Q -subgroup isomorphic to F ∞if and only if G contains a Q -subgroup isomorphic to F m ,where m ≥2.Ol’shanskii [O95]proved that any nonelementary subgroup of a hyperbolic group G (in particular,G =F m )contains a Q -subgroup isomorphic to F 2.In particular,if G is a nonelementary hyperbolic group then G is SQ-universal.It follows from an embedding theorem of Obraztsov (see Theorem 35.1in [O89])that any countable group of odd exponent n ≫1embeds in a 2-generator group of exponent n and so a free 2-generator Burnside group B (2,n )=F 2/F n 2of exponent n is SQ-universal in the class of groups of exponent n .Interestingly,the proof of this theorem has nothing to do with free Q -subgroups of the Burnside group B (2,n )and does not imply the existence of such subgroups in B (2,n ).Ol’shanskii and Sapir proved in [OS02](among many other things)that for odd n ≫1the group B (m,n )with some m =m (n )does contain Q -subgroups2S.V.IV ANOVisomorphic to B (∞,n )=F ∞/F n ∞.Sonkin [S02]further refined correspondingarguments of [OS02]to show that for odd n ≫1the group B (2,n )contains a Q -subgroup isomorphic to B (∞,n )which also implies that B (2,n )is SQ-universal in the class of groups of exponent n .Recall that an embedding B (∞,n )→B (2,n )for odd n ≥665,without the property of being Q -subgroup,was first proved by Shirvanian [Sh76].Atabekian[A86],[A87]showed for odd n ≫1(e.g.,n >1078)that every noncyclic subgroup of B (m,n )contains a subgroup isomorphic to B (2,n )(and so,by Shirvanian’s result,contains a subgroup isomorphic to B (∞,n )).A short proof of this Atabekian’s theorem due to the author was incorporated in [O89](Theorem 39.1).It turns out that the same idea of ”fake”letters and using relations of Tarski monsters yields not only embeddings but also embeddings as Q -subgroups and significantly shortens corresponding arguments of [OS02],[S02].The aim of this note is to elaborate on this idea and to strengthen Atabekian’s theorem as follows.Theorem.Let n be odd,n ≫1(e.g.,n >1078),and B (m,n )be a free m -generator Burnside group of exponent n .Then every noncyclic subgroup of B (m,n )contains a Q -subgroup of B (m,n )isomorphic to B (∞,n ).In particular,every noncyclic subgroup of B (m,n )is SQ -universal in the class of groups of exponent n .Proof of Theorem.To be consistent with the notation of [O89],rename the exponent n by n 0.Consider an alphabet A ={a 1,...,a m }with m ≥2.Let G (∞)be a presentation for the free Burnside group B (A ,n 0)of exponent n 0in the alphabet A constructed as in Sect.18.1[O89]and H be a noncyclic subgroup of B (A ,n 0).Conjugating if necessary,by Lemma 39.1[O89],we can suppose that there are words F,T ∈H such that F is a period of some rank |F |(with respect to the presentation G (∞)of B (A ,n 0)),|T |<3|F |and F T =T F in B (A ,n 0).Consider a presentationK = b 1,b 2 R =1,R ∈¯R 0 (1)for a 2-generator group K of exponent n 0(perhaps,K is trivial).Set ¯A=A ∪{b 1,b 2}and define ¯G (0)= ¯A R =1,R ∈¯R 0 .Clearly,¯G (0)is the free product of the free group G (0)=F (A )in A and K .If W is a word in ¯A±1=A ∪A −1then its length |W |=|W |A is defined to be the number of letters a ±1k ,a k ∈A ,in W .In particular,|b 1|=|b 2|=ing this new length,we construct groups ¯G (i )= ¯A R =1,R ∈¯R i by induction on i ≥1exactly as in Sect.39.1[O89],that is,the set ¯Si =¯R i \¯R i −1of defining words of rank i consists of all relators of the first type A n 0,A ∈¯Xi ,if i <|F |.As before,we observe that the set ¯X|F |of periods of rank i =|F |can be chosen so that F ∈¯X |F |.For i =|F |the set ¯Si =¯R i \¯R i −1consists of all relators of the first type A n 0,A ∈¯X i ,and two relators of the second type which are words of the formb 1F n T F n +2...T F n +2h −2,b 2F n +1T F n +3...T F n +2h −1.(2)For i >|F |the set ¯Si =¯R i \¯R i −1again consists of all relators A n 0of the first type only,A ∈¯Xi .Thus,the groups ¯G (i )= ¯A R =1,R ∈¯R i ,¯G (∞)= ¯A R =1,R ∈∪∞j =0¯R j are constructed.Consider a modification of condition R (Sect.25.2[O89]),that will be called condition R ′,in which property R 4is replaced by the following.ON SUBGROUPS OF FREE BURNSIDE GROUPS3 R4′The words T k are not contained in the subgroup A of the group¯G(i−1), i≥1,except for the case when k=1,|T1|=0and the integers n1,n k have the same sign.Let¯∆be a diagram over the graded presentation¯G(i),i≥0.According to the new definition of the word length,we define the length|p|of a path p so that|p|=|ϕ(p)|.In particular,if e is an edge of¯∆withϕ(e)=b±1k ,k=1,2,then|e|=0.Hence,such an edge e is regarded to be a0-edge of¯∆of type2.Recall that ifϕ(e)=1then e is called in[O89]a0-edge(we will specify that such e is a 0-edge of type1).All faces labelled by relators of¯G(0)are also called0-faces(or faces of rank0)of¯∆.A0-faceΠof¯∆has type1if it is a0-face in the sense of [O89].Otherwise,i.e.,when∂Πhas a nontrivial label R∈¯R±10,a0-faceΠhas type 2.Note that the new definition of length and the existence of0-edges of type2imply a number of straightforward corrections in analogues of definitions and lemmas of Sects.18,25of[O89]on group presentations with condition R′(these corrections are quite analogous to what is done in similar situations of papers[I02a],[I02b]). For example,in the definition of a simple in rank i word A(Sect.18.1[O89])it is in addition required that|A|>0.Lemma25.1now claims that every reduced diagram¯∆on a sphere or torus has rank0.Corollary25.1is stated for¯R i\¯R0 and Corollary25.2is now missing.In Lemma25.2we additionally allow that X is conjugate to a word of length0.Lemmas25.12–25.15are left out.Repeating the proof of Lemma27.2[O89](and increasing the number of short sections in Lemma27.1[O89]from2to3),we can show that presentations¯G(i),¯G(∞)satisfy condition R′.Furthermore,it is straightforward to check that proofs ofLemmas26.1–26.5for a graded presentation with condition R′are retained(minor changes in arguments of proofs of Lemmas26.1–26.2caused by the possibility|T1|= 0are evident).Thus,by Lemma26.5[O89],any reduced diagram over¯G(i)(or ¯G(∞))is a B-map.By definitions and the analogue of Lemma25.2[O89],the group¯G(∞)has exponent n0.Suppose U is a word in{b±11,b±12}and U=1in the group¯G(∞).Let ¯∆be a reduced diagram over¯G(∞)withϕ(∂¯∆)≡U.Since|∂¯∆|=0,it follows from Theorem22.4[O89]that r(¯∆)=0,hence U=1in the group K given by(1). This means that K naturally embeds in¯G(∞).Let V1=(F n T F n+2...T F n+2h−2)−1,V2=(F n+1T F n+3...T F n+2h−1)−1. Observe that,in view of relators(2),the group¯G(∞)is naturally isomorphic to the quotient B K(A,n0)= B(A,n0) R(V1,V2)=1,R(b1,b2)∈¯R0 of B(A,n0). Hence,the subgroup V1,V2 of B K(A,n0)is isomorphic to the group K given by (1)under the map V1→b1,V2→b2.Since K is an arbitrary2-generator group of exponent n0,it follows that V1,V2 is a Q-subgroup of B(A,n0)isomorphic to B(2,n0).Now we will show that B(∞,n0)embeds in B(2,n0)as a Q-subgroup.To do this we will repeat the above arguments with some changes.Now we let A={a1,a2}, i.e.,m=2,and B={b1,b2,...}be a countably infinite alphabet.LetK= B R=1,R∈¯R0 (3)be a presentation of afinite or countable group of exponent n0,¯A=A∪B,and ¯G(0)= ¯A R=1,R∈¯R0 .4S.V.IV ANOVAs before,constructing groups¯G(i)by induction on i≥1,wefirst define the set¯X i of periods of rank i≥1.It is easy to show that each¯X i,i≥1,contains a word A i in the alphabet{a1,a2}such that A i is not in the cyclic subgroup a1 of ¯G(i−1).Then for every F∈¯Xiwe define the relator F n0and for the distinguished period A i∈¯X i we introduce the second relatorb i A n i a1A n+2i ...a1A n+2h−2i.These relators over all F∈¯X i form the set¯S i=¯R i\¯R i−1.As above,we set ¯G(i)= ¯A R=1,R∈¯Ri,¯G(∞)= ¯A R=1,R∈∪∞j=0¯R jand show that these presentations satisfy condition R′.Similarly,we establish analogues of corresponding claims of Sects.18,25–27[O89].Suppose U=U(B)is a word in B±1and U=1in the group¯G(∞).Let¯∆be a reduced disk diagram over¯G(∞)withϕ(∂¯∆)≡U.It follows from Lemma 26.5,Theorem22.4[O89]and equality|∂¯∆|=0that r(¯∆)=0.Hence U=1 in the group K given by(3)and so K naturally embeds in¯G(∞).As above,by definitions and Lemma25.2[O89],the group¯G(∞)has exponent n0and we can see that¯G(∞)is naturally isomorphic to the quotientB K(A,n0)= B(A,n0) R(V1,V2,...)=1,R(b1,b2,...)∈¯R0of B(A,n0),where V i=(A n i a1A n+2i ...a1A n+2h−2i)−1,i=1,2,....Hence,thesubgroup V1,V2,... of B K(A,n0)is isomorphic to the group K under the map V i→b i,i=1,2,....Since K is an arbitraryfinite or countable group of exponent n0,it follows that V1,V2,... is a Q-subgroup of B(A,n0)=B(2,n0)isomorphic to B(∞,n0).The specific estimate n=n0>1078of Theorem can be obtained by using lemmas and specific estimates of articles[O82]and[AI87](see also[O85])instead of those of[O89].The proof of Theorem is complete.In conclusion,we remark that it is not difficult to show that B(∞,n)embeds in B(2,n)for n=2k≫1(see[IO97],[I94])but it is not clear how to embed B(∞,n) in B(2,n)as a Q-subgroup and it would be interesting to do so.It would also be of interest tofind out whether B(∞,n)embeds(as a Q-subgroup)in every nonlocally finite subgroup of B(m,n)for n=2k≫1.References[A86]V.S.Atabekian,On simple infinite groups with identity,#5381-B86,VINITI,Moscow, 1986(this is kept in the Depot of VINITI,Moscow,and is available upon request). [A87]V.S.Atabekian,Simple and free periodic groups,Vestnik Moskov.Univ.Ser.I Mat.Mekh.no.6(1987),76–78.[AI87]V.S.Atabekian and S.V.Ivanov,Two remarks on groups of bounded exponent,# 2243-B87,VINITI,Moscow,1987(this is kept in the Depot of VINITI,Moscow,andis available upon request),23pp.[HNN49]G.Higman,B.H.Neumann and H.Neumann,Embedding theorems for groups,J.London Math.Soc.24(1949),247–254.[I94]S.V.Ivanov,The free Burnside groups of sufficiently large exponents,Internat.J.Algebra Comp.4(1994),1–308.[I02a]S.V.Ivanov,Weaklyfinitely presented infinite periodic groups,Contemporary Math.296(2002),139–154.[I02b]S.V.Ivanov,On HNN-extensions in the class of groups of large odd exponent,to appear.[IO97]S.V.Ivanov and A.Yu.Ol’shanskii,Onfinite and locallyfinite subgroups of free Burn-side groups of large even exponents,J.Algebra195(1997),241–284.ON SUBGROUPS OF FREE BURNSIDE GROUPS5 [NN59] B.H.Neumann and H.Neumann,Embedding theorems for groups,J.London Math.Soc.34(1959),465–479.[O82] A.Yu.Ol’shanskii,Groups of bounded exponent with subgroups of prime order,Algebrai Logika21(1982),553–618.[O85] A.Yu.Ol’shanskii,Varieties in which allfinite groups are abelian,Mat.Sbornik 126(1985),59–82.[O89] A.Yu.Ol’shanskii,Geometry of defining relations in groups,Nauka,Moscow,1989;English translation:Math.and Its Applications,Soviet series,vol.70,Kluwer Acad.Publishers,1991.[O95] A.Yu.Ol’shanskii,SQ-Universality of hyperbolic groups,Mat.Sbornik186(1995),119–132.[OS02] A.Yu.Ol’shanskii and M.V.Sapir,Non-amenablefinitely presented torsion-by-cyclic groups,to appear,available at /~sapir.[Sh76]V.L.Shirvanian,Embedding the group B(∞,n)in the group B(2,n),Izvestiya AN USSR,Ser mat.40(1976),190–208.[S02] D.Sonkin,CEP-subgroups of free Burnside groups of sufficiently large odd exponents, preprint.Department of Mathematics,University of Illinois,Urbana,IL61801E-mail address:ivanov@。

相关文档
最新文档