2013北京高三数学模拟汇编立体几何文

合集下载

2013年全国各地高考数学试题分类汇编(文科):立体几何

2013年全国各地高考数学试题分类汇编(文科):立体几何

2013年全国各地高考数学试题分类汇编(文科):立体几何各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013年全国各地高考数学试题分类汇编(文科):立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.B.C.D.【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系中的坐标分别是,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()A.B.C.D.【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为()A.B.C.D.【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥的正弦值等于()A.B.C.D.【答案】A5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100 cm3 C.92cm3 D.84cm3【答案】B7 .(2013年高考北京卷(文))如图,在正方体中, 为对角线的三等分点,则到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是()A.B.C.D.【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.【答案】D10.(2013年高考浙江卷(文))设是两条不同的直线,α.β是两个不同的平面, ()A.若m‖α,n‖α,则m‖n B.若m‖α,m‖β,则α‖βC.若m‖n,m⊥α,则n⊥α D.若m‖α,α⊥β,则m⊥β【答案】C11.(2013年高考辽宁卷(文))已知三棱柱的6个顶点都在球的球面上,若, , ,则球的半径为()A.B.C.D.【答案】C12.(2013年高考广东卷(文))设为直线, 是两个不同的平面,下列命题中正确的是()A.若, ,则B.若, ,则C.若, ,则D.若, ,则【答案】B13.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是()A.B.C.D.8,8【答案】B14.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为()A.200+9π B.200+18π C.140+9π D.140+18π【答案】A二、填空题15.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.【答案】16.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【答案】317.(2013年高考课标Ⅰ卷(文))已知是球的直径上一点, , 平面, 为垂足, 截球所得截面的面积为,则球的表面积为_______.【答案】;18.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】319.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.【答案】20.(2013年高考大纲卷(文))已知圆和圆是球的大圆和小圆,其公共弦长等于球的半径, 则球的表面积等于______.【答案】21.(2013年上海高考数学试题(文科))已知圆柱的母线长为,底面半径为, 是上地面圆心, 、是下底面圆周上两个不同的点, 是母线,如图.若直线与所成角的大小为,则________.【答案】22.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为, 则正方体的棱长为______.【答案】23.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】24.(2013年高考江西卷(文))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF 与正方体的六个面所在的平面相交的平面个数为_____________.【答案】425.(2013年高考安徽(文))如图,正方体的棱长为1, 为的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是__________(写出所有正确命题的编号).①当时, 为四边形;②当时, 为等腰梯形;③当时, 与的交点满足;④当时, 为六边形;⑤当时, 的面积为.【答案】①②③⑤三、解答题26.(2013年高考辽宁卷(文))如图,(I)求证:(II)设【答案】27.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G是PC的中点,求DG与APC 所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求PGGC 的值.【答案】解:证明:(Ⅰ)由已知得三角形是等腰三角形,且底角等于30°,且,所以;、,又因为;(Ⅱ)设,由(1)知,连接,所以与面所成的角是,由已知及(1)知: ,,所以与面所成的角的正切值是;(Ⅲ)由已知得到: ,因为,在中, ,设28.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.(Ⅰ) 证明: A1BD // 平面CD1B1;(Ⅱ) 求三棱柱ABD-A1B1D1的体积.【答案】解: (Ⅰ) 设...(证毕)(Ⅱ).在正方形AB CD中,AO = 1 ..所以, .29.(2013年高考福建卷(文))如图,在四棱锥中, ,, ,, , , .(1)当正视图方向与向量的方向相同时,画出四棱锥的正视图.(要求标出尺寸,并画出演算过程);(2)若为的中点,求证: ;(3)求三棱锥的体积.【答案】解法一:(Ⅰ)在梯形中,过点作,垂足为, 由已知得,四边形为矩形,,在中,由, ,依勾股定理得:,从而,又由平面得,从而在中,由, ,得正视图如右图所示:(Ⅱ)取中点,连结,,在中, 是中点,∴, ,又,∴,, ∴四边形为平行四边形,∴又平面, 平面, ∴平面(Ⅲ) ,又, ,所以解法二:(Ⅰ)同解法一(Ⅱ)取的中点,连结,在梯形中, ,且,∴四边形为平行四边形∴,又平面, 平面∴平面,又在中,平面, 平面∴平面.又,∴平面平面,又平面∴平面(Ⅲ)同解法一30.(2013年高考广东卷(文))如图4,在边长为1的等边三角形中, 分别是边上的点, , 是的中点, 与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明: //平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.【答案】(1)在等边三角形中,,在折叠后的三棱锥中也成立,, 平面,平面, 平面;(2)在等边三角形中, 是的中点,所以①,.在三棱锥中, , ②;(3)由(1)可知,结合(2)可得.31.(2013年高考湖南(文))如图2.在直菱柱ABC-A1B1C1中,∠BAC=90°,AB=AC= ,AA1=3,D是BC的中点,点E在菱BB1上运动.(I) 证明:AD⊥C1E;(II) 当异面直线AC,C1E 所成的角为60°时,求三菱子C1-A2B1E的体积.【答案】解: (Ⅰ)..(证毕)(Ⅱ) ..32.(2013年高考北京卷(文))如图,在四棱锥中, , , ,平面底面, , 和分别是和的中点,求证:(1) 底面;(2) 平面;(3)平面平面【答案】(I)因为平面PAD⊥平面ABCD,且PA垂直于这个平面的交线AD 所以PA垂直底面ABCD.(II)因为AB‖CD,CD=2AB,E为CD的中点所以AB‖DE,且AB=DE所以ABED为平行四边形,所以BE‖AD,又因为BE 平面PAD,AD 平面PAD所以BE‖平面PAD.(III)因为AB⊥AD,而且ABED为平行四边形所以BE⊥CD,AD⊥CD,由(I)知PA ⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD所以CD⊥PD,因为E和F分别是CD 和PC的中点所以PD‖EF,所以CD⊥EF,所以CD ⊥平面BEF,所以平面BEF⊥平面PCD.33.(2013年高考课标Ⅰ卷(文))如图,三棱柱中, ,, .(Ⅰ)证明: ;(Ⅱ)若, ,求三棱柱的体积.【答案】【答案】(I)取AB的中点O,连接、、,因为CA=CB,所以,由于AB=A A1,∠BA A1=600,故为等边三角形,所以OA ⊥AB.因为OC⨅OA =O,所以AB 平面OA C.又A CC平面OA C,故AB AC.(II)由题设知34.(2013年高考山东卷(文))如图,四棱锥中, ,,分别为的中点(Ⅰ)求证: ;(Ⅱ)求证:【答案】35.(2013年高考四川卷(文))如图,在三棱柱中,侧棱底面, , ,分别是线段的中点, 是线段上异于端点的点.(Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;(Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积.(锥体体积公式: ,其中为底面面积, 为高)【答案】解:(Ⅰ)如图,在平面ABC内,过点作直线,因为在平面外,BC在平面内,由直线与平面平行的判定定理可知, 平面.由已知, , 是BC中点,所以BC⊥AD,则直线,又因为底面,所以,又因为AD, 在平面内,且AD与相交,所以直线平面(Ⅱ)过D作于E,因为平面,所以,又因为AC, 在平面内,且AC与相交,所以平面,由,∠BAC ,有,∠DAC ,所以在△ACD中, ,又,所以因此三棱锥的体积为36.(2013年高考湖北卷(文))如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为, ,且. 过, 的中点, 且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.【答案】(Ⅰ)依题意平面, 平面, 平面,所以A1A2‖B1B2‖C1C2. 又, , ,且.因此四边形、均是梯形.由‖平面, 平面,且平面平面,可得AA2‖ME,即A1A2‖DE. 同理可证A1A2‖FG,所以DE‖FG.又、分别为、的中点,则、、、分别为、、、的中点,即、分别为梯形、的中位线.因此, ,而,故,所以中截面是梯形.(Ⅱ) . 证明如下:由平面, 平面,可得.而EM‖A1A2,所以,同理可得.由是△的中位线,可得即为梯形的高,因此,即.又,所以.于是.由,得, ,故.37.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A1B1C1中,D,E 分别是AB,BB1的中点.(1) 证明: BC1//平面A1CD;(2) 设AA1= AC=CB=2,AB=2 ,求三棱锥C一A1DE的体积.【答案】38.(2013年高考大纲卷(文))如图,四棱锥P-ABCD中,∠ABC=∠BAD=900,BC=2AD,△PAB与△PAD 都是边长为2的等边三角形.(I)证明:PB⊥CD;(II)求点A到平面PCD的距离.【答案】(Ⅰ)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OE.由和都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O为正方形ABED对角线的交点,故,从而.因为O是BD的中点,E是BC的中点,所以OE//CD.因此, .(Ⅱ)解:取PD的中点F,连结OF,则OF//PB.由(Ⅰ)知, ,故.又, ,故为等腰三角形,因此, .又,所以平面PCD.因为AE//CD, 平面PCD, 平面PCD,所以AE//平面PCD.因此,O到平面PCD的距离OF就是A到平面PCD的距离,而,所以A至平面PCD的距离为1.39.(2013年高考安徽(文))如图,四棱锥的底面是边长为2的菱形, .已知.(Ⅰ)证明:(Ⅱ)若为的中点,求三菱锥的体积.【答案】解:(1)证明:连接交于点又是菱形而⊥面⊥(2)由(1) ⊥面=40.(2013年上海高考数学试题(文科))如图,正三棱锥底面边长为,高为,求该三棱锥的体积及表面积.【答案】41.(2013年高考天津卷(文))如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.(Ⅰ) 证明EF//平面A1CD;(Ⅱ) 证明平面A1CD⊥平面A1ABB1;(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.【答案】42.(2013年高考重庆卷(文))(本小题满分12 分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(19)图,四棱锥中, ⊥底面, , ,(Ⅰ)求证: ⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积.【答案】43.(2013年高考江西卷(文))如图,直四棱柱ABCD –A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E为CD上一点,DE=1,EC=3(1) 证明:BE⊥平面BB1C1C;(2) 求点B1 到平面EA1C1 的距离【答案】解.(1)证明:过B作CD的垂线交CD于F,则在在,故由(2),同理,因此.设点B1到平面的距离为d,则,从而各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

【精选+详解】2013届高三数学名校试题汇编(第2期)专题08 立体几何 文

【精选+详解】2013届高三数学名校试题汇编(第2期)专题08 立体几何 文

【精选+详解】2013届高三数学名校试题汇编(第2期)专题08 立体几何 文一.基础题1.【某某省华南师大附中2012-2013学年度高三第三次月考】已知m n 、是两条不同的直线,αβ、是两个不同的平面,有下列命题:①若,//m n αα⊂,则//m n ; ②若//m α,//m β,则//αβ;③若,m m n α⊥⊥,则α//n ; ④若,m m αβ⊥⊥,则//αβ;其中真命题的个数是(A )1个 (B )2个 (C )3个 (D )4个【答案】A【解析】①②③不成立,故选A .2.【2013年某某省高考测试卷】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是( )【答案】D【解析】仔细分析A 、B 、C 三个选项,发现都可以是下图左边的三视图,D选项则表示下图右边的三视图.3.【某某师大附中2013届高三高考适应性月考卷(三)】一个几何体的三视图如图1所示,其中正视图是一个正三角形,则该几何体的体积为A .1B .33C .3D .2334.【某某某某一中2013届第四次月考试卷】已知某几何体的俯视图是如图所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其全面积是 ( )2A .8B .12C .4(13)+D . 43【答案】B【解析】由题意可知,该几何体为正四棱锥,底面边长为2,侧面斜高为2,所以底面积为224⨯=,侧面积为142282⨯⨯⨯=,所以表面积为4812+=,选B. 5.【东城区普通校2012—2013学年高三第一学期联考】已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖ C.,,m n m n αα若则‖‖‖ D .,,m m αβαβ若则‖‖‖【答案】B【解析】根据线面垂直的性质可知,B 正确.6.【东城区普通校2012—2013学年高三第一学期联考】一个棱锥的三视图如图(尺寸的长度单位为m ), 则该棱锥的体积是A .34B .8C .4D .38 7.【某某市新华中学2011-2012学年度第一学期第二次月考】如图,是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是A. 24B. 12C. 8D. 48.【四中2012-2013年度第一学期高三年级期中】 设为两个平面,为两条直线,且,有如下两个命题:①若;②若. 那么()A.①是真命题,②是假命题 B.①是假命题,②是真命题 C.①、②都是真命题 D.①、②都是假命题【答案】D【解析】若//αβ,则//l m或,l m异面,所以①错误.同理②也错误,所以选D.9.【2013年某某市高中毕业班第一次调研测试】一个几何体的三视图如图所示,则这个几何体的体积为A. (8)36π+B.(82)36π+C. (6)36π+D.(92)36π+10.【某某市新华中学2011-2012学年度第一学期第二次月考】如图为一个几何体的三视图,其中俯视为正三角形,A1B1=2,AA1=4,则该几何体的表面积为_______.二.能力题11.【某某某某一中2013届第四次月考试卷】已知正三棱锥ABC P ,点C B A P ,,,都在半径为3的球面上,若PC PB PA ,,两两互相垂直,则球心到截面ABC 的距离为________.12.【某某某某一中高2013届高三上学期第三次月考】已知三棱锥的三视图如图所示,则它的外接球表面积为( )A .16πB .4πC .8πD .2π13.【某某某某一中2013届第四次月考试卷】四面体BCD A -中,,5,4======BD AD AC BC CD AB 则四面体外接球的表面积为( )A .π33B .π43C .π36D .π18【答案】A【解析】分别取AB,CD 的中点E,F ,连结相应的线段,由条件可知,球心G 在EF 上,可以证明G 为EF中点,A.14.【某某中原名校2012—2013学年度第一学期期中联考】[已知球O l 、O 2的半径分别为l 、 r ,体积分别为V 1、V 2,表面积分别为S 1、S 2,当(1,)r ∈+∞时,2121V V S S --的取值X 围 是.15.【某某某某外国语学校2012—2013学年度第一学期质量检测】一个几何体的三视图如图所示(单位:m),则该几何体的体积为3m .【答案】4【解析】由三视图可知,该组合体是由两个边长分别为2,1,1和1,1,2的两个长方体,所⨯⨯+⨯⨯=.以体积之和为211112416.【四中2012-2013年度第一学期高三年级期中】湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12 cm,深2 cm的空穴,则该球的半径是______cm,表面积是______cm².17.【四中2012-2013年度第一学期高三年级期中】某几何体的三视图如图所示,该几何体的体积是______.18.【2013年某某市高中毕业班第一次调研测试】若一个正方体的表面积为1S ,其外接球的表面积为2S ,则12S S =____________. 19.【某某某某一中高2013届高三上学期第三次月考】 设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D P D Bλ=.当APC ∠为钝角时,则λ的取值X 围是.11(,,)(0,1,1)(,1,1)PC PD DC λλλλλλ=+=--+-=--- 三.拔高题20【2013年某某市高中毕业班第一次调研测试】(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AA A C AC ===,AB BC =,AB BC ⊥,O 为AC 中点.⑴证明:1A O ⊥平面ABC ;⑵ 若E 是线段1A B 上一点,且满足1111112E BCC ABC A B C V V --=,求1A E 的长度. 【命题意图】本小题以斜三棱柱为考查载体,考查平面几何的基础知识.同时题目指出侧面的一条高与底面垂直,搭建了空间直角坐标系的基本架构.本题通过分层设计,考查了空间直线垂直,以及线面成角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1) 112AA A C AC ===,且O 为AC 中点,1A O AC ∴⊥,又 侧面11AA C C ⊥底面ABC ,交线为AC ,11AO A AC ⊂面, ∴1A O ⊥平面ABC . (6分) O C B A C 1B 1A 1(2) 11111111124E BCC ABC A B C A BCC V V V ---==,因此114BE BA =,即1134A E AB =,又在1Rt AOB ∆中,1A O OB ⊥,13AO =,1BO =可得12A B =,则1A E 的长度为32. (12分)21.【某某省东阿县第一中学2012-2013学年度上学期考试】(本小题满分14分) 如图,正三棱柱111ABC ABC -中,12,3,AB AA D ==为1C B 的中点,P 为AB 边上的动点.(Ⅰ)当点P 为AB 的中点时,证明DP//平面11ACC A ; (Ⅱ)若3AP PB =,求三棱锥B CDP -的体积.【答案】22.【某某某某一中高2013届高三上学期第三次月考】(本小题满分12分)如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到面1ACD 的距离.解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C …………2分(1)1111,(1,0,1),(1,,1)0,.DA D E x DA D E =-=⊥因为所以………………6分23.【某某师大附中2013届高三高考适应性月考卷(三)】如图5,已知三棱锥A BPC -中,AP ⊥BC ,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:BC ⊥平面APC ;(2)若3BC =,10AB =,求点B 到平面DCM 的距离. (本小题满分12分)3又MD DC ⊥,125328MDC S MD DC ∴=⋅△112553123,33825B MDC MDC V h S h h -∴=⋅=⋅⋅=∴=△,即点B 到平面MDC 的距离为125.……………………………………………(12分)24.【某某师大附中、某某一中2013届高三12月联考试卷】(本小题满分12分)如图所示,在直.三棱柱...ABC -A 1B 1C 1中,AC ⊥BC .(1) 求证:平面AB 1C 1⊥平面AC 1;(2) 若AB 1⊥A 1C ,求线段AC 与AA 1长度之比;(3) 若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,试确定点E 的位置;若不存在,请说明理由.证法二:设G 是AB 1的中点,连结EG ,则易证EG DC 1. 所以DE // C 1G ,DE ∥平面AB 1C 1. 25.【市东城区普通高中示X 校2013届高三综合练习(一)】(本题满分14分)已知ABCD 是矩形,2AD AB =,,E F 分别是线段,AB BC 的中点,PA ⊥平面ABCD .(Ⅰ)求证:DF ⊥平面PAF ;(Ⅱ)在棱PA 上找一点G ,使EG ∥平面PFD ,并说明理由. (Ⅰ)证明:在矩形ABCD 中,因为AD =2AB ,点F 是BC 的中点,26.【某某省华南师大附中2012-2013学年度高三第三次月考】(本题满分14分) 如图,已知⊥PA ⊙O 所在的平面,AB 是⊙O 的直径,2=AB , C 是⊙O 上一点,且BC AC =,PC 与⊙O 所在的平面成︒45角, E 是PC 中点.F 为PB 中点. (1) 求证: ABC EF 面//; (2) 求证:PAC EF 面⊥;(3)求三棱锥PAC B -的体积.解:(1)证明:在三角形PBC 中,E 是PC 中点. F 为PB 中点P CBO EF27.某某省某某市2012届高三12月教学质量检测】((本小题满分12分)如图,已知多面体ABCDE 中,DE ⊥平面DBC ,DE AB ∥,2====AB BC CD BD ,F 为BC 的中点.(Ⅰ)求证:DF ⊥平面ABC ;(Ⅱ)求点D 到平面EBC 的距离的取值X 围.28.【某某省名校新高考研究联盟2013届第一次联考】(本题14分)如图,在三棱锥ABC P -中,BC AC PC AB PB PA 222=====. (Ⅰ)求证:BC PA ⊥;(Ⅱ)求二面角C AB P --所成角的余弦值.(Ⅰ)【解法一】如图,取PA 中点M ,连接CM 、BM . ∵AC PC =,AB PB =,∴PA CM ⊥,PA BM ⊥, ……3分 又M BM CM = ,∴⊥PA 平面BMC ,⊂BC 平面BMC , ∴BC PA ⊥. ……………………………………………6分【解法二】由BC AC PC AB PB PA 222=====知,ACB ∆、ACP ∆、BCP ∆都是等腰直角三角形,CA 、CB 、CP 两两垂直, …………3分∴⊥BC 平面ACP ,⊂PA 平面ACP ,∴BC PA ⊥. (6)分∴二面角C AB P --所成角的余弦值为33.……………………………………………14分 29.【某某省某某市部分学校2013届高三12月联考】(本小题满分13分)在如图所示的多面体ABCDE 中,AB⊥平面ACD ,DE⊥平面ACD , 且AC=AD=CD=DE=2,AB=1. (1)请在线段CE 上找到点F 的位置,使得恰有直线BF∥平面ACD ,并证明这一事实; (2)求多面体ABCDE 的体积;(3)求直线EC 与平面ABED 所成角的正弦值.解答:如图,(1)由已知AB⊥平面ACD ,DE⊥平面ACD ,∴AB//ED ,设F 为线段CE 的中点,H 是线段CD 的中点,有36sin 422CG CE α===.30.【某某省2012年某某市高2013级(高三)一诊模拟考试】在四棱锥PABCD 中,AB //CD ,ABAD ,4,22,2AB AD CD ,PA 平面ABCD ,4PA .(1)设平面PAB平面PCD m =,求证:CD //m ;(2)求证:BD ⊥平面PAC ; (3)求三棱锥D-PBC 体积(1)证明: 因为AB //CD ,CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD //平面PAB . 因为CD ⊂平面PCD ,平面PAB 平面PCD m =,所以CD //m . ……4分 (2)证明:因为AP平面ABCD ,ABAD ,所以以A 为坐标原点,,,AB AD AP 所31.【某某省某某市2013届高三第三次调研考试】如图所示,在棱长为2的正方体1111ABCD A B C D 中,E 、F 分别为1DD 、DB 的中点.word 21 / 21。

北京市各地市高考数学 最新联考试题分类汇编(8)立体几何

北京市各地市高考数学 最新联考试题分类汇编(8)立体几何

北京市各地市2013年高考数学最新联考试题分类汇编(8)立体几何一、选择题:(6)(北京市朝阳区2013年4月高三第一次综合练习文理)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A. 4B. D. 8【答案】D(5)(北京市东城区2013年4月高三综合练习一文)已知一个几何体的三视图如图所示(单位:cm),那么这个几何体的侧.面积是(A)2(B)2(4(D)2(C)2【答案】C7. (北京市房山区2013年4月高三第一次模拟理)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( C )A.B. 8C.D.5.(北京市西城区2013年4月高三一模文)某正三棱柱的三视图如图所示,其中正(主) 视图是边长为2的正方形,该正三棱柱的表面积是(A )6(B )12(C )12+(D )24+【答案】C8.(北京市西城区2013年4月高三一模文)如图,正方体1111ABCD A BC D -中,E 是棱11B C 的中点,动点P 在底面ABCD 内,且11PA A E =,则 点P 运动形成的图形是(A )线段 (B )圆弧(C )椭圆的一部分 (D )抛物线的一部分【答案】B8. (北京市海淀区2013年4月高三第二学期期中练习理)设123,,l l l 为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:①i i A l ∃∈(1,2,3)i =,使得123A A A ∆是直角三角形; ②i i A l ∃∈(1,2,3)i =,使得123A A A ∆是等边三角形;③三条直线上存在四点(1,2,3,4)i A i =,使得四面体1234A A A A 为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的序号是A. ①B.①②C. ①③D. ②③ 【答案】B7.(北京市丰台区2013年高三第二学期统一练习一文)某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是(A) 2 (B) 4 (C) 24+【答案】C(7)(北京市昌平区2013年1月高三期末考试理)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为A. 10+.10+ C. 14+ D. 14+二、解答题:(17)(北京市朝阳区2013年4月高三第一次综合练习理)(本小题满分14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且P A A C ⊥, 2PA AD ==.四边形ABCD 满足BCAD ,AB AD ⊥,1AB BC ==.点,E F 分别为侧棱,PB PC 上的点,且PE PFPB PCλ==. (Ⅰ)求证:EF 平面PAD ;(Ⅱ)当12λ=时,求异面直线BF 与CD 所成角的余弦值;(Ⅲ)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由. (17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EFBC .所以()()0,0,01,0,0,A B ,所以异面直线BF与CD所成角的余弦值为3.…………………………………9分令21x=,则2(1,1,1) =n.若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (17)(北京市朝阳区2013年4月高三第一次综合练习文) (本小题满分14分)如图,在四棱锥P ABCD -中,平面PAC ⊥平面ABCD ,且P A A C ⊥, 2PA AD ==.四边形ABCD 满足BC AD ,AB AD ⊥,1AB BC ==.E 为侧棱PB 的中点,F 为侧棱PC 上的任意一点.(Ⅰ)若F 为PC 的中点,求证:EF平面PAD ;(Ⅱ)求证:平面AFD ⊥平面PAB ; (Ⅲ)是否存在点F ,使得直线AF 与平面PCD 垂直?若存在,写出证明过程并求出线段PF 的长;若不存在,请说明理由.平面ABCD 平面PAC AC =,且PA AC ⊥,PA ⊂平面PAC .所以PA ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PA AD ⊥. 又因为AB AD ⊥,PA AB A =,所以AD ⊥平面PAB ,而AD ⊂平面AFD ,所以平面AFD ⊥平面PAB .……………………………………………………8分可见直线AF 与平面PCD 能够垂直,此时线段PF.……………14分 (16)(北京市东城区2013年4月高三综合练习一文)(本小题共14分) 如图,已知AD ⊥平面ABC ,CE ⊥平面ABC ,F 为BC 的中点,若12AB AC AD CE ===.(Ⅰ)求证://AF 平面BDE ;(Ⅱ)求证:平面BDE ⊥平面BCE .(16)(共14分)证明:(Ⅰ)取BE 的中点G ,连结GF ,GD .因为F 是BC 的中点,则GF 为△BCE 的中位线.所以//GF EC ,12GF CE =.因为AD ⊥平面ABC ,CE ⊥平面ABC , 所以////GF EC AD .A BC DE FABCD EFG又DG ⊂平面BDE , 所以平面BDE ⊥平面BCE .16. (北京市房山区2013年4月高三第一次模拟理)(本小题满分14分)在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD , ABCD 为直角梯形,BC //AD ,90ADC ∠=︒,112BC CD AD ===,PA PD =,E F ,为AD PC ,的中点.(Ⅰ)求证:PA //平面BEF ;(Ⅱ)若PC 与AB 所成角为45︒,求PE 的长;(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A 的余弦值.解得:2=t ∴2=PE …………………………………………………………………….9分解法二:由BCDE 为正方形可得 EC ==由ABCE 为平行四边形 可得EC //AB∴PCE ∠为PC AB 与所成角 即045PCE ∠=…………………………………..…5分 PA PD E AD PE AD =∴⊥为中点由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为33-.………………………………………….14分 16.(北京市西城区2013年4月高三一模文)(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,AC ,22AB BC ==,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ; (Ⅱ)求四面体FBCD 的体积;(Ⅲ)线段AC 上是否存在点M ,使EA //平面FDM ? 证明你的结论. 16.(本小题满分14分)因为 CDEF 为正方形,所以N 为CE 中点. ………………11分所以 EA //MN . ………………12分 因为 ⊂MN 平面FDM ,⊄EA 平面FDM , ………………13分 所以 EA //平面FDM .所以线段AC 上存在点M ,使得EA //平面FDM 成立. ………………14分17. (北京市海淀区2013年4月高三第二学期期中练习理)(本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4PA AB ==,120CDA ∠=,点N 在线段PB 上,且PN = (Ⅰ)求证:BD PC ⊥; (Ⅱ)求证://MN 平面PDC ; (Ⅲ)求二面角A PC B --的余弦值.PDC ………………9分所以二面角A PC B --余弦值为7………………14分 16.(北京市丰台区2013年高三第二学期统一练习一文) (本题13分)如图,四棱锥P-ABCD 中, BC ∥AD ,BC=1,AD=3,AC ⊥CD,且平面PCD ⊥平面ABCD. (Ⅰ)求证:AC ⊥PD ;(Ⅱ)在线段PA 上,是否存在点E ,使BE ∥平面PCD ?若存在,求PE PA的值;若不存在,请说明理由。

北京市昌平区2013届高三仿真模拟数学文科试卷5 Word版含答案

北京市昌平区2013届高三仿真模拟数学文科试卷5 Word版含答案

北京市昌平区2013届高三仿真模拟数学文科试卷5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于 (A )1(B )0(C )2- (D )3-2.已知i 是虚数单位,则复数2z 12i+3i =+所对应的点落在 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.已知a b <,则下列不等式正确的是(A )11a b > (B )22a b >(C )22a b ->-(D )22a b>4.在ABC ∆中,“0AB BC ⋅=”是“ABC ∆为直角三角形”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分又不必要条件 5.一个几何体的三视图如图所示,则其体积等于(A )2 (B )1(C )16(D )236.函数sin ()y x x =π∈R 的部分图象如图所示,设O 为坐标原点,P 是图象的最高点,B 是图象与x 轴的交点,则tan OPB ∠=正(主)视图俯视图侧(左)视图(A )10 (B )8(C )87 (D )477.若2a >,则函数3()33f x x ax =-+在区间(0,2)上零点的个数为 (A )0个 (B )1个 (C )2个(D )3个8.已知点(1,0),(1,0)A B -及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为 (A )3 (B )2(C(D第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知}{n a 为等差数列,341a a +=,则其前6项之和为_____.10.已知向量(1=a,+=a b ,设a 与b 的夹角为θ,则θ=_____. 11.在ABC ∆中,若2B A =,:a b =A =_____.12.平面上满足约束条件2,0,60x x y x y ≥⎧⎪+≤⎨⎪--≤⎩的点(,)x y 形成的区域为D ,则区域D 的面积为________;设区域D 关于直线21y x =-对称的区域为E ,则区域D 和区域E 中距离 最近的两点的距离为________.13.定义某种运算⊗,a b ⊗的运算原理如右图所示. 则0(1)⊗-=______;设()(0)(2)f x x x x =⊗-⊗.则(1)f =______.14.数列{}n a 满足11a =,11n nn a a n λ+-=+,其中λ∈R ,12n =,,.给出下列命题:①λ∃∈R ,对于任意i ∈*N ,0i a >;②λ∃∈R ,对于任意2()i i ≥∈*N ,10i i a a +<;③λ∃∈R ,m ∈*N ,当i m >(i ∈*N )时总有0ia <.其中正确的命题是______.(写出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数1)43()sin x f x x π+-=.(Ⅰ)求函数()f x 的定义域; (Ⅱ)若()2f x =,求sin 2x 的值.16.(本小题满分13分)如图,菱形ABCD 的边长为6,60BAD ∠=,ACBD O =.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC的中点,DM =(Ⅰ)求证://OM 平面ABD ; (Ⅱ)求证:平面ABC ⊥平面MDO ; (Ⅲ)求三棱锥M ABD -17.(本小题满分13分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽ABCCMOD取了45人,求n的值;(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.18.(本小题满分14分)设函数()e xf x=,其中e为自然对数的底数.(Ⅰ)求函数()()eg x f x x=-的单调区间;(Ⅱ)记曲线()y f x=在点00(,())P x f x(其中0x<)处的切线为l,l与x轴、y轴所围成的三角形面积为S,求S的最大值.19.(本小题满分14分)已知椭圆22221x ya b+=(0a b>>)的焦距为.(Ⅰ)求椭圆方程;(Ⅱ)设过椭圆顶点(0,)B b,斜率为k的直线交椭圆于另一点D,交x轴于点E,且,,BD BE DE成等比数列,求2k的值.20.(本小题满分13分)若函数)(xf对任意的x∈R,均有)(2)1()1(xfxfxf≥++-,则称函数)(xf具有性质P.(Ⅰ)判断下面两个函数是否具有性质P,并说明理由.①(1)xy a a=>;②3y x=.(Ⅱ)若函数)(xf具有性质P,且(0)()0f f n==(2,n>n∈*N),求证:对任意{1,2,3,,1}i n∈-有()0f i≤;(Ⅲ)在(Ⅱ)的条件下,是否对任意[0,]x n∈均有0)(≤xf.若成立给出证明,若不成立给出反例.参考答案一、选择题:本大题共8小题,每小题5分,共40分.题号1 2 3 4 5 67 8 答案C B C AD B B C二、填空题:本大题共6小题,每小题5分,共30分.9. 3 10. 120 11.30 12. 1; 13. 1;1- 14. ①③注:12、13题第一问2分,第二问3分.14题只选出一个正确的命题给2分,选出错误的命题即得0分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)解:解:(Ⅰ)由题意,sin 0x ≠, ……………2分 所以,()x k k ≠π∈Z . ……………3分函数()f x 的定义域为{,}x x k k ≠π∈Z . ……………4分(Ⅱ)因为()2f x =1)2sin 43x xπ+-=, ……………5分12()2sin 223x x x +-=, ……………7分1cos sin 3x x -=, ……………9分 将上式平方,得11sin 29x -=, ……………12分所以8sin 29x =. ……………13分16.(本小题满分13分)(Ⅰ)证明:因为点O 是菱形ABCD 的对角线的交点, 所以O 是AC 的中点.又点M 是棱BC 的中点,所以OM 是ABC ∆的中位线,//OM AB . ……………2分 因为OM ⊄平面ABD ,AB ⊂平面ABD ,所以//OM 平面ABD . ……………4分 (Ⅱ)证明:由题意,3OM OD ==,因为DM =所以90DOM ∠=,OD OM ⊥. ……………6分 又因为菱形ABCD ,所以OD AC ⊥. …………7分 因为OMAC O =,所以OD ⊥平面ABC , ……………8分 因为OD ⊂平面MDO ,所以平面ABC ⊥平面MDO . ……………9分(Ⅲ)解:三棱锥M ABD -的体积等于三棱锥D ABM -的体积. ……………10分 由(Ⅱ)知,OD ⊥平面ABC ,所以3OD =为三棱锥D ABM -的高. ……………11分ABM ∆的面积为11sin1206322BA BM ⨯⨯=⨯⨯=, ……………12分所求体积等于132ABM S OD ∆⨯⨯=. ……………13分17.(本小题满分13分)解:(Ⅰ)由题意得80010080045020010015030045n ++++++=, ……………2分所以100n =. ……………3分ABCMOD(Ⅱ)设所选取的人中,有m 人20岁以下,则2002003005m=+,解得2m =.………5分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A1,A2;B1,B2,B3,则从中任取2人的所有基本事件为 (A1,B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2),(B1 ,B2),(B2 ,B3),(B1 ,B3)共10个. ………7分 其中至少有1人20岁以下的基本事件有7个:(A1, B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2), …………8分所以从中任意抽取2人,至少有1人20岁以下的概率为710. ……………9分 (Ⅲ)总体的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=,………10分那么与总体平均数之差的绝对值超过0.6的数只有8.2, ……………12分所以该数与总体平均数之差的绝对值超过0.6的概率为81. ……………13分18.(本小题满分14分)解:(Ⅰ)由已知()e e xg x x =-, 所以()e e xg x '=-, ……………2分 由()e e 0x g x '=-=,得1x =, ……………3分 所以,在区间(,1)-∞上,()0g x '<,函数()g x 在区间(,1)-∞上单调递减; ……………4分在区间(1,)+∞上,()0g x '>,函数()g x 在区间(1,)+∞上单调递增; ……………5分 即函数()g x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞.(Ⅱ)因为()e xf x '=,所以曲线()y f x =在点P 处切线为l :000e e ()x x y x x -=-. ……………7分 切线l 与x 轴的交点为0(1,0)x -,与y 轴的交点为000(0,e e )x x x -, ……………9分 因为00x <,所以002000011(1)(1)e (12)e 22x x S x x x x =--=-+, ……………10分0201e (1)2x S x '=-, ……………12分在区间(,1)-∞-上,函数0()S x 单调递增,在区间(1,0)-上,函数0()S x 单调递减.……………13分所以,当01x =-时,S 有最大值,此时2e S =,所以,S 的最大值为2e . ……………14分19、(本小题满分14分)解:(Ⅰ)由已知2c =2c a=. ……………2分解得2,a c =, ……………4分 所以2221b a c =-=,椭圆的方程为2214x y +=. ……………5分(Ⅱ)由(Ⅰ)得过B 点的直线为1y kx =+,由221,41,x y y kx ⎧+=⎪⎨⎪=+⎩ 得22(41)80k x kx ++=, ……………6分 所以2814D k x k =-+,所以221414D k y k -=+, ……………8分 依题意0k ≠,12k ≠±.因为,,BD BE DE 成等比数列,所以2BE BD DE=, ……………9分所以2(1)D Db y y =-,即(1)1D D y y -=, ……………10分当0D y >时,210D D y y -+=,无解, ……………11分 当0D y <时,210DD y y --=,解得D y =, ……………12分所以221414k k-=+,解得2k =, 所以,当,,BD BE DE成等比数列时,224k =. ……………14分20.(本小题满分13分)(Ⅰ)证明:①函数)1()(>=a a x f x具有性质P . ……………1分 111(1)(1)2()2(2)x x x x f x f x f x a a a a a a -+-++-=+-=+-,因为1>a ,1(2)0x a a a +->, ……………3分即)(2)1()1(x f x f x f ≥++-, 此函数为具有性质P .②函数3)(x x f =不具有性质P . ……………4分例如,当1x =-时,(1)(1)(2)(0)8f x f x f f -++=-+=-,2()2f x =-, ……………5分所以,)1()0()2(-<+-f f f , 此函数不具有性质P . (Ⅱ)假设)(i f 为(1),(2),,(1)f f f n -中第一个大于0的值, ……………6分则0)1()(>--i f i f , 因为函数()f x 具有性质P ,所以,对于任意n ∈*N ,均有(1)()()(1)f n f n f n f n +-≥--,所以0)1()()2()1()1()(>--≥≥---≥--i f i f n f n f n f n f , 所以()[()(1)][(1)()]()0f n f n f n f i f i f i =--+++-+>,与0)(=n f 矛盾, 所以,对任意的{1,2,3,,1}i n ∈-有()0f i ≤. ……………9分(Ⅲ)不成立.例如2()()x x n x f x x x -⎧=⎨⎩为有理数,为无理数. ……………10分 证明:当x 为有理数时,1,1x x -+均为有理数,222(1)(1)2()(1)(1)2(112)2f x f x f x x x x n x x x -++-=-++---++-=,当x 为无理数时,1,1x x -+均为无理数,22)1()1()(2)1()1(222=-++-=-++-x x x x f x f x f所以,函数)(x f 对任意的x ∈R ,均有)(2)1()1(x f x f x f ≥++-,即函数)(x f 具有性质P . ……………12分 而当],0[n x ∈(2n >)且当x 为无理数时,0)(>x f .所以,在(Ⅱ)的条件下,“对任意[0,]x n ∈均有0)(≤x f ”不成立.……………13分 (其他反例仿此给分.如()()0()1x x f x ⎧=⎨⎩为有理数为无理数,()()0()1x x f x ⎧=⎨⎩为整数为非整数,2()()()x x f x x ⎧=⎨⎩为整数为非整数,等.)。

2013年普通高考文科数学试题汇编-立体几何解答题_图文

2013年普通高考文科数学试题汇编-立体几何解答题_图文

2013年普通高考文科数学试题汇编-立体几何解答题三、解答题1. (2013年高考辽宁卷 (文如图 , . AB O PA O C O 是圆的直径, 垂直圆所在的平面, 是圆上的点 (I求证 :BC PAC ⊥平面 ;(II设//. Q PA G AOC QG PBC ∆为的中点, 为的重心,求证:平面【答案】(I 由 AB 式圆 O 的直径,得 AC ⊥ BC.由 PA ⊥平面 ABC , BC ⊂平面 ABC ,得 PA ⊥ BC,又PA ∩ AC=A,P A⊂平面 PAC , AC ⊂平面 PAC,所以 BC ⊥平面 PAC.(II 连 OG 并延长交 AC 与 M ,链接 QM , QO.由 G 为∆ AOC 的重心,得 M 为 AC 中点,由 G 为 PA 中点,得 QM//PC.又 O 为 AB 中点,得 OM//BC.因为QM ∩ MO=M,QM⊂平面 QMO.所以 QG//平面 PBC.2. (2013年高考浙江卷 (文如图 , 在在四棱锥 P-ABCD 中 ,PA⊥面 3, ∠ABC=120°,G为线段 PC 上的点 .(Ⅰ证明:BD⊥面 PAC ;(Ⅱ若 G 是 PC 的中点 , 求DG 与 APC 所成的角的正切值 ;(Ⅲ若 G 满足 PC⊥面 BGD, 求 PG GC的值 .【答案】解 :证明 :(Ⅰ由已知得三角形 ABC 是等腰三角形 , 且底角等于 30°,且 6030AB CB AD CD ABD CBD ABD CBD BAC BD DB=⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭且 , 所以 ; 、BD AC ⊥, 又因为 PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭; (Ⅱ设 AC BD O = , 由 (1知 DO PAC ⊥, 连接 GO , 所以 DG 与面 APC 所成的角是 DGO ∠, 由已知及 (1知 :1, 2BO AO CO DO =====,12tan 2OD GO PA DGO GO ==⇒∠===所以 DG 与面 APC 所成的角 (Ⅲ由已知得到 :PC===因为 PC BGD PC GD ⊥∴⊥, 在PDC ∆中 , PD CD PC ====, 设223107 2PG PG x CG x x x PG x GC GC =∴=-∴-=--∴====3. (2013年高考陕西卷 (文如图 , 四棱柱 ABCD -A 1B 1C 1D 1的底面 ABCD 是正方形 , O 为底面中心 , A 1O ⊥平面 ABCD, 1AB AA ==1A(Ⅰ证明 : A 1BD // 平面 CD 1B 1;(Ⅱ求三棱柱 ABD -A 1B 1D 1的体积 .【答案】解: (Ⅰ设 111O D B 线段的中点为 .11111111//D B BD D C B A ABCD D B BD ∴-的对应棱是和 . 的对应线段是棱柱和同理, 111111D C B A ABCD O A AO -为平行四边形四边形且且 11111111//////OCO A OC O A OC O A OC AO O A AO ⇒=⇒∴ 1111111111//, . //B CD BD A O D B C O O BD O A C O O A 面面且⇒==⇒ .(证毕(Ⅱ的高是三棱柱面 ABD D B A O A ABCD O A -∴⊥11111 . 在正方形 AB CD中,AO = 1 . . 111=∆O A OA A RT 中, 在11 2(2121111111=⋅⋅=⋅=-∆-O A S V ABD D B A ABD ABD D B A 的体积三棱柱 . 所以 , 1111111=--ABD D B A V ABD D B A 的体积三棱柱 .4. (2013年高考福建卷 (文如图 , 在四棱锥 P ABCD -中 , PD ABCD ⊥面 , //AB DC , AB AD ⊥, 5BC =, 3DC =, 4AD =, 60PAD ∠= .(1当正视图方向与向量 AD 的方向相同时 , 画出四棱锥 P ABCD -的正视图 .(要求标出尺寸 , 并画出演算过程 ;(2若 M 为 PA 的中点 , 求证 ://DM PBC 面 ;(3求三棱锥 D PBC -的体积 .【答案】解法一:(Ⅰ在梯形 ABCD 中 , 过点 C 作 CE AB ⊥, 垂足为 E , 由已知得 , 四边形 ADCE 为矩形 , 3AE CD ==在Rt BEC ∆中 , 由 5BC =, 4CE =, 依勾股定理得 :3BE =, 从而 6AB =又由 PD ⊥平面 ABCD 得 , PD AD ⊥从而在Rt PDA ∆中 , 由 4AD =, 60PAD ∠=︒,得 PD =正视图如右图所示 :(Ⅱ取 PB 中点 N , 连结 MN , CN在PAB ∆中 , M 是 PA 中点 ,∴ MN AB , 132MN AB ==, 又 CD AB , 3CD = ∴ MN CD , MN CD =∴四边形 MNCD 为平行四边形,∴ DM CN又 DM ⊄平面 PBC , CN ⊂平面 PBC∴ DM 平面 PBC (Ⅲ 13D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆= , PD =,所以 D PBC V -=解法二 :(Ⅰ同解法一(Ⅱ取 AB 的中点 E , 连结 ME , DE在梯形 ABCD 中 , BE CD , 且 BE CD =∴四边形 BCDE 为平行四边形∴ DE BC , 又 DE ⊄平面 PBC , BC ⊂平面 PBC∴ DE 平面 PBC , 又在PAB ∆中 , ME PBME ⊄平面 PBC , PB ⊂平面 PBC∴ ME 平面 PBC . 又 DE ME E = ,∴平面 DME 平面 PBC , 又 DM ⊂平面 DME∴ DM 平面 PBC(Ⅲ同解法一5. (2013年高考广东卷(文如图 4, 在边长为 1的等边三角形 ABC 中 , , D E 分别是 , AB AC 边上的点 , AD AE =, F 是 BC 的中点 , AF 与 DE 交于点 G , 将ABF ∆沿AF 折起 , 得到如图 5所示的三棱锥 A BCF -,其中 2BC =. (1 证明 :DE //平面 BCF ;(2 证明 :CF ⊥平面 ABF ;(3 当 23AD =时 , 求三棱锥 F DEG -的体积 F DEG V -. 图 4【答案】 (1在等边三角形 ABC 中 , AD AE =AD AE DB EC ∴=, 在折叠后的三棱锥 A BCF -中也成立 , //DE BC ∴ ,DE ⊄平面 BCF ,BC ⊂平面 BCF , //DE ∴平面 BCF ;(2在等边三角形 ABC 中 , F 是 BC 的中点 , 所以 AF BC ⊥① ,12BF CF==. 在三棱锥 A BCF -中 , 2BC =, 222BC BF CF CF BF ∴=+∴⊥② BF CF F CF ABF ⋂=∴⊥平面 ;(3由 (1可知 //GE CF , 结合 (2可得GE DFG ⊥平面.111111132323323324F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎝⎭6. (2013年高考湖南(文如图 2. 在直菱柱 ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=,AA 1=3,D是 BC 的中点 , 点 E 在菱 BB 1上运动 . (I 证明:AD⊥C 1E;(II当异面直线 AC,C 1E 所成的角为 60°时 , 求三菱子 C 1-A 2B 1E 的体积.【答案】解: (Ⅰ 11C CBB ADE 面为动点,所以需证因为⊥.AD BB ABC AD ABC BB C B A ABC ⊥⇒⊂⊥∴-11111, 面且面是直棱柱AD BC BC D ABC RT ⊥∴∆的中点, 为是等腰直角且又 .. 1111111E C AD C CBB E C C CBB AD B BB BC ⊥⇒⊂⊥⇒=⋂面且面由上两点,且 (证毕(Ⅱ 660, //111111=∆⇒︒=∠∴AE E C A RT E C A A C CA 中, 在 .的高是三棱锥是直棱柱中, 在 1111111111. 2C B A E EB C B A ABC EB E B A RT -∴-=∆⇒ .. 3232213131111111111111的体积为所以三棱锥 E B A C EB S V V C B A C B A E E B A C -⋅=⋅⋅=⋅⋅==∆-- 7. (2013年高考北京卷(文如图 , 在四棱锥 P ABCD -中 , //AB CD , AB AD ⊥, 2CD AB =,平面 PAD ⊥底面 ABCD , PA AD ⊥, E 和 F 分别是 CD 和 PC 的中点 , 求证 : (1PA ⊥底面 ABCD ;(2//BE 平面 PAD ;(3平面 BEF ⊥平面 PCD【答案】 (I因为平面 PAD⊥平面 ABCD, 且 PA 垂直于这个平面的交线 AD 所以 PA 垂直底面 ABCD.(II因为 AB∥CD,CD=2AB,E为 CD 的中点所以 AB∥DE,且 AB=DE 所以ABED 为平行四边形 ,所以 BE∥AD,又因为 BE ⊄平面 PAD,AD ⊂平面 PAD 所以 BE∥平面 PAD.(III因为 AB⊥AD,而且 ABED 为平行四边形所以 BE⊥CD,AD⊥CD,由 (I知 PA⊥底面 ABCD, 所以 PA⊥CD,所以 CD⊥平面 PAD所以 CD⊥PD,因为 E 和 F 分别是 CD 和 PC 的中点所以 PD∥EF,所以 CD⊥EF,所以 CD⊥平面 BEF, 所以平面 BEF⊥平面PCD.8. (2013年高考课标Ⅰ卷 (文如图 , 三棱柱 111ABC A B C -中 , CA CB =, 1AB AA =, 160BAA ∠= .(Ⅰ证明 :1AB AC ⊥; (Ⅱ若 2AB CB ==, 1AC =求三棱柱 111ABC A B C -的体积 .1B 1A1【答案】【答案】 (I取 AB 的中点 O, 连接 OC O 、 1OA O 、 1A B , 因为CA=CB,所以 OC AB ⊥, 由于 AB=AA 1,∠BA A1=600,故, AA B ∆为等边三角形 , 所以 OA 1⊥AB.因为 OC ⨅ OA 1=O,所以 AB ⊥平面 OA 1C. 又 A 1CC 平面 OA 1C, 故 AB ⊥AC. (II由题设知12ABC AA B ∆∆与都是边长为的等边三角形, 12AA B 都是边长为的等边三角形,所以2211111. OC OA AC AC OA OA OC ===+⊥又 ,故111111111, --=3.ABC ABCOC AB O OA ABC OA ABC A B CABC S A B C V S OA=⊥∆=⨯=因为所以平面 , 为棱柱的高,又的面积 ABC 的体积9. (2013年高考山东卷 (文如图 , 四棱锥 P ABCD -中 , , AB AC AB PA⊥⊥, , 2AB CD AB CD=∥ , , , , ,E F G M N 分别为, , , ,PB AB BC PD PC 的中点(Ⅰ求证 :CE PAD∥平面 ; (Ⅱ求证 :EFG EMN⊥平面平面【答案】10. (2013年高考四川卷(文如图 , 在三棱柱11ABC A B C-中 , 侧棱1AA ⊥底面ABC , 122AB AC AA ===, 120BAC ∠= , 1, D D 分别是线段 11, BC B C 的中点 , P 是线段 AD 上异于端点的点 .(Ⅰ在平面 ABC 内 , 试作出过点 P 与平面 1A BC 平行的直线 l , 说明理由 , 并证明直线 l ⊥平面11ADD A ;(Ⅱ设 (Ⅰ中的直线 l 交 AC 于点 Q , 求三棱锥 11A QC D -的体积 .(锥体体积公式 :13V Sh =, 其中 S 为底面面积 , h 为高【答案】解:(Ⅰ如图 , 在平面 ABC 内 , 过点 P 作直线 BC l //, 因为 l 在平面 BC A 1外 , BC 在平面 BC A 1内 ,由直线与平面平行的判定定理可知 , //l 平面 1A BC .由已知 , AC AB =, D 是 BC 中点 , 所以 BC ⊥ AD , 则直线 AD l ⊥, 又因为1AA ⊥底面 ABC , 所以 l AA ⊥1,又因为 AD , 1AA 在平面 11A ADD 内 , 且 AD 与 1AA 相交 , 所以直线⊥l 平面11A ADD(Ⅱ过 D 作 AC DE ⊥于 E , 因为 1AA ⊥平面 ABC , 所以 DE AA ⊥1,又因为 AC , 1AA 在平面 C C AA 11内 , 且 AC 与 1AA 相交 , 所以⊥DE 平面C C AA 11,由 2==AC AB ,∠ BAC ︒=120, 有 1=AD ,∠ DAC ︒=60, 所以在△ ACD 中 , 2 323==AD DE , 又 1211111=⋅=∆AA C A S AQC , 所以 631233*********=⋅⋅=⋅==--QC A QC A D D QC A S DE V V 因此三棱锥 11A QC D -的体积为 6311. (2013年高考湖北卷(文如图 , 某地质队自水平地面 A , B , C 三处垂直向地下钻探 , 自 A 点向下钻到A 1处发现矿藏 , 再继续下钻到 A 2处后下面已无矿 , 从而得到在 A 处正下方的矿层厚度为 121A A d =. 同样可得在 B , C 处正下方的矿层厚度分别为 122B B d =, 123C C d =, 且 123d d d <<. 过AB , AC 的中点 M , N 且与直线 2AA 平行的平面截多面体 111222A B C A B C -所得的截面 DEFG 为该多面体的一个中截面 , 其面积记为 S 中 .(Ⅰ证明 :中截面 DEFG 是梯形 ;(Ⅱ在△ ABC 中 , 记 BC a =, BC 边上的高为 h , 面积为 S . 在估测三角形 ABC 区域内正下方的矿藏储C 11BC B 1量 (即多面体 11122A B C A B C -的体积 V 时 , 可用近似公式 V S h =⋅估中来估算 . 已知1231( 3V d d d S =++, 试判断 V 估与 V 的大小关系 , 并加以证明 .【答案】 (Ⅰ依题意 12A A ⊥平面 ABC , 12B B ⊥平面 ABC , 12C C ⊥平面ABC ,所以 A 1A 2∥ B 1B 2∥ C 1C 2. 又 121A A d =, 122B B d =, 123C C d =, 且 123d d d << . 因此四边形 1221A A B B 、 1221A A C C 均是梯形 .由 2AA ∥平面 MEFN , 2AA ⊂平面 22AA B B , 且平面 22AA B B 平面 MEFN ME =, 可得 AA 2∥ ME , 即 A 1A 2∥ DE . 同理可证 A 1A 2∥ FG , 所以 DE ∥ FG . 又 M 、 N 分别为 AB 、 AC 的中点 ,则 D 、 E 、 F 、 G 分别为 11A B 、 22A B 、 22A C 、 11A C 的中点 , 即DE 、 FG 分别为梯形 1221A A B B 、 1221A A C C 的中位线 .因此 12121211( ( 22DE A A B B d d =+=+, 12121311( ( 22FG A A C C d d =+=+,而 123d d d <<, 故 DE FG <, 所以中截面 DEFG 是梯形 . (Ⅱ V V <估 . 证明如下 :由 12A A ⊥平面 ABC , MN ⊂平面 ABC , 可得 12A A MN ⊥.而 EM ∥ A 1A 2, 所以 EM MN ⊥, 同理可得 FN MN ⊥.由 MN 是△ ABC 的中位线 , 可得 1122MN BC a ==即为梯形 DEFG 的高 ,因此 13121231( (2 22228DEFG d d d d a aS S d d d ++==+⋅=++中梯形 ,即 123(2 8ahV S h d d d =⋅=++估中 . 又 12S ah =, 所以 1231231( ( 36ahV d d d S d d d =++=++. 第 20题图于是 1231232131( (2 [( (]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估 . 由 123d d d <<, 得 210d d ->, 310d d ->, 故 V V <估 .12. (2013年高考课标Ⅱ卷(文如图,直三棱柱 111ABC A B C -中, D , E 分别是AB , 1BB 的中点, 。

北京市高考数学 一模试题解析分类汇编系列五 7 立体几何 文

北京市高考数学 一模试题解析分类汇编系列五 7 立体几何 文

【解析分类汇编系列五:北京2013高三(一模)文数】7:立体几何1 .(2013届房山区一模文科数学)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是 ( )A .B .8C .D .C由三视图可知该几何体是个底面是正三角形,棱AD 垂直底的三棱锥。

其中4,4,3A D B D E C ===,取BC的中点F,则223)27A ==ABC ∆的面积为142⨯⨯,选C.2.(2013届北京市延庆县一模数学文)一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )A .2B .22C .3D .32D将该几何体放入边长为2的正方体中,由三视图可知该四面体为11D BD C -,由直观图可知,最大的面为1BDC .在等边三角形1BDC 中,BD =,所以面积2122S =⨯⨯=,选 D.3.(2013届北京市石景山区一模数学文)某四棱锥的三视图如图所示,则最长的一条侧棱长度是( )(7题图)A B..5 DD由三视图可知:该几何体是一个四棱锥,如图所示,侧棱PD⊥底面ABCD,PD=2,底面ABCD是一个直角梯形,AD∥BC,AD⊥DC,AD=2,DC=3,BC=4,BD=5.所以则最长的一条侧棱PB= D.4.(2013届北京东城区一模数学文科)已知一个几何体的三视图如图所示(单位:cm), 那么这个几何体的侧.面积是()2A.2B.(4D.2C.2C由三视图可知,该几何体是一个平放的四棱柱,四棱柱的底面是直角梯形。

所以几何体的侧面积为(1+2)12111=42⨯⨯+⨯2cm ,选C. 5.(2013届北京市朝阳区一模数学文)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A. 4B.C. 203D. 8 D由三视图可知,该几何体的为,其中长方体底面为正方形,正方形的边长为2.其中3,1HD BF ==,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体体积为122482⨯⨯⨯=。

【备考2014】2013高考数学-(真题+模拟新题分类汇编)-立体几何-文

【备考2014】2013高考数学-(真题+模拟新题分类汇编)-立体几何-文

立体几何G1 空间几何体的结构8.G1,G6[2013·北京卷] 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP=33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33, 联结AP ,PC ,PB 1,则有△ABP≌△CBP≌△B 1BP , ∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.18.G1,G4,G5[2013·广东卷] 如图1-4(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图1-4(2)所示的三棱锥A -BCF ,其中BC =22.图1-4(1)证明:DE∥平面BCF ; (2)证明:CF⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.18.解:G2 空间几何体的三视图和直观图10.G2,G7[2013·北京卷] 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.18.G2,G4[2013·福建卷] 如图1-3,在四棱锥P -ABCD 中,PD⊥平面ABCD ,AB∥DC,AB⊥AD,BC =5,DC =3,AD =4,∠PAD=60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM∥平面PBC ; (3)求三棱锥D -PBC 的体积.图1-318.解:(1)在梯形ABCD 中,过点C 作CE⊥AB,垂足为E. 由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6. 又由PD⊥平面ABCD 得,PD⊥AD.从而在Rt △PDA 中,由AD =4,∠PAD=60°,得PD =4 3. 正视图如图所示.(2)方法一:取PB 中点N ,联结MN ,CN.在△PAB 中,∵M 是PA 中点,∴MN∥AB,MN =12AB =3.又CD∥AB,CD =3,∴MN∥CD,MN =CD , ∴四边形MNCD 为平行四边形,∴DM∥CN. 又DM 平面PBC ,CN 平面PBC , ∴DM ∥平面PBC.方法二:取AB 的中点E ,联结ME ,DE. 在梯形ABCD 中,BE∥CD,且BE =CD , ∴四边形BCDE 为平行四边形,∴DE ∥BC.又DE 平面PBC ,BC 平面PBC , ∴DE ∥平面PBC.又在△PAB 中,ME∥PB,ME 平面PBC ,PB 平面PBC ,∴ME∥平面PBC. 又DE∩ME=E ,∴平面DME∥平面PBC. 又DM 平面DME ,∴DM∥平面PBC.(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =4 3,所以V D -PBC =8 3.6.G2[2013·广东卷] 某三棱锥的三视图如图1-2所示,则该三棱锥的体积是( )图1-2A.16B.13C.23D .1 6.B [解析] 由三视图得三棱锥的高是2,底面是一个腰为1的等腰直角三角形,故体积是13×12×1×1×2=13,选B. 5.G2[2013·广东卷] 执行如图1-1所示的程序框图,若输入n 的值为3,则输出s 的值是( )图1-1A .1B .2C .4D .7 5.C [解析] 1≤3,s =1+0=1,i =2;2≤3,s =1+1=2,i =3;s =2+2=4,i =4;4>3,故输出s =4,选C.7.G2[2013·湖南卷] 已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32B .1 C.2+12D. 2 7.D [解析] 由题可知,其俯视图恰好是正方形,而侧视图和正视图则应该都是正方体的对角面,故面积为2,选D.8.G2[2013·江西卷] 一几何体的三视图如图1-2所示,则该几何体的体积为( )图1-2A .200+9πB .200+18πC .140+9πD .140+18π8.A [解析] 该几何体上面是半圆柱,下面是长方体,半圆柱体积为12π·32·2=9π,长方体体积为10×5×4=200.故选A.13.G2[2013·辽宁卷] 某几何体的三视图如图1-3所示,则该几何体的体积是________.图1-313.16π-16 [解析] 由三视图可知该几何体是一个圆柱里面挖去了一个长方体,所以该几何体的体积为V =4π×4-16=16π-16.9.G2[2013·新课标全国卷Ⅱ] 一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )图1-39.A [解析] 在空间直角坐标系O -xyz 中画出三棱锥,由已知可知三棱锥O -ABC 为题中所描叙的四面体,而其在zOx 平面上的投影为正方形EBDO ,故选A.图1-44.G2[2013·山东卷] 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图1-1所示,则该四棱锥侧面积和体积分别是( )图1-1A .4 5,8B .4 5,83C .4(5+1),83D .8,84.B [解析] 由正视图知该几何体的高为2,底面边长为2,斜高为22+1=5,∴侧面积=4×12×2×5=4 5,体积为13×2×2×2=83.12.G2[2013·陕西卷] 某几何体的三视图如图1-2所示,则其表.面积为________.图1-212.3π [解析] 由三视图得该几何体为半径为1的半个球,则表面积为半球面+底面圆,代入数据计算为S =12×4π×12+π×12=3π.11.G2[2013·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为( )图1-3A .16+8πB .8+8πC .16+16πD .8+16π11.A [解析] 该空间几何体的下半部分是一个底面半径为2,母线长为4的半圆柱,上半部分是一个底面边长为2、高为4的正四棱柱.这个空间几何体的体积是12×π×4×4+2×2×4=16+8π.5.G2[2013·浙江卷] 已知某几何体的三视图(单位: cm)如图1-1所示,则该几何体的体积是( )图1-1A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 35.B [解析] 此直观图是由一个长方体挖去一个三棱锥而得,如图所示其体积为3×6×6-13×12×3×4×4=108-8=100(cm 3).所以选择B.BC =CD =2,∠ACB=∠ACD=π3.(1)求证:BD⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.图1-419.解:(1)证明:因为BC =CD ,即△BCD 为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.因为PA⊥底面ABCD ,所以PA⊥BD,从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD⊥平面PAC.(2)三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由PA⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =13×3×2 3=2.由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =13×3×18×2 3=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.8.G2和G7[2013·重庆卷] 某几何体的三视图如图1-3所示,则该几何体的表面积为( )图1-3A .180B .200C .220D .2408.D [解析] 该几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,其腰为5的等腰梯形,所以底面面积和为12(2+8)×4×2=40.四个侧面的面积和为(2+8+5×2)×10=200,所以该直四棱柱的表面积为S =40+200=240,故选D.G3 平面的基本性质、空间两条直线G4 空间中的平行关系17.G4,G5,G7[2013·北京卷] 如图1-5,在四棱锥P -ABCD 中,AB∥CD,AB⊥AD,CD =2AB ,平面PAD⊥底面ABCD ,PA⊥AD,E 和F 分别是CD 和PC 的中点.求证:(1)PA ⊥底面ABCD ; (2)BE∥平面PAD ;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面PAD⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA⊥底面ABCD.(2)因为AB∥CD,CD =2AB ,E 为CD 的中点, 所以AB∥DE,且AB =DE , 所以ABED 为平行四边形, 所以BE∥AD.又因为BE 平面PAD ,AD 平面PAD , 所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED 为平行四边形, 所以BE ⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD , 所以PA⊥CD.又因为AD∩PA=A ,所以CD⊥平面PAD , 所以CD⊥PD.因为E 和F 分别是CD 和PC 的中点, 所以PD∥EF, 所以CD⊥EF,所以CD⊥平面BEF , 所以平面BEF⊥平面PCD. 18.G2,G4[2013·福建卷] 如图1-3,在四棱锥P -ABCD 中,PD⊥平面ABCD ,AB∥DC,AB⊥AD,BC =5,DC =3,AD =4,∠PAD=60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM∥平面PBC ; (3)求三棱锥D -PBC 的体积.图1-318.解:(1)在梯形ABCD 中,过点C 作CE⊥AB,垂足为E. 由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6. 又由PD⊥平面ABCD 得,PD⊥AD.从而在Rt △PDA 中,由AD =4,∠PAD=60°,得PD =4 3. 正视图如图所示.(2)方法一:取PB 中点N ,联结MN ,CN.在△PAB 中,∵M 是PA 中点,∴MN∥AB,MN =12AB =3.又CD∥AB,CD =3,∴MN∥CD,MN =CD , ∴四边形MNCD 为平行四边形,∴DM∥CN. 又DM 平面PBC ,CN 平面PBC , ∴DM ∥平面PBC.方法二:取AB 的中点E ,联结ME ,DE. 在梯形ABCD 中,BE∥CD,且BE =CD , ∴四边形BCDE 为平行四边形,∴DE ∥BC.又DE 平面PBC ,BC 平面PBC , ∴DE ∥平面PBC.又在△PAB 中,ME∥PB,ME 平面PBC ,PB 平面PBC ,∴ME∥平面PBC. 又DE∩ME=E ,∴平面DME∥平面PBC. 又DM 平面DME ,∴DM∥平面PBC.(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =4 3,所以V D -PBC =8 3.18.G1,G4,G5[2013·广东卷] 如图1-4(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图1-4(2)所示的三棱锥A -BCF ,其中BC =22.图1-4(1)证明:DE∥平面BCF ; (2)证明:CF⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.18.解: 8.G4、G5[2013·广东卷] 设l 为直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若l∥α,l∥β,则α∥β B .若l⊥α,l⊥β,则α∥β C .若l⊥α,l∥β,则α∥β D .若α⊥β,l∥α,则l⊥β8.B [解析] 根据空间平行、垂直关系的判定和性质,易知选B.16.G4,G5[2013·江苏卷] 如图1-2,在三棱锥S -ABC 中,平面SAB⊥平面SBC ,AB⊥BC,AS =AB.过A 作AF⊥SB,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∥平面ABC ; (2)BC⊥SA.图1-216.证明:(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF平面ABC,AB平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB平面SAB,所以BC⊥平面SAB.因为SA平面SAB,所以BC⊥SA.15.G4[2013·江西卷] 如图1-5所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.图1-515.4 [解析] 直线EF与正方体左右两个面平行,与其他四个面相交.图1-418.G4,G5[2013·辽宁卷] 如图1-4,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O 上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.18.证明:(1)由AB是圆O的直径,得AC⊥BC.由PA⊥平面ABC,BC平面ABC,得PA⊥BC.又PA∩AC=A,PA平面PAC,AC平面PAC,所以BC⊥平面PAC.(2)联结OG 并延长交AC 于M ,联结QM ,QO , 由G 为△AOC 的重心,得M 为AC 中点, 由Q 为PA 中点,得QM∥PC. 又O 为AB 中点,得OM∥BC. 因为QM∩MO=M ,QM 平面QMO. MO 平面QMO ,BC ∩PC =C ,BC 平面PBC ,PC 平面PBC , 所以平面QMO∥平面PBC. 因为QG 平面QMO , 所以QG∥平面PBC.18.G4,G7,G11[2013·新课标全国卷Ⅱ] 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.图1-718.解:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF.因为DF 平面A 1CD ,BC 1平面A 1CD ,所以BC 1∥平面A 1CD.图1-8(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD⊥AB.又AA 1∩AB =A ,于是CD⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =2 2得∠ACB=90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D.所以VC -A 1DE =13×12×6×3×2=1.19.G4,G5[2013·山东卷] 如图1-5,四棱锥P —ABCD 中,AB⊥AC,AB⊥PA,AB∥CD,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE∥平面PAD ;(2)求证:平面EFG⊥平面EMN.图1-619.证明:(1)证法一:取PA 的中点H ,联结EH ,DH. 因为E 为PB 的中点, 所以EH∥AB,EH =12AB.又A B∥CD,CD =12AB ,所以EH∥CD,EH =CD.因此四边形DCEH 是平行四边形. 所以CE∥DH.又DH 平面PAD ,CE 平面PAD , 因此CE∥平面PAD.证法二:联结CF. 因为F 为AB 的中点, 所以AF =12AB.又CD =12AB ,所以AF =CD. 又AF∥CD,所以四边形AFCD 为平行四边形. 因此CF∥AD.又CF 平面PAD , 所以CF∥平面PAD.因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA.又EF 平面PAD , 所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE平面CEF,所以CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA.又AB⊥PA,所以AB⊥EF.同理可证AB⊥FG.又EF∩FG=F,EF平面EFG,FG平面EFG,因此AB⊥平面EFG.又M,N分别为PD,PC的中点,所以MN∥CD.又AB∥CD,所以MN∥AB,因此MN⊥平面EFG.又MN平面EMN,所以平面EFG⊥平面EMN.18.G4,G11[2013·陕西卷] 如图1-5,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.图1-5(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.18.解:(1)证明:由题设知,BB1瘙綊 DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD平面CD1B1,∴BD∥平面CD1B1.∵A1D1瘙綊 B1C1瘙 綊 BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C.又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又∵AO=12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1,又∵S △ABD =12×2×2=1,∴VABD -A 1B 1D 1=S △ABD ·A 1O =1.19.G4,G5,G7,G11[2013·四川卷]图1-8如图1-8,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC=120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)19.解:(1)如图,在平面ABC 内,过点P 作直线l∥BC,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点,所以,BC⊥AD,则直线l⊥AD.因此AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l⊥平面ADD 1A 1. (2)过D 作DE⊥AC 于E.因为AA 1⊥平面ABC ,所以DE⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE⊥平面AA 1C 1C.由AB =AC =2,∠BAC=120°,有AD =1,∠DAC=60°, 所以在△ACD 中,DE =32AD =32.又S △A 1QC 1=12A 1C 1·AA 1=1,所以VA 1-QC 1D =VD -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36. 17.G4,G5、G11[2013·天津卷] 如图1-3所示,三棱柱ABC -A 1B 1C 1中,侧棱A 1A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明EF∥平面A 1CD ;(2)证明平面A 1CD ⊥平面A 1ABB 1;(3)求直线BC 与平面A 1CD 所成角的正弦值.图1-317.解:(1)证明:如图,在三棱柱ABC -A 1B 1C 1中,AC∥A 1C 1,且AC =A 1C 1,联结ED ,在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE =12AC 且DE∥AC,又因为F 为A 1C 1的中点,可得A 1F=DE ,且A 1F ∥DE ,即四边形A 1DEF 为平行四边形,所以EF∥DA 1.又EF 平面A 1CD ,DA 1平面A 1CD ,所以,EF∥平面A 1CD.(2)证明:由于底面ABC 是正三角形,D 为AB 的中点,故CD⊥AB,又由于侧棱AA 1⊥底面ABC ,CD 平面ABC ,所以A 1A ⊥CD ,又A 1A ∩AB =A ,因此CD⊥平面A 1ABB 1,而CD 平面A 1CD ,所以平面A 1CD ⊥平面A 1ABB 1.(3)在平面A 1ABB 1内,过点B 作BG⊥A 1D 交直线A 1D 于点G ,联结CG ,由于平面A 1CD ⊥平面A 1ABB 1,而直线A 1D 是平面A 1CD 与平面A 1ABB 1的交线,故BG⊥平面A 1CD ,由此得∠BCG 为直线BC 与平面A 1CD 所成的角.设三棱柱各棱长为a ,可得A 1D =5a 2,由△A 1AD ∽△BGD ,易得BG =5a 5.在Rt △BGC 中,sin ∠BCG =BG BC =55.所以直线BC 与平面A 1CD 所成角的正弦值为55. 4.G4,G5[2013·浙江卷] 设m ,n 是两条不同的直线,α,β是两个不同的平面( )A .若m∥α,n∥α,则m∥nB .若m∥α,m∥β,则α∥βC .若m∥n,m⊥α,则n⊥αD .若m∥α,α⊥β,则m⊥β4.C [解析] 对于选项C ,若m∥n,m⊥α,易得n⊥α.所以选择C.G5 空间中的垂直关系图1-518.G5[2013·安徽卷] 如图1-5,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD=60°,已知PB =PD =2,PA = 6.(1)证明:PC⊥BD;(2)若E 为PA 的中点,求三棱锥P -BCE 的体积. 18.解:(1)证明:联结AC ,交BD 于O 点,联结PO. 因为底面ABCD 是菱形,所以AC⊥BD,BO =DO.由PB =PD 知,PO⊥BD.再由PO∩AC=O 知,BD⊥面APC ,又PC 平面APC ,因此BD⊥PC.(2)因为E 是PA 的中点,所以V P -BCE =V C -PEB =12V C -PAB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD≌△PBD. 因为∠BAD=60°,所以PO =AO =3,AC =23,BO =1.又PA =6,故PO 2+AO 2=PA 2,即PO⊥AC.故S △APC =12PO ·AC =3.由(1)知,BO⊥面APC ,因此V P -BCE =12V B -APC =13·12·S △APC ·BO =12.17.G4,G5,G7[2013·北京卷] 如图1-5,在四棱锥P -ABCD 中,AB∥CD,AB⊥AD,CD =2AB ,平面PAD⊥底面ABCD ,PA⊥AD,E 和F 分别是CD 和PC 的中点.求证:(1)PA⊥底面ABCD ; (2)BE∥平面PAD ;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面PAD⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA⊥底面ABCD.(2)因为AB∥CD,CD =2AB ,E 为CD 的中点, 所以AB∥DE,且AB =DE , 所以ABED 为平行四边形, 所以BE∥AD.又因为BE 平面PAD ,AD 平面PAD , 所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED 为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD , 所以PA⊥CD.又因为AD∩PA=A ,所以CD⊥平面PAD , 所以CD⊥PD.因为E 和F 分别是CD 和PC 的中点, 所以PD∥EF, 所以CD⊥EF,所以CD⊥平面BEF , 所以平面BEF⊥平面PCD.19.G5、G11[2013·全国卷] 如图1-3所示,四棱锥P —ABCD 中,∠ABC=∠BAD=90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.图1-3(1)证明:PB⊥CD;(2)求点A 到平面PCD 的距离.19.解:(1)证明:取BC 的中点E ,联结DE ,则四边形ABED 为正方形.过P 作PO⊥平面ABCD ,垂足为O.联结OA ,OB ,OD ,OE.由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点.故OE⊥BD,从而PB⊥OE.因为O 是BD 的中点,E 是BC 的中点,所以OE∥CD.因此PB⊥CD.(2)取PD 的中点F ,联结OF ,则OF∥PB. 由(1)知,PB⊥CD,故OF⊥CD.又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF⊥PD. 又PD∩CD=D ,所以OF⊥平面PCD.因为AE∥CD,CD 平面PCD ,AE 平面PCD ,所以AE∥平面PCD. 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1,所以点A 到平面PCD 的距离为1.18.G1,G4,G5[2013·广东卷] 如图1-4(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图1-4(2)所示的三棱锥A -BCF ,其中BC =22.图1-4(1)证明:DE∥平面BCF ; (2)证明:CF⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积.18.解: 8.G4、G5[2013·广东卷] 设l 为直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若l∥α,l∥β,则α∥β B .若l⊥α,l⊥β,则α∥β C .若l⊥α,l∥β,则α∥β D .若α⊥β,l∥α,则l⊥β8.B [解析] 根据空间平行、垂直关系的判定和性质,易知选B.16.G4,G5[2013·江苏卷] 如图1-2,在三棱锥S -ABC 中,平面SAB⊥平面SBC ,AB⊥BC,AS =AB.过A 作AF⊥SB,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∥平面ABC ; (2)BC⊥SA.图1-216.证明:(1)因为AS =AB ,AF⊥SB,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF∥AB.因为EF 平面ABC ,AB 平面ABC , 所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E , 所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC ,且交线为SB ,又AF 平面SAB ,AF⊥SB, 所以AF⊥平面SBC.因为BC 平面SBC ,所以AF⊥BC.又因为AB⊥BC ,AF∩AB=A ,AF ,AB 平面SAB ,所以BC⊥平面SAB. 因为SA 平面SAB ,所以BC⊥SA.19.G5,G7[2013·江西卷] 如图1-7所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB∥CD,AD ⊥AB ,AB =2,AD =2,AA 1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE⊥平面BB 1C 1C ; (2)求点B 1到平面EA 1C 1的距离.图1-719.解:(1)证明:过B 作CD 的垂线交CD 于F ,则BF =AD =2,EF =AB -DE =1,FC =2.在Rt △BEF 中,BE = 3. 在Rt △CFB 中,BC = 6.在△BEC 中,因为BE 2+BC 2=9=EC 2,故BE⊥BC. 由BB 1⊥平面ABCD 得BE⊥BB 1. 所以BE⊥平面BB 1C 1C.(2)三棱锥E -A 1B 1C 1的体积V =13·AA 1·S △A 1B 1C 1= 2.在Rt △A 1D 1C 1中,A 1C 1=A 1D 21+D 1C 21=3 2.同理,EC 1=EC 2+CC 21=3 2,A 1E =A 1A 2+AD 2+DE 2=2 3. 故S △A 1C 1E =3 5.设点B 1到平面EA 1C 1的距离为d ,则三棱锥B 1-A 1C 1E 的体积 V =13·d ·S △A 1C 1E =5d , 从而5d =2,d =105. 图1-418.G4,G5[2013·辽宁卷] 如图1-4,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC⊥平面PAC ;(2)设Q 为PA 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC. 18.证明:(1)由AB 是圆O 的直径,得AC⊥BC. 由PA⊥平面ABC ,BC 平面ABC ,得PA⊥BC. 又PA∩AC=A ,PA 平面PAC ,AC 平面PAC , 所以BC⊥平面PAC.(2)联结OG 并延长交AC 于M ,联结QM ,QO , 由G 为△AOC 的重心,得M 为AC 中点, 由Q 为PA 中点,得QM∥PC. 又O 为AB 中点,得OM∥BC. 因为QM∩MO=M ,QM 平面QMO. MO 平面QMO ,BC ∩PC =C ,BC 平面PBC ,PC 平面PBC , 所以平面QMO∥平面PBC. 因为QG 平面QMO , 所以QG∥平面PBC.19.G4,G5[2013·山东卷] 如图1-5,四棱锥P —ABCD 中,AB⊥AC ,AB⊥PA,AB∥CD,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE∥平面PAD ;(2)求证:平面EFG⊥平面EMN.图1-619.证明:(1)证法一:取PA 的中点H ,联结EH ,DH. 因为E 为PB 的中点, 所以EH∥AB,EH =12AB.又AB∥CD,CD =12AB ,所以EH∥CD,EH =CD.因此四边形DCEH 是平行四边形. 所以CE∥DH.又DH 平面PAD ,CE 平面PAD ,因此CE∥平面PAD.证法二:联结CF. 因为F 为AB 的中点, 所以AF =12AB.又CD =12AB ,所以AF =CD. 又AF∥CD,所以四边形AFCD 为平行四边形. 因此CF∥AD.又CF 平面PAD , 所以CF∥平面PAD.因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA.又EF 平面PAD , 所以EF∥平面PAD. 因为CF∩EF=F ,故平面CEF∥平面PAD. 又CE 平面CEF , 所以CE∥平面PAD.(2)因为E ,F 分别为PB ,AB 的中点, 所以EF∥PA. 又AB⊥PA, 所以AB⊥EF. 同理可证AB⊥FG.又EF∩FG=F ,EF 平面EFG ,FG 平面EFG , 因此AB⊥平面EFG.又M ,N 分别为PD ,PC 的中点, 所以MN∥CD. 又AB∥CD, 所以MN∥AB,因此MN⊥平面EFG. 又MN 平面EMN ,所以平面EFG⊥平面EMN.19.G4,G5,G7,G11[2013·四川卷]图1-8如图1-8,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC=120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)19.解:(1)如图,在平面ABC 内,过点P 作直线l∥BC,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点,所以,BC⊥AD,则直线l⊥AD.因此AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l⊥平面ADD 1A 1. (2)过D 作DE⊥AC 于E.因为AA 1⊥平面ABC ,所以DE⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE⊥平面AA 1C 1C.由AB =AC =2,∠BAC=120°,有AD =1,∠DAC=60°, 所以在△ACD 中,DE =32AD =32. 又S △A 1QC 1=12A 1C 1·AA 1=1,所以VA 1-QC 1D =VD -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36. 17.G4,G5、G11[2013·天津卷] 如图1-3所示,三棱柱ABC -A 1B 1C 1中,侧棱A 1A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明EF∥平面A 1CD ;(2)证明平面A 1CD ⊥平面A 1ABB 1;(3)求直线BC 与平面A 1CD 所成角的正弦值.图1-317.解:(1)证明:如图,在三棱柱ABC -A 1B 1C 1中,AC∥A 1C 1,且AC =A 1C 1,联结ED ,在△ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE =12AC 且DE∥AC,又因为F 为A 1C 1的中点,可得A 1F=DE ,且A 1F ∥DE ,即四边形A 1DEF 为平行四边形,所以EF∥DA 1.又EF 平面A 1CD ,DA 1平面A 1CD ,所以,EF∥平面A 1CD.(2)证明:由于底面ABC 是正三角形,D 为AB 的中点,故CD⊥AB,又由于侧棱AA 1⊥底面ABC ,CD 平面ABC ,所以A 1A ⊥CD ,又A 1A ∩AB =A ,因此CD⊥平面A 1ABB 1,而CD 平面A 1CD ,所以平面A 1CD ⊥平面A 1ABB 1.(3)在平面A 1ABB 1内,过点B 作BG⊥A 1D 交直线A 1D 于点G ,联结CG ,由于平面A 1CD ⊥平面A 1ABB 1,而直线A 1D 是平面A 1CD 与平面A 1ABB 1的交线,故BG⊥平面A 1CD ,由此得∠BCG 为直线BC 与平面A 1CD 所成的角.设三棱柱各棱长为a ,可得A 1D =5a 2,由△A 1AD ∽△BGD ,易得BG =5a 5.在Rt △BGC 中,sin ∠BCG =BG BC =55.所以直线BC 与平面A 1CD 所成角的正弦值为55. 19.G5[2013·新课标全国卷Ⅰ] 如图1-5所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积.图1-519.解:(1)取AB 的中点O ,联结OC ,OA 1,A 1B , 因为CA =CB ,所以OC⊥AB.由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB. 因为OC∩OA 1=O ,所以AB⊥平面OA 1C. 又A 1C 平面OA 1C ,故AB⊥A 1C.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3.又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC.因为OC∩AB=O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·OA 1=3.4.G4,G5[2013·浙江卷] 设m ,n 是两条不同的直线,α,β是两个不同的平面( )A .若m∥α,n∥α,则m∥nB .若m∥α,m∥β,则α∥βC .若m∥n,m⊥α,则n⊥αD .若m∥α,α⊥β,则m⊥β4.C [解析] 对于选项C ,若m∥n,m⊥α,易得n⊥α.所以选择C.19.G2和G5[2013·重庆卷] 如图1-4所示,四棱锥P -ABCD 中,PA⊥底面ABCD ,PA =2 3,BC =CD =2,∠ACB=∠ACD=π3.(1)求证:BD⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.图1-419.解:(1)证明:因为BC =CD ,即△BCD 为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.因为PA⊥底面ABCD ,所以PA⊥BD,从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD⊥平面PAC.(2)三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由PA⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =13×3×2 3=2.由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =13×3×18×2 3=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.G6 三垂线定理8.G1,G6[2013·北京卷] 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )图1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD1=3,∴BP=33,D1P=2 33.联结AD1,B1D1,CD1,得△ABD1≌△CBD1≌△B1BD1,∴∠ABD1=∠CBD1=∠B1BD1,且cos∠ABD1=3 3,联结AP,PC,PB1,则有△ABP≌△CBP≌△B1BP,∴AP=CP=B1P=63,同理DP=A1P=C1P=1,∴P到各顶点的距离的不同取值有4个.G7棱柱与棱锥17.G4,G5,G7[2013·北京卷] 如图1-5,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE,所以ABED为平行四边形,所以BE∥AD.又因为BE平面PAD,AD平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又因为AD∩PA=A,所以CD⊥平面PAD,所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF,所以CD⊥平面BEF,所以平面BEF⊥平面PCD.10.G2,G7[2013·北京卷] 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.8.G7[2013·江苏卷] 如图1-1,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.图1-18.1∶24 [解析] 设三棱柱的底面积为S ,高为h ,则V 2=Sh ,又D ,E ,F 分别为AB ,AC ,AA 1的中点,所以S △AED =14S ,且三棱锥F -ADE 的高为12h ,故V 1=13S △AED ·12h =13·14S ·12h =124Sh ,所以V 1∶V 2=1∶24.19.G5,G7[2013·江西卷] 如图1-7所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB∥CD,AD⊥AB,AB =2,AD =2,AA 1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE⊥平面BB 1C 1C ; (2)求点B 1到平面EA 1C 1的距离.图1-719.解:(1)证明:过B 作CD 的垂线交CD 于F ,则BF =AD =2,EF =AB -DE =1,FC =2.在Rt △BEF 中,BE = 3. 在Rt △CFB 中,BC = 6.在△BEC 中,因为BE 2+BC 2=9=EC 2,故BE⊥BC. 由BB 1⊥平面ABCD 得BE⊥BB 1. 所以BE⊥平面BB 1C 1C.(2)三棱锥E -A 1B 1C 1的体积V =13·AA 1·S △A 1B 1C 1= 2.在Rt △A 1D 1C 1中,A 1C 1=A 1D 21+D 1C 21=3 2.同理,EC 1=EC 2+CC 21=3 2,A 1E =A 1A 2+AD 2+DE 2=2 3. 故S △A 1C 1E =3 5.设点B 1到平面EA 1C 1的距离为d ,则三棱锥B 1-A 1C 1E 的体积 V =13·d ·S △A 1C 1E =5d , 从而5d =2,d =105. 18.G4,G7,G11[2013·新课标全国卷Ⅱ] 如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.图1-718.解:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF.因为DF 平面A 1CD ,BC 1平面A 1CD ,所以BC 1∥平面A 1CD.图1-8(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD⊥AB.又AA 1∩AB =A ,于是CD⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =2 2得∠ACB=90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D.所以VC -A 1DE =13×12×6×3×2=1.19.G4,G5,G7,G11[2013·四川卷]图1-8如图1-8,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1=2,∠BAC=120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 上异于端点的点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l⊥平面ADD 1A 1;(2)设(1)中的直线l 交AC 于点Q ,求三棱锥A 1-QC 1D 的体积.(锥体体积公式:V =13Sh ,其中S 为底面面积,h 为高)19.解:(1)如图,在平面ABC 内,过点P 作直线l∥BC,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l∥平面A 1BC.由已知,AB =AC ,D 是BC 的中点,所以,BC⊥A D ,则直线l⊥AD.因此AA 1⊥平面ABC ,所以AA 1⊥直线l.又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l⊥平面ADD 1A 1. (2)过D 作DE⊥AC 于E.因为AA 1⊥平面ABC ,所以DE⊥AA 1.又因为AC ,AA 1在平面AA 1C 1C 内,且AC 与AA 1相交, 所以DE⊥平面AA 1C 1C.由AB =AC =2,∠BAC=120°,有AD =1,∠DAC=60°, 所以在△ACD 中,DE =32AD =32. 又S △A 1QC 1=12A 1C 1·AA 1=1,所以VA 1-QC 1D =VD -A 1QC 1=13DE ·S △A 1QC 1=13×32×1=36.因此三棱锥A 1-QC 1D 的体积是36. 8.G2和G7[2013·重庆卷] 某几何体的三视图如图1-3所示,则该几何体的表面积为( )图1-3A .180B .200C .220D .2408.D [解析] 该几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,其腰为5的等腰梯形,所以底面面积和为12(2+8)×4×2=40.四个侧面的面积和为(2+8+5×2)×10=200,所以该直四棱柱的表面积为S =40+200=240,故选D.G8 多面体与球10.G8[2013·天津卷] 已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.10. 3 [解析] 设正方体的棱长为a ,则43π⎝ ⎛⎭⎪⎫3a 23=92π,解之得a = 3.15.G8[2013·新课标全国卷Ⅱ] 已知正四棱锥O -ABCD 的体积为3 22,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.15.24π [解析] 设O 到底面的距离为h ,则13×3×h =3 22h =3 22,OA =h 2+⎝ ⎛⎭⎪⎫622=6,故球的表面积为4π×(6)2=24π.16.G8[2013·湖北卷] 我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)16.3 [解析] 积水深度为盆深的一半,故此时积水部分的圆台上底面直径为二尺,圆台的高为九寸,故此时积水的体积是13π(102+62+10×6)×9=196×3π(立方寸),盆口的面积是π×142=196π,所以平均降雨量是196×3π196π=3寸.15.G8[2013·新课标全国卷Ⅰ] 已知H 是球O 的直径AB 上一点,AH∶HB=1∶2,AB⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.15.9π2 [解析] 截面为圆,由已知得该圆的半径为1.设球的半径为r ,则AH =23r ,所以OH =13r ,所以13r 2+12=r 2,r 2=98,所以球的表面积是4πr 2=9π2.G9 空间向量及运算G10 空间向量解决线面位置关系G11 空间有与距离的求法19.G5、G11[2013·全国卷] 如图1-3所示,四棱锥P —ABCD 中,∠ABC=∠BAD=90°,BC=2AD ,△PAB 和△PAD 都是边长为2的等边三角形.图1-3(1)证明:PB⊥CD;(2)求点A 到平面PCD 的距离.19.解:(1)证明:取BC 的中点E ,联结DE ,则四边形ABED 为正方形.过P 作PO⊥平面ABCD ,垂足为O.联结OA ,OB ,OD ,OE.由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点.故OE⊥BD,从而PB⊥OE.因为O 是BD 的中点,E 是BC 的中点,所以OE∥CD.因此PB⊥CD.(2)取PD 的中点F ,联结OF ,则OF∥PB. 由(1)知,PB⊥CD,故OF⊥CD.又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF⊥PD. 又PD∩CD=D ,所以OF⊥平面PCD.因为AE∥CD,CD 平面PCD ,AE 平面PCD ,所以AE∥平面PCD. 因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而OF =12PB =1,所以点A 到平面PCD 的距离为1.11.G11[2013·全国卷] 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23 D.1311.A [解析] 如图,联结AC ,交BD 于点O.由于BO⊥OC,BO⊥CC 1,可得BO⊥平面OCC 1,从而平面OCC 1⊥平面BDC 1,过点C 作OC 1的垂线交OC 1于点E ,根据面面垂直的性质定理可得CE⊥平面BDC 1,∠CDE 即为所求的线面角.设AB =2,则OC =2,OC 1=18=32,所以CE =CC 1·OC OC 1=4 23 2=43,所以sin ∠CDE =CE CD =23.22.G11[2013·江苏卷] 如图1-2所示,在直三棱柱A 1B 1C 1-ABC 中,AB⊥AC,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.图1-222.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.。

北京市各地市2013年高考数学最新联考试题分类汇编(8)立体几何

北京市各地市2013年高考数学最新联考试题分类汇编(8)立体几何

一、选择题: (6)(北京市朝阳区2013年4月高三第一次综合练习文理)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A 。

4B 。

42C 。

62 D. 8 【答案】D(5)(北京市东城区2013年4月高三综合练习一文)已知一个几何体的三视图如图所示(单位:cm ),那么这个几何体的侧.面积是 (A )2(1+2)cm(B)2(3+2)cm(C)2(4+2)cm (D )2(5+2)cm【答案】C 7。

(北京市房山区2013年4月高三第一次模拟理)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( C ) A 。

43 B. 8 C. 47 D 。

835.(北京市西城区2013年4月高三一模文)某正三棱柱的三视图如图所示,其中正(主) 视图是边长为2的正方形,该正三棱柱的表面积是(A )63+ (B )123+ (C )1223+ (D )2423+ 【答案】C8.(北京市西城区2013年4月高三一模文)如图,正方体1111ABCD A B C D -中,E 是棱11B C 的中点,动点P 在底面ABCD 内,且11PA A E =,则 点P 运动形成的图形是(A )线段 (B )圆弧(C )椭圆的一部分 (D )抛物线的一部分【答案】B8. (北京市海淀区2013年4月高三第二学期期中练习理)设123,,l l l 为空间中三条互相平行且两两间的距离分别为4,5,6的直线。

给出下列三个结论:①i i A l ∃∈(1,2,3)i =,使得123A A A ∆是直角三角形; ②i i A l ∃∈(1,2,3)i =,使得123A A A ∆是等边三角形;③三条直线上存在四点(1,2,3,4)i A i =,使得四面体1234A A A A 为在一个顶点处的三条棱两两互相垂直的四面体。

其中,所有正确结论的序号是A 。

① B.①② C 。

①③ D. ②③ 【答案】B7.(北京市丰台区2013年高三第二学期统一练习一文)某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是(A ) 2 (B ) 4 (C) 25+ (D) 425+ 【答案】C(7)(北京市昌平区2013年1月高三期末考试理)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为A. 104342++ B .102342++ C. 142342++ D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翻折问题(13东城二模文)(17)(本小题共14分)如图,△BCD 是等边三角形, AB AD =,90BAD ∠= ,M ,N ,G 分别是BD ,BC ,AB 的中点,将△BCD 沿BD 折叠到△'BC D 的位置,使得'AD C B ⊥.(Ⅰ)求证:平面//GNM 平面ADC '; (Ⅱ)求证:'C A ⊥平面ABD .(13海淀二模文)17 (本小题满分14分)如图1,在直角梯形中,AD//BC, =900,BA=BC 把ΔBAC 沿折起到的位置,使得点在平面ADC 上的正投影O 恰好落在线段上,如图2所示,点分别为线段PC ,CD 的中点. (I) 求证:平面OEF//平面APD ; (II)求直线CD与平面POF(III)在棱PC 上是否存在一点,使得到点P,O,C,F 四点的距离相等?请说明理由.ABCD ADC ∠AC PAC ∆P AC ,E F M M A BCDMNGA BCDMNG(13石景山期末文16)5.(本小题共14分)如图1,在Rt 中,,.D 、E 分别是上的点,且, 将沿折起到的位置,使,如图2. (Ⅰ)求证: 平面; (Ⅱ)求证: 平面;(Ⅲ) 当点在何处时,的长度最小,并求出最小值.ABC ∆90C ∠=︒36BC AC ==,AC AB 、//DE BC ADE ∆DE 1A DE ∆1A D CD ⊥//BC 1A DE BC ⊥1A DC D 1AB 图1图2A 1B CDEP FEDCBA求体积(13昌平二模文)(17)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ===,E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证://EF 平面PAD ; (Ⅱ) 求三棱锥P BCD -的体积;(Ⅲ) 在线段AB 上是否存在点,G 使得CD EFG ⊥平面?说明理由.(13房山二模文)16.(本小题满分14分)如图,ABCD 是正方形, DE ⊥平面ABCD ,DE AF //,22===AF DA DE . (Ⅰ) 求证:AC ⊥平面BDE ; (Ⅱ) 求证://AC 平面BEF ; (Ⅲ) 求四面体BDEF 的体积.FEDCBA(13西城一模文)16.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ; (Ⅱ)求四面体FBCD 的体积;(Ⅲ)线段AC 上是否存在点M ,使EA //平面FDM ?证明你的结论.(13延庆一模文)16.(本小题满分14分)如图,四棱锥ABCD P -的底面ABCD 为菱形, 60=∠ABC ,PA ⊥底面ABCD ,2==AB PA ,E 为PA 的中点.(Ⅰ)求证://PC 平面EBD ;(Ⅱ)求三棱锥PAD C -的体积PAD C V -;(Ⅲ)在侧棱PC 上是否存在一点M ,满足⊥PC 平面MBD ,若存在,求PM 的长;若不存在,说明理由.D反证法(13海淀一模文)17. (本小题满分14分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (Ⅰ)求证:;(Ⅱ)求证:平面;(Ⅲ)设平面平面=,试问直线是否与直线平行,请说明理由.P ABCD -PA ⊥ABCD ABC ∆AC BD M AC 30CAD ∠= 4PA AB ==N PB 13PN NB =BD PC ⊥//MN PDC PAB PCD l l CD用相似三角形或勾股定理证垂直(13朝阳二模文)(17)(本小题满分14分)如图,已知四边形ABCD 是正方形,EA ⊥平面ABCD ,PDEA ,22AD PD EA ===,F ,G ,H 分别为BP ,BE ,PC 的中点.(Ⅰ)求证:FG平面PDE ;(Ⅱ)求证:平面FGH ⊥平面AEB ;(Ⅲ)在线段PC 上是否存在一点M ,使PB ⊥平面EFM ?若存在,求出线段PM 的长;若不存在, 请说明理由.(13朝阳一模文)(17) (本小题满分14分)如图,在四棱锥中,平面平面,且,.四边形满足,,.为侧棱的中点,为侧棱上的任意一点.(Ⅰ)若为的中点,求证:平面; (Ⅱ)求证:平面平面;(Ⅲ)是否存在点,使得直线与平面垂直?若存在,写出证明过程并求出线段的长; 若不存在,请说明理由.P ABCD -PAC ⊥ABCD PA AC ⊥2PA AD ==ABCD BC AD AB AD ⊥1AB BC ==E PB F PC F PC EF PAD AFD ⊥PAB F AF PCD PF BD CFGHEPP DABCFEABC基础题(13丰台二模文)17. (本小题13分)如图,多面体EDABC 中,AC ,BC ,CE 两两垂直,AD //CE ,ED DC ⊥,12AD CE =,M 为BE 中点.(Ⅰ)求证:DM //平面ABC ; (Ⅱ)求证:平面BDE ⊥平面BCD .(13顺义二模文)17.(本小题满分14分)如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1,2DF AB =PH 为PAD ∆中AD 边上的高.(Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥;(Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB ?说明理由.OFEDCBA(13西城二模文)17.(本小题满分14分)如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ; (Ⅲ)证明:平面PFC ⊥平面PCD .(13昌平期末文16)4.(本小题满分14分)在四棱锥E ABCD -中,底面ABCD 是正方形,,AC BD O 与交于EC ABCD F 底面,^为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ^;(Ⅲ)若,AB =在线段EO 上是否存在点G ,使CG BDE 平面^?若存在,求出EGEO的值,若不 存在,请说明理由.A 1B 1CBD 1C 1ADE如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥底面ABC ,AC =BC =2,AB =CC 1=4,M 是棱CC 1上一点. (Ⅰ)求证:BC ⊥AM ;(Ⅱ)若M ,N 分别为CC 1,AB 的中点,求证:CN //平面AB 1M .(13朝阳期末文16)7.(本小题满分14分)在长方体1111ABCD-A BC D 中,12AA=AD=,E 是棱CD 上的一点. (Ⅰ)求证:1AD ⊥平面11A B D ; (Ⅱ)求证:11B E AD ⊥;(Ⅲ)若E 是棱CD 的中点,在棱1AA 上是否存在点P ,使得DP ∥平面1B AE ?若存在,求出线段AP 的长;若不存在,请说明理由.N M B 1A 1C 1CBA如图,在菱形ABCD 中, MA ⊥平面ABCD ,且四边形ADNM 是平行四边形. (Ⅰ)求证:AC ⊥BN ;(Ⅱ)当点E 在AB 的什么位置时,使得//AN 平面MEC ,并加以证明.(13丰台期末文17)9.(本题共13分 )如图,三棱柱111C B A ABC —中,⊥1AA 平面ABC ,AB ⊥BC , 点M , N 分别为A 1C 1与A 1B 的中点. (Ⅰ)求证:MN //平面 BCC 1B 1; (Ⅱ)求证:平面A 1BC ⊥平面A 1ABB 1.ABCDENM1A(13海淀期末文17)10.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,1AB AC AA ==,且E 是BC 中点. (I ) 求证:1//A B 平面1AEC ; (Ⅱ)求证:1B C ⊥平面1AEC .(13西城期末文17)11.(本小题满分14分)如图,直三棱柱中,,,,分别为,的 中点.(Ⅰ)求线段的长;(Ⅱ)求证:// 平面;(Ⅲ)线段上是否存在点,使平面?说明理由.111C B A ABC -BC AC ⊥21===CC BC AC M N AC 11C B MN MN 11A ABB 1CC Q ⊥B A 1MNQ EC 1B 1A 1CBA(13大兴一模文)(17)(本小题满分13分)如图,直三棱柱ABC —A 1B 1C 1中,是等边三角形,D 是BC 的中点. (Ⅰ)求证:直线A 1D ⊥B 1C 1;(Ⅱ)判断A 1B 与平面ADC 1的位置关系,并证明你的结论.(13东城一模文)(16)(本小题共14分)如图,已知AD ⊥平面ABC ,CE ⊥平面ABC ,F 为BC 的中点,若12AB AC AD CE ===. (Ⅰ)求证://AF 平面BDE ;(Ⅱ)求证:平面BDE ⊥平面BCE .ABCD A BCDEF(13房山一模文)16. (本小题满分14分)在四棱锥P ABCD -中,底面ABCD 为直角梯形,BC //AD ,90ADC ∠=︒,12BC CD AD ==, PA PD =,E F ,为AD PC ,的中点.(Ⅰ)求证:PA //平面BEF ; (Ⅱ)求证:AD PB ⊥.(13丰台一模文)16. 如图,四棱锥P -ABCD 中, BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD . (Ⅰ)求证:AC ⊥PD ;(Ⅱ)在线段PA 上,是否存在点E ,使BE ∥平面PCD ?若存在,求PEPA的值;若不存在,请说明理由。

(13门头沟一模文)17. (本小题满分13分)如图,已知平面α,β,且,,,,AB PC PD C D αβαβ=⊥⊥ 是垂足. (Ⅰ)求证:AB ⊥平面PCD ;(Ⅱ)若1,PC PD CD ===,试判断平面α与平面β是否垂直,并证明你的结论.(13石景山一模文)17 .(本小题满分14分)如图,在底面为直角梯形的四棱锥P ABCD -中,//,90AD BC ABC ∠=︒,P D ⊥平面ABCD ,A D =1,AB ,4BC =. (Ⅰ)求证:BD PC ⊥;(Ⅱ)设AC 与BD 相交于点O ,在棱PC 上是否存在点E ,使得OE ∥平面PAB ?若存在,确定点E 位置.APCDBβαAPCDBO。

相关文档
最新文档