【初中数学同步练习】一元二次方程拓展(二)

合集下载

《一元二次方程的解法 》(二)配方法—知识讲解 配套 2022人教九年级上册专练

《一元二次方程的解法 》(二)配方法—知识讲解 配套 2022人教九年级上册专练

一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。

【要点梳理】知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. 用配方法解方程: (1)(2020•岳池县模拟)2x 2﹣4x ﹣3=0; (2)(2020春•泰山区期中)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为2()(0)mx n P P +=≥的形式,然后用直接开平方法求解. 【答案与解析】 解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1,x 2﹣4x+4=1+4, (x ﹣2)2=5, x ﹣2=,x 1=2+,x 2=2﹣;【点评】配方要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方.举一反三:【变式】 用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=-2225535()()2424x x -+=-+ 251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244,p p q p p qx x -+----==; ②当240p q -<时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.【思路点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【答案与解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭,即210740x x -+-<.故21074x x -+-的值恒小于0.【点评】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明. 举一反三:【变式】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 1204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238.3. (2020春•宜兴市校级月考)若把代数式x 2+2bx+4化为(x ﹣m )2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . 【答案】;【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4 =(x+b )2﹣b 2+4; ∴m=﹣b ,k=﹣b 2+4,则k ﹣m=﹣(b ﹣)2+.∵﹣(b ﹣)2≤0, ∴当b=时,k ﹣m 的最大值是.故答案为:.【点评】此题考查利用完全平方公式配方,注意代数式的恒等变形. 举一反三: 【变式】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.4. 分解因式:42221x x ax a +++-. 【答案与解析】42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.【点评】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于( ).A .70°B .64°C .62°D .51°2.在半径为27m 的圆形广场中心点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面SAB 的顶角为120°(如图所示),则光源离地面的垂直高度SO 为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.(2020•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.(2020•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是 .13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________. 14.已知正方形ABCD 2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2020•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴. 4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C ;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】21)a ; 2(222)a ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =2x ,∴ 22x x a +=,(21)x a=-,即正八边形的边长为(21)a-.222224[(21)](222)AELS S S a x a a a=-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n边形内角和为(n-2)180°,前n条弧的弧长的和为(2)1801(2)3602nn-=-个以某定点为圆心,以1为半径的圆周长,∴ n条弧的弧长的和为121(2)(2)2n nππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,nα,则12(2)180nnααα+++=-…°,∴ n条弧长的和为1212111()180180180180nnαπαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n nππ=-⨯=-.16.【答案】720π;【解析】∵ S=πr2,∴ 9π=πr2,∴ r=3.∴ h1=4,∴2215l h r=+=,∴223523 3.5152136S S S rl rhπππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720Sππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH是⊙O的切线∴OF⊥FH∵FH∥BC ,∴OF垂直平分BCAB CDEO12∴BF FC =∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=A BCDEO 12345H.20. 【答案与解析】(1)如选命题①.证明:在图(1)中,∵∠BON=60°,∴∠1+∠2=60°.∵∠3+∠2=60°,∴∠1=∠3.又∵ BC=CA,∠BCM=∠CAN=60°,∴△BCM≌△CAN,∴ BM=CM.如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴ BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴ BM=CN.(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。

人教版九年级数学上册21.2:解一元二次方程 (二)同步练习(包含答案)

人教版九年级数学上册21.2:解一元二次方程 (二)同步练习(包含答案)

第二十一章 21.2 解一元二次方程(二)同步练习解一元二次方程:公式法同步练习(答题时间:15分钟)1. 利用求根公式求x x 62152=+的根时,a 、b 、c 的值分别是 ( ) A.6215、、 B. 2165、、 C. 2165、、- D. 2165--、、 2. 方程012=-+x x 的一个根是 ( )A. 1 –5B. 251- C. –1+5 D. 251+- 3. 要使6429+-n n a 与n a 3是同类项,则n 等于 ( )A. 2B. 3C. 0D. 2或3 4. 若04)1(5)2(22=-+-+-m x m x m 是关于x 的一元二次方程,且该方程有一个根是0,则m =_______。

5. 若)0(03422≠=+-xy y xy x ,则y x 的值是_________。

6. 用公式法解下列方程:(1)0432=--x x (2)322=+x x (3) 24210x x --=(4)2610y y --=7. 已知921-=x y ,x y -=32,当x 为何值时,1y 与2y 相等?解一元二次方程:公式法同步练习参考答案1. C 解析:先将原方程化为一般形式得,215602x x -+=,即1562a b c ==-=,,,故选C 。

2. D 解析:利用求根公式得:x ==,112-+=x212--=x ,故选D 。

3. D 解析:∵两代数式是同类项,∴246n n n -+=,即:2560n n -+=,利用求根公式可得:1232n n ==,,故选D 。

4. -2 解析:把0x =代入方程得:240m -=,∴2m =±,∵20m -≠,∴2m ≠, ∴2m =-。

5. 1或3 解析:∵0xy ≠,∴00x y ≠≠,,两边同时除以2y 得:22430x x y y-+=, 令x a y=,则原方程可化为:2430a a -+=,利用求根公式得: 1231a a ==,。

人教版数学九年级上册 21.2解一元二次方程 专项拓展练习

人教版数学九年级上册 21.2解一元二次方程 专项拓展练习

21.2解一元二次方程专项拓展一.选择题1.把方程x2﹣6x﹣5=0左边配成一个完全平方式后,所得的方程是()A.(x﹣6)2=41B.(x﹣3)2=4C.(x﹣3)2=14D.(x﹣3)2=9 2.解方程x2﹣3x=0较为合适的方法是()A.直接开平方法B.配方法C.公式法D.分解因式法3.方程x2=x的实数根是()A.1或0B.﹣1或0C.1或﹣1D.14.用配方法将二次三项式a2﹣4a+3变形,结果是()A.(a﹣2)2﹣1B.(a+2)2﹣1C.(a+2)2﹣3D.(a﹣2)2﹣6 5.若关于x的方程x2﹣x+m=0有两个相等的实数根,则m的取值范围是()A.m=B.m=﹣C.m=±D.无法确定6.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.已知关于x的一元二次方程x2﹣2x+m=0(m>0)有两个不相等的实数根,则()A.m<1B.0<m<1C.m>1D.m=18.如果关于x的一元二次方程kx2﹣4x﹣1=0有实数根,那么k应满足的条件是()A.k>﹣4B.k≥﹣4且k≠0C.k>﹣4且k≠0D.k≤19.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的两不相等的实数根,且,则m的值是()A.B.﹣3C.D.10.一个三角形两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为()A.9B.11C.13D.9或13二.填空题11.将方程3x2=5(x+2)化为一元二次方程的一般式为.12.已知实数m,n是方程x2﹣7x+2=0的两不等实根,则=.13.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.若x1+x2=3,则k的值为.14.已知有序整数对(m,n),其中|m|≤1,|n|≤2,关于x的方程x2+nx+m=0有两个相等实数根,则满足条件的有序整数对有个.15.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是.三.解答题16.解下列方程(1)x2﹣2x﹣5=0(配方法);(2)3(x﹣2)2=x(x﹣2)(因式分解法);(3)(t﹣2)(3t﹣5)=1(公式法).17.已知关于x的方程x2﹣5x+3a+3=0.(1)若a=1,请你解这个方程;(2)若方程的一个根为﹣2,求方程的另一个根.18.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个不相等的实数根.(Ⅰ)求m的取值范围;(Ⅱ)当m为何值时,方程的两个根互为相反数?19.若关于x的一元二次方程x2﹣3x+p=0有两个不相等的实数根分别为a和b、且a2﹣ab+b2=18.(1)求p的值;(2)求的值.20.已知△ABC的一条边BC的长为5,另两边AB、AC的长分别为关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根.(1)试说明:无论k为何值,方程总有两个不相等的实数根;(2)当k=2时,请判断△ABC的形状并说明理由.参考答案一.选择题1.解:移项,得x2﹣6x=5,两边都加9,得x2﹣6x+9=14,所以(x﹣3)2=14.故选:C.2.解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得x1=0,x2=3,∴解方程x2﹣3x=0较为合适的方法是分解因式法,故选:D.3.解:∵x2=x,∴x2﹣x=0,则x(x﹣1)=0,∴x=0或x﹣1=0,解得x1=0,x2=1,故选:A.4.解:a2﹣4a+3=a2﹣4a+4﹣1=(a﹣2)2﹣1,故选:A.5.解:∵方程有两个相等的实数根,a=1,b=﹣,c=m,∴△=b2﹣4ac=(﹣)2﹣4×1×m=0,解得m=.故选:A.6.解:∵a=1,b=11,c=﹣1,∴△=b2﹣4ac=112﹣4×1×(﹣1)=125>0,∴一元二次方程x2+11x﹣1=0有两个不相等的实数根.故选:A.7.解:∵方程有两个不相等的实数根,∴b2﹣4ac=4﹣4m>0,即m<1;∵m>0,∴0<m<1,故选:B.8.解:∵关于x的一元二次方程kx2﹣4x﹣1=0有实数根∴k≠0且△=(﹣4)2﹣4•k•(﹣1)=16+4k≥0,解得:k≥﹣4且k≠0,故选:B.9.解:根据题意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根据根与系数的关系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值为.故选:C.10.解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故选:C.二.填空题11.解:3x2=5(x+2),3x2=5x+10,3x2﹣5x﹣10=0,故答案为:3x2﹣5x﹣10=0.12.解:根据题意得m+n=7,mn=2,所以==.故答案为.13.解:(1)根据题意得△=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1+x2=2k+1,则2k+1=3,解得k=1.故答案为1.14.解:∵有序整数对(m,n),其中|m|≤1,|n|≤2,∴m=0,±1,n=0,±1,±2,±3∴有序整数(m,n)共有:3×7=21(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,∴满足条件的有序整数对有3个.故答案为:3.15.解:当3为等腰三角形的腰时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,此时原方程为x2﹣12x+27=0,即(x﹣3)(x﹣9)=0,解得:x1=3,x2=9,∵3+3=6<9,∴3不能为等腰三角形的腰;当3为等腰三角形的底时,方程x2﹣12x+k=0有两个相等的实数根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=36,此时x1=x2=﹣=6,∵3、6、6可以围成等腰三角形,∴k=36.故答案为:36.三.解答题16.解:(1)x2﹣2x﹣5=0,x2﹣2x=5,配方得:x2﹣2x+1=5+1,(x﹣1)2=6,开方得:x﹣1=,解得:x1=1+,x2=1﹣;(2)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)[3(x﹣2)﹣x]=0,x﹣2=0,3(x﹣2)﹣x=0,x1=2,x2=3;(3)(t﹣2)(3t﹣5)=1,整理得:3t2﹣11t+9=0,b2﹣4ac=(﹣11)2﹣4×3×9=13,t==,解得:t1=,t2=.17.解:(1)a=1,方程化为x2﹣5x+6=0,(x﹣3)(x﹣2)=0,x﹣3=0或x﹣2=0,所以x1=3,x2=2;(2)设方程的另一个根为t,则﹣2+t=5,解得t=7,即方程的另一个根为7.18.解:(Ⅰ)根据题意得△=(2m﹣1)2﹣4m2>0,解得m<;(Ⅱ)设方程的两个根分别为x1、x2,∵方程的两个根互为相反数,∴x1+x2=﹣(2m﹣1)=0,解得m=,而m<,∴没有m的值使方程的两个根互为相反数.19.解:(1)∵a,b为方程x2﹣3x+p=0的两个不相等的实数根,∴a+b=3,ab=p.∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3,当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p的值为﹣3;(2)∵p=﹣3,∴ab=﹣3,∴====﹣5.20.解:(1)∵△=(2k+3)2﹣4(k2+3k+2)=1>0,∴无论k为何值,方程总有两个不相等的实数根;(2)△ABC为直角三角形.理由如下:当k=2时,方程化为x2﹣7x+12=0,解得x1=3,x2=4,即AB、AC的长为3、4,∵32+42=52,∴AB2+AC2=BC2,∴△ABC为直角三角形.。

人教版九年级数学 同步练习 含答案_第二十二章__一元二次方程

人教版九年级数学 同步练习 含答案_第二十二章__一元二次方程

第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若{ EMBED Equation.3 |x xm -m +-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3) (4) A .1个 B .2个 C .3个 D .4个 8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0. 13. 14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx2+x-k=0有一个根是-1,则k的值为______.二、选择题18.下列方程:(x+1)(x-2)=3,x2+y+4=0,(x-1)2-x(x+1)=x,其中是一元二次方程的有( ).A.2个B.3个C.4个D.5个19.形如ax2+bx+c=0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A.a是任意实数B.与b,c的值有关C.与a的值有关D.与a的符号有关20.如果是关于x的方程2x2+3ax-2a=0的根,那么关于y的方程y2-3=a的解是( ).A.B.±1 C.±2 D.21.关于x的一元二次方程(x-k)2+k=0,当k>0时的解为( ).A.B.C.D.无实数解三、解答题(用直接开平方法解下列方程)22.(3x-2)(3x+2)=8.23.(5-2x)2=9(x+3)2.24.25.(x-m)2=n.(n为正数)拓广、探究、思考26.若关于x的方程(k+1)x2-(k-2)x-5+k=0只有唯一的一个解,则k=______,此方程的解为______.27.如果(m-2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( ).A.2或-2 B.2 C.-2 D.以上都不正确28.已知关于x的一元二次方程(m-1)x2+2x+m2-1=0有一个根是0,求m的值.29.三角形的三边长分别是整数值2cm,5cm,k cm,且k满足一元二次方程2k2-9k-5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1._________=(x-__________)2.2.+_________=(x-_________)2.3._________=(x-_________)2.4.+_________=(x-_________)2.5.关于x的一元二次方程ax2+bx+c=0(a≠0)的根是______.6.一元二次方程(2x+1)2-(x-4)(2x-1)=3x中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A.B.C.D.8.用配方法解方程x2+2x=8的解为( ).A.x1=4,x2=-2 B.x1=-10,x2=8C.x1=10,x2=-8 D.x1=-4,x2=29.用公式法解一元二次方程,正确的应是( ).A.B.C.D.10.方程mx2-4x+1=0(m<0)的根是( ).A.B.C.D.三、解答题(用配方法解一元二次方程)11.x2-2x-1=0.12.y2-6y+6=0.四、解答题(用公式法解一元二次方程)13.x2+4x-3=0.14.五、解方程(自选方法解一元二次方程)15.x2+4x=-3.16.5x2+4x=1.综合、运用、诊断一、填空题17.将方程化为标准形式是______________________,其中a=______,b=______,c=______.18.关于x的方程x2+mx-8=0的一个根是2,则m=______,另一根是______.二、选择题19.若关于x的二次三项式x2-ax+2a-3是一个完全平方式,则a的值为( ).A.-2 B.-4 C.-6 D.2或620.4x2+49y2配成完全平方式应加上( ).A.14xy B.-14xyC.±28xy D.021.关于x的一元二次方程的两根应为( ).A.B.,C.D.三、解答题(用配方法解一元二次方程)22.3x2-4x=2.23.x2+2mx=n.(n+m2≥0).四、解答题(用公式法解一元二次方程)24.2x-1=-2x2.25.26.2(x-1)2-(x+1)(1-x)=(x+2)2.拓广、探究、思考27.解关于x的方程:x2+mx+2=mx2+3x.(其中m≠1)28.用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax2+bx+c=0(a≠0)根的判别式为 =b2-4ac,(1)当b2-4ac______0时,方程有两个不相等的实数根;(2)当b2-4ac______0时,方程有两个相等的实数根;(3)当b2-4ac______0时,方程没有实数根.2.若关于x的方程x2-2x-m=0有两个相等的实数根,则m=______.3.若关于x的方程x2-2x-k+1=0有两个实数根,则k______.4.若方程(x-m)2=m+m2的根的判别式的值为0,则m=______.二、选择题5.方程x2-3x=4根的判别式的值是( ).A.-7 B.25 C.±5 D.56.一元二次方程ax2+bx+c=0有两个实数根,则根的判别式的值应是( ).A.正数B.负数C.非负数D.零7.下列方程中有两个相等实数根的是( ).A.7x2-x-1=0 B.9x2=4(3x-1)C.x2+7x+15=0 D.8.方程有( ).A.有两个不等实根B.有两个相等的有理根C.无实根D.有两个相等的无理根三、解答题9.k为何值时,方程kx2-6x+9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a-1)x2+2(a+1)x+a+5=0有两个实根,求正整数a的值.11.求证:不论m取任何实数,方程都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax2+bx+c=0(a≠0)根的判别式是( ).A.B.C.b2-4ac D.abc13.若关于x的方程(x+1)2=1-k没有实根,则k的取值范围是( ).A.k<1 B.k<-1 C.k≥1 D.k>114.若关于x的方程3kx2+12x+k+1=0有两个相等的实根,则k的值为( ).A.-4 B.3 C.-4或3 D.或15.若关于x的一元二次方程(m-1)x2+2mx+m+3=0有两个不等的实根,则m的取值范围是( ).A.B.且m≠1C.且m≠1 D.16.如果关于x的二次方程a(1+x2)+2bx=c(1-x2)有两个相等的实根,那么以正数a,b,c 为边长的三角形是( ).A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形二、解答题17.已知方程mx2+mx+5=m有相等的两实根,求方程的解.18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax+c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根)1.x(x-3)=0.______ 2.(2x-7)(x+2)=0.______3.3x2=2x.______ 4.x2+6x+9=0.______5.______ 6.______7.(x-1)2-2(x-1)=0.______.8.(x-1)2-2(x-1)=-1.______二、选择题9.方程(x-a)(x+b)=0的两根是( ).A.x1=a,x2=b B.x1=a,x2=-bC.x1=-a,x2=b D.x1=-a,x2=-b10.下列解方程的过程,正确的是( ).A.x2=x.两边同除以x,得x=1.B.x2+4=0.直接开平方法,可得x=±2.C.(x-2)(x+1)=3×2.∵x-2=3,x+1=2,∴x1=5,x2=1.D.(2-3x)+(3x-2)2=0.整理得3(3x-2)(x-1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x(x-2)=2(x-2).12.*13.x2-3x-28=0.14.x2-bx-2b2=0.*15.(2x-1)2-2(2x-1)=3.*16.2x2-x-15=0.四、解答题17.x取什么值时,代数式x2+8x-12的值等于2x2+x的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x-2)2=(2x+5)2.______________________.二、选择题20.方程x(x-2)=2(2-x)的根为( ).A.-2 B.2 C.±2 D.2,2 21.方程(x-1)2=1-x的根为( ).A.0 B.-1和0 C.1 D.1和0 22.方程的较小的根为( ).A.B.C.D.三、用因式分解法解下列关于x的方程23.24.4(x+3)2-(x-2)2=0.25.26.abx2-(a2+b2)x+ab=0.(ab≠0)四、解答题27.已知关于x的一元二次方程mx2-(m2+2)x+2m=0.(1)求证:当m取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根)1.3(x-1)2-1=0.__________________2.(2x+1)2-2(2x+1)=3.__________________3.3x2-5x+2=0.__________________4.x2-4x-6=0.__________________二、选择题5.方程x2-4x+4=0的根是( ).A.x=2 B.x1=x2=2 C.x=4 D.x1=x2=46.的根是( ).A.x=3 B.x=±3 C.x=±9 D.7.的根是( ).A.B.C.x1=0,D.8.(x-1)2=x-1的根是( ).A.x=2 B.x=0或x=1C.x=1 D.x=1或x=2三、用适当方法解下列方程9.6x2-x-2=0.10.(x+3)(x-3)=3.11.x2-2mx+m2-n2=0.12.2a2x2-5ax+2=0.(a≠0)四、解下列方程(先将你选择的最佳解法写在括号中)13.5x2=x.(最佳方法:______)14.x2-2x=224.(最佳方法:______)15.6x2-2x-3=0.(最佳方法:______)16.6-2x2=0.(最佳方法:______)17.x2-15x-16=0.(最佳方法:______)18.4x2+1=4x.(最佳方法:______)19.(x-1)(x+1)-5x+2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式的值是0,则x=______.21.关于x的方程x2+2ax+a2-b2=0的根是____________.二、选择题22.方程3x2=0和方程5x2=6x的根( ).A.都是x=0 B.有一个相同,x=0C.都不相同D.以上都不正确23.关于x的方程abx2-(a2+b2)x+ab=0(ab≠0)的根是( ).A.B.C.D.以上都不正确三、解下列方程24.(x+1)2+(x+2)2=(x+3)2.25.(y-5)(y+3)+(y-2)(y+4)=26.26.27.kx2-(k+1)x+1=0.四、解答题28.已知:x2+3xy-4y2=0(y≠0),求的值.29.已知:关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有两相等实数根.求证:a+c=2b.(a,b,c是实数)拓广、探究、思考30.若方程3x2+bx+c=0的解为x1=1,x2=-3,则整式3x2+bx+c可分解因式为__________ ____________.31.在实数范围内把x2-2x-1分解因式为____________________.32.已知一元二次方程ax2+bx+c=0(a≠0)中的两根为请你计算x1+x2=____________,x1·x2=____________.并由此结论解决下面的问题:(1)方程2x2+3x-5=0的两根之和为______,两根之积为______.(2)方程2x2+mx+n=0的两根之和为4,两根之积为-3,则m=______,n=______.(3)若方程x2-4x+3k=0的一个根为2,则另一根为______,k为______.(4)已知x1,x2是方程3x2-2x-2=0的两根,不解方程,用根与系数的关系求下列各式的值:①②③|x1-x2|;④⑤(x1-2)(x2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

九年级数学一元二次方程的应用同步练习3

九年级数学一元二次方程的应用同步练习3

九年级数学一元二次方程的应用同步练习31.3一元二次方程的应用(2)同步练习考标要求:会建立一元二次方程模型解决实际问题,并能根据问题的实际意义检验结果的合理性重点难点:重点:建立一元二次方程模型解决实际问题;难点:把实际问题化归为一元二次方程一选择题(每小题5分,共25分)1市政府为了解决市民看病难的问题,决定下调药品的价格。

某种药品经过连续两次降价后,由每盒200元下调至128元,这种药品平均每次降价的百分率是( )A 10%B 15 %C 20 %D 25 % 2 一架长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为6米,如果梯子的顶端沿墙壁下滑1米,那么梯子的底端向后滑动的距离()A 等于1米,B 大于1米,C 小于1米,D 不能确定3 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( ?)A.x2+130x-1400=0 B.x2+65x-350=0 C.x2-130x-1400=0 D.x2-65x-350=0 4 某电视机厂计划两年后产量为现在的2倍,如果每年增长率为x,则可得方程()A ?1?x?=3,B 1+x=2C 1+2x=2D ?1?x?=2 5 借助一面墙为一边,再用13米的铁丝网围成一个面积为20平方米22的长方形,求长方形的长和宽,设长为x米,根据题意可得方程() A x (13-x)=20 B x?x?13?2x=20 213?x=20 C x (13-0.5x)=20 D 2二填空题(每小题5分,共25分)6 某印刷厂今年一季度印刷了50万册书,第三季度印刷了72万册书,如果每个季度的增长率相同,设为x,依题意可得方程__________________;7 某村家用电脑总量,2021年比2021年增长69%,若设平均每年的增长率为x,依题意得方程:______________________;8 某生活小区准备在每幢楼房之间,开辟面积为200平方米的一块长方形绿地,并且长比宽多10米,则绿地的长为_____米,宽为_______米;9 用长为24厘米的铁丝围成一个斜边为10cm的直角三角形,则两直角边分别为_______;10 如图,某小区规划在一个长40米,,宽26米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与BC平行,其余部分种草,若使每一块草坪面积都为144平方米,求小路的宽。

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案

人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关于x 的方程是一元二次方程的是( )A .20ax bx c ++=B .240x x-= C .()()1110x x +-+= D .()22125x x x -= 2.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和33.将一元二次方程()()()21235x x x x +-=+-化为一般形式为( )A .2510x x -+=B .290x x +-=C .2430x x -+=D .210x x -+=4.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( )A .1B .2C .﹣1D .﹣25.若a 是方程2230x x --=的一个解,则263a a -的值为() A .3B .3-C .9D .9-二、填空题 6.只含有 个未知数,并且未知数的 次数是2的方程,叫做一元二次方程,它的一般形式为 .7.一元二次方程()521x x x -=+的一次项系数是 .8.若关于x 的一元二次方程20x a -=的一个根是2,则=a .9.若方程()2190a x x -+-=是关于x 的一元二次方程,则a 的取值范围是__________.10.已知m 是方程210x x --=的一个根,则代数式2552021m m -+的值是 .三、解答题11.判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④ 215402x x-+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.12.已知13,都是方程230==-x x+-=的根,求a、b的值和这个一元二次方程的一般形式.ax bx13.已知m是方程2250x x+-=的一个根,求32+--的值.259m m m14.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.求本班有多少名同学(设本班有x名同学).参考答案1.C2.B3.A4.C5.C6.一最高20(0)++=≠ax bx c a7.7-8.49.1a ≠10.202611.②③⑥.12.1a = 2b = 2 230x x +-= 13.9-14.(1)10x 2+6x-52=0;(2)211900x x --=。

数学:《一元二次方程》同步练习2(人教版九年级上)

数学:《一元二次方程》同步练习2(人教版九年级上)

数学:《一元二次方程》同步练习2(人教版九年级上)1.若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .m= —2D .2±≠m2.若方程()a x =-24有解,则a 的取值范围是( ) A .0≤a B .0≥a C .0>a D .无法确定3.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是( )A. x 2+3x +4=0B.x 2+4x -3=0C.x 2-4x +3=0D. x 2+3x -4=04.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( ) A. 6- B. 1 C. 2 D. 6-或15.对于任意实数x,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定6.已知代数式x -3与x x 32+-的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-37.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14 且a ≠0D .a >–14且a ≠0 8.若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆和完全平方式2)2(b at M +=的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定9.方程x 2+ax+1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .310.三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )A .24B .24或58C .48D .5811.一元二次方程(x+1)(3x -2)=10的一般形式是 。

浙教版八年级数学下册《2.1一元二次方程》同步练习(含答案)

浙教版八年级数学下册《2.1一元二次方程》同步练习(含答案)

第2章 一元二次方程2.1 一元二次方程A 练就好基础 基础达标1.下列方程中,属于一元二次方程的是( C )A .2x +1=0B .y 2+x =1C .x 2+1=0 D.1x+x 2=1 2.方程(m -2)x 2+3mx +1=0是关于x 的一元二次方程,则( D )A .m ≠±2B .m =2C .m =-2D .m ≠23.把一元二次方程(x +2)(x -3)=4化成一般形式,得( C )A .x 2+x -10=0B .x 2-x -6=4C .x 2-x -10=0D .x 2-x -6=04.将方程3x 2+1=6x 化为一元二次方程的一般形式,其中二次项系数为3,则一次项系数、常数项分别是( A )A .-6,1B .6,1C .6,-1D .-6,-15.下列关于一元二次方程x 2-3x =-1的各项系数的说法不正确的是( C )A .二次项系数为1B .一次项系数为-3C .常数项为-1D .一次项为-3x6.已知2是关于x 的方程32x 2-2a =0的一个解,则2a -1的值是( C ) A .3 B .4 C .5 D .67.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值为( B )A .1B .-1C .1或-1 D.128.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x 行或列,则列方程得( D )A .(8-x )(10-x )=8×10-40B .(8-x )(10-x )=8×10+40C .(8+x )(10+x )=8×10-40D .(8+x )(10+x )=8×10+409.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)x 2+1=2x ;(2)x (2x -1)=x ;(3)2=3x 2;(4)(x +1)(x -1)=2x -4.解:(1)由原方程得x 2-2x +1=0,所以二次项系数为1,一次项系数为-2,常数项为1.(2)由原方程得2x 2-2x =0,所以二次项系数为2,一次项系数为-2,常数项为0.(3)由原方程得3x 2-2=0,所以二次项系数为3,一次项系数为0,常数项为-2.(4)由原方程得x 2-2x +3=0,所以二次项系数为1,一次项系数为-2,常数项为3.10.判断下列各题括号内的未知数的值是不是方程的根.(1)x 2+4x -5=0(x 1=5,x 2=1);(2)2y 2-5y +2=0⎝⎛⎭⎫y 1=1,y 2=12;(3)x 2-3x -4=0(x 1=-1,x 2=4).解:将未知数的值代入方程.(1)x 2=1是方程的根,x 1=5不是方程的根.(2)y 2=12是方程的根,y 1=1不是方程的根. (3)x 1=-1和x 2=4都是方程的根.11.根据下列问题,列出关于x 的方程,并将其化为一元二次方程的一般形式.(1)有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数小20,求这个三位数.(2)如果一个直角三角形的两条直角边长之和为14 cm ,面积为24 cm 2,求它的两条直角边的长.解:(1)设十位数字为x ,则个位数字为x +3,百位数字为x +2,根据题意,得[100(x +2)+10x +(x +3)]-9[(x +3)2+x 2+(x +2)2]=20,化简为9x 2-7x -22=0.(2)设其中一条直角边的长为x ,则另一条直角边的长为(14-x ),根据题意,得12x (14-x )=24, 整理,得x 2-14x +48=0.B 更上一层楼 能力提升12.若方程(n -1)x 2+nx -1=0是关于x 的一元二次方程,则( C )A .n ≠1B .n ≥0C .n ≥0且n ≠1D .n 为任意实数13.若关于x 的方程ax 2+bx +c =0(a ≠0)中,a ,b ,c 满足a +b +c =0和a -b +c =0,则方程的根是( C )A .x =1或0B .x =-1或0C .x =1或-1D .无法确定14.已知实数m 是关于x 的方程x 2-3x -1=0的一个根,则代数式2m 2-6m +2的值为__4__.15.已知x =-1是一元二次方程ax 2+bx -10=0的一个解,且a ≠-b ,求a 2-b 22a +2b的值. 解:∵x =-1是一元二次方程ax 2+bx -10=0的一个解,∴a -b -10=0,∴a -b =10. ∵a ≠-b ,∴a +b ≠0,∴a 2-b 22a +2b =(a +b )(a -b )2(a +b )=a -b 2=102=5. 16.(1)已知一元二次方程x 2+bx +c =0的两个根分别为x 1=1和x 2=-2,求这个方程.(2)一元二次方程a (x +1)2+b (x +1)+c =0化为一般形式后为3x 2+2x -1=0,试求a ,b ,c 的值.解:(1)把x 1=1,x 2=-2代入方程x 2+bx +c =0,得⎩⎪⎨⎪⎧1+b +c =0,4-2b +c =0, 解得⎩⎪⎨⎪⎧b =1,c =-2. ∴原方程为x 2+x -2=0.(2)原方程整理得ax 2+(2a +b )x +(a +b +c )=0,∵方程的一般形式为3x 2+2x -1=0,则⎩⎪⎨⎪⎧a =3,2a +b =2,a +b +c =-1, 解得⎩⎪⎨⎪⎧a =3,b =-4,c =0.C 开拓新思路 拓展创新17.已知a ,b 均为非零实数,关于x 的一元二次方程ax 2-2bx -3=0(a ≠0).(1)当方程的其中一个根为3时,求证:2b =3a -1.(2)若m ,n 是方程的两个根,且(2am 2-4bm +2a )(3an 2-6bn -2a )=54,求a 的值.解:(1)将x =3代入ax 2-2bx -3=0,得 9a -6b -3=0,整理,得2b =3a -1.(2)∵m ,n 是方程的两个根,∴am 2-2bm =3,an 2-2bn =3.∵[(2(am 2-2bm )+2a ][3(an 2-2bn )-2a ]=54, ∴(6+2a )(9-2a )=54,∴2a 2-3a =0,即a (2a -3)=0.∵a ≠0,∴a =32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同学你好,网校试题均为高清大图,如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。

第1题
第2题
第3题
第4题
第5题
第6题
第7题
第8题
第9题
第10题
第11题
第12题
第13题
第14题
第15题
第16题
第17题
第18题
第19题
第20题
第21题
第22题
第23题
第24题
第25题
第26题
第27题
第28题
第29题
第30题
第31题
第32题
第33题
第34题
第35题
第36题
第37题
第38题
第39题
第40题
第41题
第42题
第43题
第44题
第45题
第46题
第47题
第48题
第49题
第50题
试题答案
第1题:
正确答案:B 答案解析
第2题:
正确答案:B 答案解析
第3题:
正确答案:A 答案解析
第4题:
正确答案:B 答案解析
第5题:
正确答案:A 答案解析
第6题:
正确答案:D 答案解析
第7题:
正确答案:C 答案解析
第8题:
正确答案:A 答案解析
第9题:
正确答案:D 答案解析
第10题:正确答案:D 答案解析
第11题:正确答案:C 答案解析
第12题:正确答案:C 答案解析
第13题:正确答案:B 答案解析
第14题:正确答案:A 答案解析
第15题:正确答案:A 答案解析
第16题:正确答案:B 答案解析
第17题:正确答案:C 答案解析
第18题:正确答案:C 答案解析
第19题:正确答案:D 答案解析
第20题:正确答案:A 答案解析
第21题:正确答案:A 答案解析
第22题:正确答案:A 答案解析
第23题:正确答案:B 答案解析
第24题:正确答案:C 答案解析
第25题:正确答案:C 答案解析
第26题:正确答案:D 答案解析
第27题:正确答案:C 答案解析
第28题:正确答案:B 答案解析
第29题:正确答案:A 答案解析
第30题:正确答案:A 答案解析
第31题:正确答案:B 答案解析
第32题:正确答案:D 答案解析
第33题:正确答案:D 答案解析
第34题:正确答案:B
答案解析
第35题:正确答案:B 答案解析
第36题:正确答案:C 答案解析
第37题:正确答案:D 答案解析
第38题:正确答案:A 答案解析
第39题:正确答案:C 答案解析
第40题:正确答案:D 答案解析
第41题:正确答案:B 答案解析
第42题:正确答案:A 答案解析
第43题:正确答案:D 答案解析
第44题:正确答案:C 答案解析
第45题:正确答案:A 答案解析
第46题:正确答案:C 答案解析
第47题:正确答案:C 答案解析
第48题:正确答案:A 答案解析
第49题:正确答案:D 答案解析
第50题:正确答案:D 答案解析。

相关文档
最新文档