武汉纺织大学传热学最基本内容
传热学知识整理1-4章

绪论一、概念1. 传热学: 研究热量传递规律的科学。
2. 热量传递的基本方式: 热传导、热对流、热辐射。
3. 热传导(导热): 物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。
(纯粹的导热只能发生在不透明的固体之中。
)4. 热流密度:通过单位面积的热流量(W/m2)。
5.热对流: 由于流体各部分之间发生相对位移而产生的热量传递现象。
热对流只发生在流体之中, 并伴随有导热现象。
6. 自然对流: 由于流体密度差引起的相对运功c7. 强制对流: 出于机械作用或其他压差作用引起的相对运动。
8. 对流换热:流体流过固体壁面时, 由于对流和导热的联合作用, 使流体与固体壁面间产生热量传递的过程。
9. 辐射: 物体通过电磁波传播能量的方式。
10.热辐射: 由于热的原因, 物体的内能转变成电磁波的能量而进行的辐射过程。
11. 辐射换热:不直接接触的物体之间, 出于各自辐射与吸收的综合结果所产生的热量传递现象。
12. 传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。
13.传热系数: 表征传热过程强烈程度的标尺, 数值上等于冷热流体温差1时所产生的热流密度。
14. 单位面积上的传热热阻:单位面积上的导热热阻: 。
单位面积上的对流换热热阻:对比串联热阻大小就可以找到强化传热的主要环节。
15. 导热系数是表征材料导热性能优劣的系数, 是一种物性参数, 不同材料的导热系数的数值不同, 即使是同一种材料, 其值还与温度等参数有关。
对于各向异性的材料, 还与方向有关。
常温下部分物质导热系数: 银: 427;纯铜: 398;纯铝: 236;普通钢: 30-50;水: 0.599;空气: 0.0259;保温材料: <0.14;水垢: 1-3;烟垢: 0.1-0.3。
16. 表面换热系数不是物性参数, 它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。
17. 稳态传热过程(定常过程):物体中各点温度不随时间而变。
传热学基本知识

导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
1
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
q 热流密度,W m2
2)流速的影响 流体流速增高时,对流传热系数就大。
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
1
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
1
蒸汽冷凝时的对流传热
传热学基本知识
热传导
4、导热计算
1)单层平壁的稳定热传导
计算公式:
Q A t
Q t R
热阻:
R A
当壁面两侧的温度不等时,且热量只沿垂直 于壁面的方向发生变化
或
q t
1
传热学基本知识
热传导
4、导热计算
2)多层平壁的稳定热传导
多层平壁是指由几层不同厚度、不同导热系数的材料组成 且其间接触良好的平壁
Q=qm热r热 Q=qm冷r冷 此法仅适于有相变过程
三、平均温度差
用传热速率方程式计算换热器的传 热速率时,因传热面各部位的传热温 度差不同,必须算出平均传热温度差 ⊿t均代替⊿t,
QKAt均
1
1、恒温传热时的平均温度差
传热学知识点概念总结

传热学知识点概念总结传热学是研究热量传递的科学,主要涉及热传导、热辐射和对流传热三个方面。
下面将对传热学中的一些重要知识点进行概念总结。
1.热传导:热传导是指物质内部由于分子或原子之间的相互作用而引起的热量传递。
热传导的速率与传热介质的导热性质有关,如导热系数、传热介质的温度梯度和传热介质的厚度。
2.热辐射:热辐射是指由于物体表面温度而产生的电磁辐射,无需经过介质媒质进行传热。
热辐射的能量传递与物体的温度和表面特性有关,如表面发射率和吸收率。
3.对流传热:对流传热是指通过流体的流动使热量传递的过程。
对流传热受到流体流动速度、温度差和流体介质的热传导性质的影响。
对流传热可以分为自然对流和强制对流两种形式。
4.导热系数:导热系数是描述材料导热性质的物理量,定义为单位厚度和单位温度梯度时的热流密度。
导热系数是描述热传导能力大小的重要参数,与物质的组成、结构和温度有关。
5.温度梯度:温度梯度是指在物体内部或空间中温度随着距离的变化率。
温度梯度越大,热传导的速率越快。
6.热阻:热阻是指单位时间内单位温差时热传导的阻力。
热阻与传热介质的导热系数和厚度有关。
可通过热阻来描述传热介质对热传导的阻碍程度。
7.热容量:热容量是指单位质量物质温度升高单位温度所需的热量。
热容量与物质的物理性质有关,如比热容和密度。
8.辐射强度:辐射强度是指单位时间内单位面积上辐射通过的能量。
辐射强度与物体的表面发射率和温度有关。
9.辐射传热:辐射传热是指由于物体表面发射和吸收辐射而进行的传热。
辐射传热受到物体表面发射率、吸收率、温度差和介质的辐射传递能力的影响。
10.热傅里叶定律:热傅里叶定律是描述物体内部热传导的定律,其表达式为热流密度与传热介质的导热系数、温度梯度和传热介质的横截面积成正比。
以上是传热学中一些重要的知识点的概念总结。
传热学的研究对于理解和应用热量传递过程具有重要意义,可广泛应用于工程领域的热处理、热能转化和热工学等方面。
传热学基本知识总结

传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。
传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。
以下是对传热学基本知识的总结。
一、传热的基本概念1.温度:物体内部分子运动的程度的度量。
温度高低决定了热能的传递方向。
2.热量:物体之间由于温度差异而传递的能量。
热量沿温度梯度从高温区向低温区传递。
3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。
4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。
二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。
2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。
3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。
三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。
热导率取决于物质本身的性质,与物质的材料、温度有关。
热导率越大,物体传热能力越强。
四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。
2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。
五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。
2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。
3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。
在工程中,传热学常常运用于热工系统的设计和优化。
工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。
例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。
传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。
第2章传热学基本知识

墙体的总传热系数。 K -墙体的总传热系数。 墙体的总传热阻。 R -墙体的总传热阻。
二、传热的增强与削弱
1、增强传热的基本途径 Q = KF ∆t
(1)提高传热系数 (2)增大传热面积 (3)增大传热温差
2、增强传热的方法
(1)改变流体的流动状况 (2)改变流体的物性 (3)改变换热表面情况
3、削弱传热的方法
2、热量
定义:物体吸收或放出热能的多少。 定义:物体吸收或放出热能的多少。 热量的单位 国际单位制中: 国际单位制中:J,kJ 工程单位制中:cal, 工程单位制中:cal,kcal 换算关系 换算关系 :1kcal=4.19kJ 热量与能量的区别: 热量与能量的区别: 我们可以说一个物体含有多少能量, 我们可以说一个物体含有多少能量,但我们不能说它含有 多少热量。 热量是一个过程量 过程量, 多少热量 。 热量是一个 过程量 , 只有在物体通过热传递 交换热能才谈得上热量。 交换热能才谈得上热量 。 我们可以说一个物体放出多少 热量,吸收多少热量。 热量,吸收多少热量。
(1)热绝缘 (2)改变表面状况
问题: 问题:
1、现实生活中,什么时候需要增强传热,什么 现实生活中,什么时候需要增强传热, 增强传热 时候需要削弱传热 削弱传热? 时候需要削弱传热? 吹电风扇为什么会觉得凉快? 2 、 吹电风扇为什么会觉得凉快 ? 如果环境温度 大于37 37℃ 会出现什么情况? 大于37℃,会出现什么情况? 3、夏天出汗觉得凉快还是不出汗觉得凉快?出 夏天出汗觉得凉快还是不出汗觉得凉快? 汗后不擦干为什么容易感冒? 汗后不擦干为什么容易感冒?
c = c0ε
c0 -黑体的辐射系数。 黑体的辐射系数。
ε -物体的黑度,表示物体与黑体的接近程度。 物体的黑度,表示物体与黑体的接近程度。
传热学知识点总结

传热学知识点总结传热学是研究热量从一个物体或一个系统传递到另一个物体或系统的科学。
它是热力学的一部分,具有广泛的应用领域,包括能源转换、热力学系统设计和工艺优化等。
以下是传热学的一些重要知识点的总结:1.热传导:热量通过直接接触和分子间的碰撞传递。
在固体中,热传导是最主要的传热方式,其传递速率与物质的热导率、温度梯度和传热距离有关。
2.热对流:热量通过流体(液体或气体)的流动传递。
对流传热的速率取决于流体的速度、温度差和传热面积。
3.热辐射:热能以电磁波的形式从热源发出,无需介质介导即可传递热量。
热辐射与物体的温度和表面特性有关,如表面的发射率和吸收率。
4.导热方程:描述了热传导现象,可以用来计算温度随时间和空间的变化。
它与热导率、物体的几何形状和边界条件有关。
5.导热系数:材料的物理性质,描述了材料导热性能的好坏。
较高的导热系数表示材料更好地传递热量。
6.热对流换热系数:描述了流体换热的能力,表示单位面积上的热量传递速率和温度差之间的关系。
7.四能截面:描述了热辐射的性质,反映了物体吸收、反射和透射电磁波的能力。
8.热阻和热导率:用于描述物体或系统中热量传递的难易程度。
热阻与热导率成反比。
9.传热过程中的能量守恒:热量传递过程中,能量守恒定律适用。
传热的总能量输入等于输出。
10.辐射传热公式:根据黑体辐射定律,描述了热辐射的能量传递,常用于计算热源辐射的热量。
11.对流换热公式:根据精细的实验和理论研究,发展了一系列对流换热公式,用于估算流体对流传热。
12.热导率与温度的关系:大多数材料的热导率随温度的升高而增大,但也有一些例外情况。
13. 传热表征:传热通常使用无量纲数值来表征,如Nusselt数、Prandtl数和Reynolds数,它们描述了传热过程中流体的性质和行为。
14.界面传热:当两个物体或系统接触时,它们之间的传热称为界面传热。
界面传热常见的形式包括对流传热和热辐射。
15.传热器件和应用:传热学的知识应用于各种传热器件和系统,如换热器、蒸发器、冷却器等,为工程和科技应用提供了基础。
传热学内容总结

绪论部分一、热量传递的三种基本方式⒈导热应充分理解导热是物质的固有本质,无论是气体、液体还是固体液态还是固态,都具有导热的本领。
利用傅里叶定律进行稳态一维物体导热量的计算。
应能区分热流量Φ和热流密度q。
前者单位是w,后者单位是w/m2,且q=Φ/A。
同时还应将热流量Φ与热力学中的热量Q区别开来,后者的单位是J。
传热学中引入了时间的概念,强调热量传递是需要时间的。
充分掌握导热系数λ是一物性参数,其单位为w/(m·K);它取决于物质的热力状态,如压力、温度等。
对不同的物质,可用教材的附录查得导热系数值。
⒉对流掌握对流换热是流体流过固体壁面且由于其与壁面间存在温差时的热量传递现象,它与流体的流动机理密不可分;同时,由于导热也是物质的固有本质,因而对流换热是流体的宏观热运动(热对流)与流体的微观热运动(导热)联合作用的结果。
初步会运用牛顿冷却公式或计算对流换热量。
注意其中A为换热面积,必须是流体与壁面间相互接触的、与热量传递方向相垂直的面积。
掌握对流换热的表面传热系数h为一过程量,而不像导热系数λ那样是物性参数。
也正因为如此,不同对流换热过程的表面传热系数的数量级相差很大。
⒊热辐射掌握热辐射的特点,区分它与导热及对流的不同之处。
掌握黑体辐射的斯蒂藩—玻耳兹曼定律。
它是一个黑体表面向外界发射的辐射热量,而不是一个表面与外界之间以辐射方式交换的热量。
通过对两块非常接近的互相平行黑体壁面间辐射换热的计算,以了解辐射换热的概念。
应注意三种热量传递方式并不是单独出现,常常串联或并联在一起起作用。
可以结合日常生活及工程实际中的实例加深理解。
二、传热过程与传热系数⒈传热过程充分理解传热过程是热量在被壁面隔开的两种流体之间热量传递的过程。
在传热过程中三种热量传递方式常常联合起作用。
能对一维平壁的传热过程进行简单的计算。
理解传热系数K是表征传热过程强弱的标尺。
既然对流换热表面传热系数h是过程量,它常作为传热过程的一个环节,因而传热系数也是过程量。
1.2传热学基本知识

二、计算公式
单层墙壁
t1>t2,温度恒定不变,热能 以导热方式由墙体内表面经墙 体传向墙的外表面。
单位时间的导热量
Q
d
(t1 t2 ) F
Q-通过单层平壁的导热量。
F -墙壁的传热面积。 d -墙壁的厚度。 t1 -墙壁内表面的温度。
t 2 -墙壁外表面的温度。 -墙体材料的导热系数。
§2-3 对流换热
一、对流换热的特征及影响因素
1、定义
依靠流体的运动,热量由一处传递到另一处的现象称之 为热对流。
2、特征
传热过程中流体质点发生了相对位移,而热传导中质点 并不发生相对位移。
3、热对流与对流换热的区别
热对流是基本传热方式的一种。 对流换热不是基本传热方式,而是一种复杂的传热过程, 既有热对流作用,同时又有导热作用。
一、温度与热量
1、温度
定义:用来表示物体冷热程度的物理量。 测量温度的仪表:温度计,玻璃管温度计、热电偶温度 计、热电阻温度计等。 衡量温度的数值标尺:温标。 ①绝对温标:国际单位制规定的热力学温标,符号T,单位 K(开尔文),中文代号“开”。 ②摄氏温标:工程实际常用一种温标,符号t,单位摄氏度 ,代号“℃”。 换算关系 : T=t+273.16 一般工程计算中:T=t+273
三、热辐射的基本定律
在所有的物体中,黑体辐射能力E最强,其他物体辐射能 力小于黑体,称灰体。
T 4 c( ) 100
T -绝对温度。
c -灰体的辐射系数,表示物体的向外辐射的能力。
c c0
c0 -黑体的辐射系数。
-物体的黑度,表示物体与黑体的接近程度。
T>OK的物体都能辐射热量,两物体通过辐射进 行热交换,高温物体辐射给低温物体的热量大于 低温物体辐射给高温物体的热量,最终两者差值 决定换热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-11-28
第六章 要点小结
圆管内强制对流、外掠圆管、自然对流 1. 定性温度、定型尺寸(特征尺寸)
2. 准则数Re、Pr、Gr、Nu的表达式及其在传热学 计算中的作用 3. 对流换热的类型、流态的判断(临界Re数的值) 、边界层的特征、经验公式的使用 4. 对流换热的计算过程。
2013-11-28
导热系数 保温材料 (认识)导热微分方程式及边界条件
稳态与非稳态导热的温度特点
2013-11-28
第二章 要点小结 常物性导热体的一维稳态、无内热源的导热
(1) 热阻的定义、热阻图
(2)无限大、多层平壁单位面积上的热流
q
t f1 t f 2
n i 1 1 h1 i 1 i h2
3、斯蒂芬-玻尔兹曼(Stefan-Boltzmann)定律Wien 唯一定律、兰贝特(Lambert)定律、 基尔霍夫 (Kirchhoff)定律
2013-11-28
第九章 要点小结
1、角系数的定义、空间热阻
2、黑体间的辐射换热计算
3、灰体的定义、有效辐射、表面热阻(二本) 4、角系数的互换性、角系数的完整性
用热平衡法求一维、两维稳态导热问题的节点方 程,并用迭代法求解
2013-11-28
第五章要点小结
(牛顿流体的稳态、常物性、单相对流换热)
对流换热的特点、影响因素、牛顿冷却公式 (了解)边界层理论简化了对流换热微分方程式 (了解)相似理论大大简化对流换热实验。 (掌握)准则数Nu、Re、Pr、Gr各自的意义。强制 对流、自然对流换热各用到哪些准则数 (了解)横掠平板换热时,边界层的变化特点及局 部对流换热系数的变化特征,(掌握)计算方法
第七章 要点小结
1. 有相变的与单相流体的换热比较(以水为例)
2. 膜状凝结、珠状凝结的换热特征
3. 大容器(池内)沸腾及有限空间(管内强迫流 动)沸腾过程的特点 4. Nusselt膜状凝结换热公式的使用 5. 热管的工作原理
2013-11-28
第八章 要点小结
1、热辐射、吸收率、反射率、透过率、黑体、镜 体、透明体、可见光、红外线 2、黑体单色及全波长辐射力、辐射强度的计算
第三章 要点小结(二本)
1.非稳态导热的定义、非稳态的数学表达 式、非稳态导热的物理特点 2.无限大平壁非稳态导热微分方程式、边 界条件、初始条件
2013-11-28
第四章要点小结(二本)
常物性、两维稳态导热在无内热源时内 部节点(i,j)的方程:其温度值是相 邻四个节点的算术平均值。
ti1, j ti1, j ti , j 1 ti , j 1 4ti , j 0
2013-11-28
(3) 无限长、多层圆筒壁传热,单位长度上的热流
tf1 tf 2 ql n d i 1 1 1 1 ln h1d1 i 1 2i di h2d n 1(源自) 肋片的作用、肋片的散热量和效率
(5) (认识)肋片效率随肋高变化而变化的趋势
2013-11-28
绪论要点小结
(1)导热、Fourier 定律应用于 大平壁 (2)对流换热、 Newton 冷却公 式 (3)热辐射、Stenfan-Boltzmann
t Φ = A
Aht
定律
(4)传热过程
2013-11-28
Eb b T
4
第一章 要点小结
温度梯度 内热源强度
傅立叶定律的数学表达式
5、遮热板的原理
2013-11-28